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Abstract

Protein post-translational modification (PTM) is an important regulatory mechanism that plays a key role in both normal
and disease states. Acetylation on lysine residues is one of the most potent PTMs owing to its critical role in cellular
metabolism and regulatory processes. Identifying protein lysine acetylation (Kace) sites is a challenging task in
bioinformatics. To date, several machine learning-based methods for the in silico identification of Kace sites have been
developed. Of those, a few are prokaryotic species-specific. Despite their attractive advantages and performances, these
methods have certain limitations. Therefore, this study proposes a novel predictor STALLION (STacking-based Predictor for
ProkAryotic Lysine AcetyLatION), containing six prokaryotic species-specific models to identify Kace sites accurately. To
extract crucial patterns around Kace sites, we employed 11 different encodings representing three different characteristics.
Subsequently, a systematic and rigorous feature selection approach was employed to identify the optimal feature set
independently for five tree-based ensemble algorithms and built their respective baseline model for each species. Finally,
the predicted values from baseline models were utilized and trained with an appropriate classifier using the stacking
strategy to develop STALLION. Comparative benchmarking experiments showed that STALLION significantly outperformed
existing predictor on independent tests. To expedite direct accessibility to the STALLION models, a user-friendly online
predictor was implemented, which is available at: http://thegleelab.org/STALLION.
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Introduction
The final step of the ‘central dogma’ of molecular biology is the
translation process, where RNA codes for specific proteins [1].
Protein post-translational modifications (PTMs) are important
owing to their implications in several biological processes,
including cell cycle modulation, DNA repair, gene activation,
gene regulation and signaling processes. PTMs are reversible or
irreversible chemical changes that occur in the later stages of
protein biosynthesis [2, 3]. PTMs can occur in a single amino
acid residue or multiple residues resulting in changes in the
chemical properties of altered sites [4]. Reversible modifications
include covalent modifications, whereas irreversible changes
include proteolytic modifications [5]. PTMs can affect several
properties of proteins, such as cell–cell/cell–matrix interactions,
enzyme assembly and function, molecular trafficking, protein–
protein interactions (PPIs), protein folding, protein localization,
protein solubility, protein lifespan and receptor activation, thus
acting as an important regulatory tool in protein function [6, 7].
Over 400 different types of PTMs have been identified ranging
from the addition of small chemical or complex groups (viz.
acetylation, methylation, phosphorylation, etc.) to the addition
of polypeptides (viz. ubiquitylation and SUMOylation; [8]). The
lysine residue undergoes the largest number of PTMs with
at least 15 PTM types [8]. According to the dbPTM database
statistics, phosphorylation, acetylation and ubiquitination are
the three major types that cover >90% of reported PTMs
[9].

Lysine acetylation (Kace) is one of the most important
ubiquitous PTMs and is highly conserved in both prokaryotes
and eukaryotes [10]. This modification is a covalent PTM
catalyzed by lysine acetyl transferases (KATs), where the acetyl
group (CH3CO) from acetyl coenzyme A is transferred to either
the free α-amino group (NH3

+) of the N-terminal residue (Nα-
acetylation) or to the ε-amino group of internal lysine (Nε-
acetylation) at specific sites [11]. Acetylation is of three types, viz.
Nα-, Nε- and O-acetylation. Nε- and O-acetylations are reversible
modifications, whereas Nα-acetylation is an irreversible one
[12]. Nα-acetylation is common in eukaryotes [13], whereas Nε-
acetylation is more biologically substantial, playing prominent
roles in actin nucleation, cell cycle regulation, chromatin
stability, cell metabolism, nuclear transport and PPIs [14].
Dysregulation of Kace has also been linked to aging and several
diseases including cancer, immune disorders and cardiovascular
and neurological diseases [15, 16]. Given that acetylation is
important in cell biology and disease pathologies, identifying
Kace sites is necessary for understanding its modulatory
mechanism.

Recently, several experimental methods, including radioac-
tivity chemical methods, mass spectrometry and chromatin
immunoprecipitation, have been developed to detect Kace
PTM sites [17]. Owing to the latest innovations in science and
technology, our ability to detect Kace sites has improved dras-
tically; however, considering the proteome size, we have only
uncovered a minute portion of the lysine ‘modifyome’. Moreover,
testing every lysine residue in a single protein is laborious.
The intricacies involved in the experimental identification of
Kace sites (time-consuming, expensive, labor intensive and low
throughput) have led to a plethora of computational approaches
devised to predict potential candidates for experimental
validation, particularly machine learning (ML) tools, which have
become increasingly prevalent for their speedy and accurate
predictions. In the last decade, several ML techniques have been

developed to identify Kace sites in prokaryotes and eukaryotes
[18–22].

Currently, more than a dozen Kace prediction tools are avail-
able, such as PAIL [23], LysAcet [24], EnsemblePail [25], N-Ace [26],
BPBPHKA [27], PLMLA [28], PSKAcePred [29], KAcePred [31], LAceP
[31], AceK [32], SSPKA [33], iPTM-mLys [34], KA-predictor [35],
ProAcePred [36], ProAcePred 2.0 [37], Ning et al. [38] and DNNAce
[39]. Most predictors were designed for identifying acetylation in
eukaryotes and lacked species specificity. However, there are a
few existing predictors that have been developed for identifying
Kace in prokaryotes. SSPKA and KA-predictor were developed
for both eukaryotic and prokaryotic acetylation site predictions,
which included two prokaryotes, Escherichia coli and Salmonella
typhimurium, thus underscoring the importance and necessity of
a species-specific model. Chen et al. [36] developed a predictor
called ProAcePred for nine prokaryotic species, Archaea, Bacil-
lus subtilis, Corynebacterium glutamicum, Erwinia amylovora, E. coli,
Geobacillus kaustophilus, Mycobacterium tuberculosis, S. typhimurium
and Vibrio parahemolvticus. Later, the same group [36] developed
the updated version of ProAcePred predictor called ProAcePred
2.0 [37] for six prokaryotic species: B. subtilis, C. glutamicum, E. coli,
G. kaustophilus, M. tuberculosis and S. typhimurium. The training
dataset was marginally larger than utilized in ProAcePred. Such
ML studies provide an opportunity to understand differences
in substrate site specificity between prokaryotic and eukaryotic
species.

Although progress has been made in the computational pre-
diction of Kace sites, a few limitations need to be addressed.
First, most of the state-of-the-art approaches used simple ML
algorithms such as support vector machine (SVM) or random
forest (RF) to train the model. Owing to the advancement in
cutting-edge technologies, advanced ML approaches, such as
deep learning (DL) [40, 41], iterative feature representation [42]
or ensemble-based stacking approach [43, 44], could be utilized
for developing a more robust and stable predictor to enhance
the predictive performance of Kace sites. Second, the feature
space used by the existing methods in Kace prediction is rather
limited. Finally, the state-of-the-art methods used simple fea-
ture selection technique to identify the optimal feature subset.
Unfortunately, such simple approaches may overlook the critical
features present in Kace site prediction.

Considering these limitations, we developed a novel stacking-
based predictor known as STALLION (STacking-based Predictor
for ProkAryotic Lysine AcetyLatION) to enhance the accurate
prediction of Kace sites in six different prokaryotic species. Major
advantages of our proposed method over other state-of-the-art
methods could be summarized as follows: (i) STALLION is the
first stacking ensemble-based predictor for the identification
of Kace sites in prokaryotes; (ii) We comprehensively evaluated
and compared 11 different encoding schemes for each species
with an attempt to extract patterns representing a wide
range of sequence, position-specific and physicochemical
characteristics. Subsequently, we identified optimal feature set
using three different computationally intensive approaches
separately for five popular tree-based ensemble algorithms
and trained the base classifiers and (iii) A stacked-model
STALLION was trained with an appropriate classifier using
the predicted information from the base classifiers and 5-
fold cross-validation. Comparative analysis on independent
datasets showed that the STALLION significantly outper-
formed existing predictor, thus highlighting the significance
of utilizing our systematic approach in STALLION for Kace
prediction.
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Table 1. A statistical summary of the training and independent datasets for six species

Species Positive Negative Positive Negative

E. coli 6592 6592 361 1384
C. glutamicum 1052 1052 83 830
M. tuberculosis 865 865 68 575
B. subtillis 1571 1571 125 1165
S. typhimurium 198 198 10 217
G. kaustophilus 206 206 17 192

Note: The first column represents the species, the second and third columns represent the positive and negative samples of the training dataset, and the fourth and
fifth columns represent the positive and negative samples of the independent dataset.

Materials and methods
Training and independent datasets

Recently, Chen et al. [37] constructed novel nonredundant
datasets, based on the PLMD database [45] (http://plmd.biocu
ckoo.org), for six species, B. subtilis, C. glutamicum, E. coli, G.
kaustophilus, M. tuberculosis and S. typhimurium. Consequently,
CD-HIT [46] was applied to eliminate the homologous sequences
by setting the threshold of sequence identity to 30%, which
is immensely valuable for avoiding overestimation during
cross-validation or model training. While constructing the
dataset, the authors experimented using different fragment
sizes and identified the optimal size as 21-residue-long
sequence segments with K at the center. The segments
were defined as positive samples (Kace) if the central K
residue acetylation was experimentally validated, otherwise
they were deemed negative (non-Kace) samples. Notably,
central K lacking residues or the gap at either terminus was
replaced with a dummy atom ‘O’. Utilizing these datasets,
they developed a species-specific Kace site predictor called
ProAcePred 2.0.

We utilized the same dataset for the current study because
they were recently constructed and used a rigorous approach
to identify optimal length. In general, developing a pre-
diction model using such a high-quality dataset may have
more comprehensive practical applications [47]. A statis-
tical summary of the training and independent datasets
for each species is shown in Table 1. We employed bal-
anced training datasets for prediction model development
and imbalanced independent datasets to check the model
robustness.

Selection of feature encoding schemes

To create an efficient ML-based method for Kace prediction,
several different feature encoding schemes were employed
to encode 21 types of amino acids [20 standard amino acids
and dummy residues for gap (O)]. In total, we employed 11
encoding schemes that can be grouped into three major types:
(i) sequence-based features include numerical representation
of amino acid (NRA), binary encoding (BINA), amino acid
composition (AAC), dipeptide composition (DPC) and conjoint
triad (CTF); (ii) physicochemical properties based features
include amino acid index (AAI), grouped dipeptide composition
(GDPC), grouped tripeptide composition (GTPC), Composition of
k-Spaced Amino Acid Group Pairs (CKSAAGP) and Zscale and
(iii) position-specific scoring matrices include BLOSUM62. A
brief description of these 11 feature encoding schemes is as
follows:

Sequence-based features

Numerical representation for amino acids features (NRF). In NRF
encoding, protein sequences are converted into numerical val-
ues [48] by mapping amino acids in an alphabetical order. The 21
amino acids are represented as 0.0–2.0 with an interval of 0.1. We
ignored the central K residue from a given 21-residue segment
and considered 10 upstream and 10 downstream sequences,
resulting in a 20-dimensional (20D) feature vector.

Binary encoding (BINA). In BINA encoding, each amino acid con-
verts into a segment of a 21D orthogonal binary vector [49]. For
example, alanine, cysteine and glutamic acid are represented as
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] and [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0], respectively. The dummy amino acid ‘O’
is represented as [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1]. Thereafter, we obtained a 441D vector for the given sequence
with a length of 21.
Amino acid composition (AAC): AAC computes the frequency of 21
amino acids from the given protein fragment sequence, which
has been used as a descriptor for several peptide function pre-
dictions [50, 51]. The frequency of each amino acid is normalized
into 0–1 by dividing the sequence length. AAC resulted in a 21D
feature vector.

Di-peptide composition (DPC). Twenty-one amino acids generate
441 (21 × 21) dipeptides. DPC computes the percentage of all pos-
sible dipeptide combinations from the given sequence, reflecting
each protein sequence global information and local order amino
acids information. Notably, DPC has been widely applied to
capture segmental information around PTMs [52].

Conjoint triad features (CTF). In CTF, 20 amino acids were cate-
gorized into seven classes ({VGA}, {PFLI}, {STMY}, {WQNH}, {RK},
{ED} and {C}) according to their volumes of side chains and
dipoles [53]. Notably, we added a dummy atom to the first class
{VGAO}. CTF considers the properties of one amino acid and its
vicinal amino acids by regarding any three contiguous amino
acids as a single unit. A 343D vector represents a given sequence.

Physicochemical properties-based features

Amino acid index (AAI). AAI is the publicly available database
that represents the physicochemical properties of amino acids
as the most intuitive features for describing biochemical reac-
tions (https://www.genome.jp/aaindex/; [54]). We utilized 531
physicochemical properties from the database as employed in
the previous study [55] and encoded the given sequence.

Grouped di-peptide composition (GDPC). Each amino acid has a
specific physicochemical property. Accordingly, they have been
categorized into five different groups: aliphatic (IMLVAG), aro-
matic (WYF), positively charged (HRK), negatively charged (ED)

http://plmd.biocuckoo.org
http://plmd.biocuckoo.org
https://www.genome.jp/aaindex/
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and uncharged (QNPCTSO). We assigned dummy residue (O) to
the uncharged group. By utilizing these five groups, GDPC are
classified into 25 classes that result in a 25D feature vector
[56, 57].

Grouped tri-peptide composition (GTPC). In GTPC [58, 59], the tri-
peptide composition is classified into 125 classes by employing
five categories as mentioned in GDPC, which result in a 125D
vector.

Composition of k-spaced amino acid group pairs (CKSAAGP). The
CKSAAGP also calculates the frequency of amino acid pairs sepa-
rated by k residues (the value of k is 0–5). Unlike the composition
of k-spaced amino acid pairs [58], it classifies them into five
categories based on the physicochemical properties of amino
acids, and subsequently classifies the properties of the dipeptide
compositions into 25 categories. Thus, the amino acid pair gives
a total of 25 descriptors, and the number of divided residues is
0–5, such that a 150D vector is finally formed.

Z-scale (Zscale). In Zscale, each amino acid is characterized by
five physicochemical descriptor variables, according to Sandberg
et al. [59]. A given sequence is converted into 105 (5 × 21) D vector
by incorporating these five physicochemical descriptors.

Position-specific scoring matrices

BLOSUM62 (BLOS). BLOSUM62 matrix is commonly applied in a
BLAST sequence alignment program. Here, it was used to convert
the protein sequence to describe the similarity of two sequence
segments. Generally, this substitution matrix is applied to study
sequence conservation of related proteins in large databases,
which has been used as features in several predictors [60, 61].
Each row in the BLOSUM62 matrix can be used to encode one of
the 20 amino acids. Therefore, we can encode according to the
BLOSUM62 matrix, forming a feature vector of 420 (20 × 21) D.

Selection of ML algorithms

In this study, we employed six different classifiers that included
five decision-tree-based classifiers (RF [62], extreme gradient
boosting algorithm (XGB) [63], AdaBoost (AB) [64], gradient boost-
ing (GB) [65], extremely randomized tree (ERT) [66]) and SVM [67].
Generally, decision-tree-based algorithms can handle unnor-
malized features unlike other supervised and DL algorithms [68].
Hence, we only employed these five classifiers for the baseline
model construction. However, six classifiers were used for meta-
model construction and the appropriate one was selected. These
classifiers have been widely applied in numerous successful
applications in computational biology and bioinformatics [49,
69–74]. The detailed procedure regarding the implementation
of each classifier is in line with our previous studies [75–78].
Generally, K-fold cross-validation analysis is required to train or
develop the prediction model [79]. We employed 5-fold cross-
validation and identified the optimal hyperparameters using a
grid search approach. The grid search space for each classifier is
provided in Supplementary Table S1.

General framework of stallion

A stacking ensemble learning-based framework of STALLION is
summarized in Figure 1. It involves three crucial steps in the
overall workflow and is described below:

Feature representation

The sequences in the training dataset of each species are
encoded based on AAI (525D), AAC (21D), DPC (441D), CKSAAGP
(150D), CTF (343D), Zscale (105D), BINA (441D), BLOS (420D),
GTPC (125D), GDPC (25D) and NRF (20D) encoding schemes. We
linearly integrated these 11 encodings for each sequence and
obtained a 2616D feature vector. Thus, the training dataset of B.
subtilis, C. glutamicum, E. coli, G. kaustophilus, M. tuberculosis, and
S. typhimurium are represented as a 3142 × 2616, 2104 × 2616,
13,184 × 2616, 412 × 2616, 1730 × 2616 and 396 × 2616 matrix,
respectively.

Feature optimization and selection

Each sequence contains a high-dimensional feature vector
(2616D) that may include irrelevant or redundant information.
Consequently, the predictive performance decreased and
required vast computational resources during model training
[80, 78]. We employed a two-step feature selection strategy to
select the most informative features from the original feature
dimension [80]. In the first step, each feature gets a score
based on the scoring functions. Here, we employed three
different scoring functions, viz. F-score, feature importance
score (FIS) estimated by RF (RFIS) and FIS calculated by XGB (XFIS)
according to their ability to distinguish Kace sites from non-Kace
sites. Thereafter, we sorted the original feature dimension in
descending order based on their scores. In total, we generated
three feature lists (F-score, RFIS and XFIS), where F-score and
RFIS contained the top 2000 features and XFIS included features
that have only non-zero value (∼500 features).

Second, a sequential forward search (SFS) was applied inde-
pendently on three feature lists to identify suboptimum feature
subsets. Letter r and s denoted the ranked feature list and
suboptimum subset, respectively. In SFS, k (k = 5 for F-score and
RFIS; k = 2 for XFIS) moved most informative features from r to s,
which was inputted into five different classifiers independently
and the performance evaluated by employing a 5-fold cross-
validation in s. This process was repeated until r became empty.
Ultimately, the feature subset for each classifier that achieved
superior performance in terms of Mathews correlation coeffi-
cient (MCC) was considered an optimal set for each species.
Generally, one of the scoring functions and a classifier was to
be used to determine the optimal feature set [48, 76]. However,
we applied a systematic approach for identifying the optimal
feature set, although this procedure is computationally exten-
sive. As we used three different ranked lists and five different
classifiers, we obtained 15 models for each species.

Stacking ensemble learning

For each classifier, we selected the best model from three differ-
ent suboptimum subset models. Consequently, we obtained five
optimal baseline models for each species. Predicted probabilities
and class labels received from baseline models were combined
and considered as a new feature vector (10D). In general, the
product of baseline models was trained with logistic regression
while developing the final prediction model [48, 75]. However,
we explored six classifiers that included the five tree-based
classifiers and SVM. The reason for including SVM is that the
new feature vector was in the range of 0–1 and can be handled
well by SVM. All these classifiers were trained using ten random-
ized 5-fold cross-validation procedures. Given that MCC is our
objective function during 5-fold cross-validation, it might be pos-
sible to overfit the prediction model to attain the highest MCC.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab376#supplementary-data
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Figure 1. An overview of the STALLION framework for predicting prokaryotic lysine acetylation sites. Schematic display of the three stages in the construction of

STALLION is shown.

Therefore, we repeated 5-fold cross-validation procedures ten
times by randomly partitioning the training dataset, leading to
10 optimal feature sets for each classifier. For instance, SVM of C
and γ parameters have ten values each. However, we selected the
median parameters of C and γ for developing the final predic-
tion model. Such randomized cross-validation techniques can
avoid overfitting [47]. Finally, the average performances obtained
from the randomized 5-fold cross-validations were compared for
selecting the best model for each species.

Additional feature encoding

We also tested K-nearest neighbor (KNN) encoding in this study,
which is not part of STALLION. KNN encoding makes features
for a given sequence based on the similarity of that sequence to
the n samples from the training dataset (KAce and non-KAce).
In particular, for a given two sequences R1 and R2 with the fixed
length, the similarity score F(R1, R2) is computed as follows:

F (R1, R2) = 1 −
∑K

j=1 score
(
R1(j), R2(j)

)

K
(1)

where R1 and R2 represent amino acid residues of two sequences
at the jth position, and K is the sequence length. For two amino

acids m and n, the similarity score is defined as follows:

Sim (m, n) = M (m, n) − min(A)
max(A) − min(A)

(2)

where (m, n) similarity score for two amino acids derived from
the BLOSUM 62 substitution matrix [81], A is the substitution
matrix and min(A)/max(A) represents the smallest/largest value
in the matrix, respectively. In this study, we set X = 2, 4, 8, 16, 32,
64 and 128 to generate a 7D feature vector for a given sequence.

Implementation

All cross-validations and independent evaluations were exe-
cuted in a server with CentOS Linux 7.6 and Python 2.7.5. Notably,
all ML classifiers (RF, ERT, GB, ERT and XGB v0.82; https://pypi.
org/project/xgboost/) were built and optimized by Scikit-learn
v0.18.1 package [82]. We computed three different (F-score, RFIS
and XFIS) scoring functions to rank the features using the same
package. In addition, feature encodings employed in this study
were computed using our in-house code. Notably, a few open-
source packages such as iLearn [56] and iFeature [57] can com-
pute most feature encodings employed here.

https://pypi.org/project/xgboost/
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Performance evaluation strategies

Six performance measurements were applied to evaluate the
model performance as widely employed in other studies [83, 84],
including MCC, sensitivity (Sn), specificity (Sp), accuracy (ACC),
balanced accuracy (BACC) and area under the receiver operating
characteristics (ROC) curve (AUC). The definition of the metrics
is as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Sn = TP
TP+FN

Sp = TN
TN+FP

ACC = TP+TN
TP+TN+FN+FP

BACC = Sn × 0.5 + Sp × 0.5
MCC = TP×TN−FP×FN√

(TP+FN)(TP+FP)(TN+FP)(TN+FN)

(3)

where TP, TN, FP and FN, respectively denote true positives, true
negatives, false positives and false negatives. Furthermore, ROC
curves and AUC values were used to assess overall performance.

Results and discussion
Performance evaluation between different feature
encoding methods and classifiers

We systematically investigated the effect of various feature
encodings and classifiers in prokaryotic Kace site predictions
by employing five tree-based ensemble classifiers (RF, GB,
ERT, XGB and AB) and eleven feature encodings including
sequence-based, physicochemical properties and position-
specific scoring matrix. We performed a ten times randomized
5-fold cross-validation test for constructing each model for
each species dataset and compared the performances among
55 models (11 encodings × 5 classifiers). Figure 2 shows that
four encodings (AAI, Zscale, BINA and BLOS) achieved similar
performances and were significantly better than the other
seven encodings for most prokaryotic species (B. subtilis, C.
glutamicum, E. coli, G. kaustophilus and M. tuberculosis). However,
we noted that six encodings achieved similar performances
and were significantly higher than the other five encodings
(AAC, DPC, NRF, GTPC and GDPC) for S. typhimurium. Overall,
four encodings (AAI, Zscale, BINA and BLOS) were found to
be superior compared to their counterparts. Nevertheless,
other encodings also possessed essential information to
support Kace site prediction. To get an overview of the
performance of each classifier on Kace prediction, we computed
an average performance of 66 models (11 encodings × 6
species) for each classifier. The results showed that AB,
XGB, RF, ERT and GB achieved average MCCs of 0.261, 0.255,
0.241, 0.232 and 0.230, respectively. Notably, all classifiers
performed reasonably well in Kace site prediction; however,
AB was found to be marginally superior. Rather than search-
ing for the best model, integrating the above information
and developing a robust model is admissible. In this study,
we applied a stacking approach similar to recent studies
[76, 85, 86].

Identification of the optimal model of each classifier for
six species

As mentioned in the methods section, we applied three different
scoring functions to rank features, each with its own pros and
cons. For example, F-score and RFIS assign a relative score for all
given features. However, XFIS excludes ∼70% of the features and

designates a relative score for the remaining features. Supple-
mentary Figure S1 shows the performances of the five classifiers
for different feature sets in the C. glutamicum species. Here,
we observed that the performance increased steadily, achieved
maximum accuracy and subsequently remained in an equilib-
rium state for most classifiers based on the F-score (Supple-
mentary Figure S1A) and RFIS (Supplementary Figure S1B). How-
ever, for XFIS, performance increased slowly until the optimal
one and subsequently deteriorated while adding more features
(Supplementary Figure S1C), regardless of the classifiers.

The size of the optimal feature set varied among five clas-
sifiers for each one of the three different approaches (F-score,
RFIS and XFIS). For example, RF, ERT, GB, XGB and AB possessed
1000, 520, 790, 260 and 410 optimal feature sets, respectively,
from F-score identified by SFS. The corresponding classifiers
had 140, 1290, 211, 120 and 150D optimal feature sets from
RFIS and 30, 38, 31, 52 and 44D optimal feature sets from XFIS.
Similarly, the best model for each classifier from three different
approaches showed different sizes of optimal feature sets. For
example, RF possessed three models with 1000, 140 and 40D
optimal feature sets. However, we selected the best model based
on maximal accuracy. The same procedure was followed for
the other species and the best three models were selected for
each classifier, whose performances were compared with the
control.

Figure 3 shows that the performances of the optimal model
were consistently better than the control, thus indicating the
necessity of feature selection techniques to exclude irrelevant
information from the original dimension. For three species
(C. glutamicum, E. coli and M. tuberculosis), the optimal feature
sets obtained from XFIS achieved superior performances
for five classifiers compared to their counterparts (F-score
and RFIS). In two species (S. typhimurium and B. subtilis),
the optimal feature set extracted from F-score achieved
excellent performances for five classifiers compared to their
counterparts (XFIS and RFIS). However, for G. kaustophilus,
the optimal feature sets derived from the F-score showed
improved performance for RF and ERT classifiers. The remaining
three classifiers showed improved performance upon the
acquisition of optimal features from XFIS. Unexpectedly, the
optimal feature set derived from RFIS did not show the best
performance. Notably, the best models for five classifiers
have been considered as baseline models in each species
and utilized for subsequent analysis. Overall, our systematic
feature selection analysis suggests that it is essential to apply
different scoring functions to rank features and employ different
classifiers individually for SFS to obtain their corresponding
optimal feature set.

Construction of STALLION

Stacking is an ensemble technique that considers different pre-
dictive models to generate a stable stacked model. This approach
employs an efficient scheme to decrease the generalization error
rate of various predictive models [87–89]. The predicted values
(predicted probability of Kace and class label) from the five
baseline models were combined to generate a 10D feature vector.
Unlike previous approaches [44, 76], we systematically evaluated
six different classifiers by training with a new 10D feature vector
using 10 randomized 5-fold cross-validations (Figure 4). The
results showed that the five classifiers (RF, ERT, AB, XGB and
SVM) achieved similar performances, which were marginally
better than GB. Among these five classifiers, we selected the
AB classifier for three species (B. subtilis, C. glutamicum and

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab376#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab376#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab376#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab376#supplementary-data
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Figure 2. Performances of five different ML classifiers in distinguishing between Kace and non-Kace with respect to 11 feature descriptors. (A) B. subtilis (B) C. glutamicum,

(C) E. coli, (D) G. kaustophilus, (E) M. tuberculosis and (F) S. typhimurium.

Figure 3. Performance comparisons between the control and the three optimal models for each classifier. Sequential forward search identified the optimal model for

each classifier from Fscore, RFIS, and XFIS. (A) B. subtilis (B) C. glutamicum, (C) E. coli, (D) G. kaustophilus, (E) M. tuberculosis and (F) S. typhimurium.
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Figure 4. Performance comparison of six different classifiers for predicting Kace sites during stacking strategy and 10 randomized 5-fold cross-validation. Performances

expressed in terms of MCC, ACC, Sn, Sp and AUC. (A) B. subtilis (B) C. glutamicum, (C) E. coli, (D) G. kaustophilus, (E) M. tuberculosis and (F) S. typhimurium.

G. kaustophilus), the SVM classifier for two species (M. tuberculosis
and S. typhimurium), and the XGB classifier for E. coli, whose
performances are marginally superior to its counterparts.
Six species models were commonly named as STALLION
that achieved ACC, MCC and AUC of 0.403, 0.700 and 0.745,
respectively for B. subtilis; 0.513, 0.756 and 0.809, respectively
for C. glutamicum; 0.357, 0.678 and 0.733, respectively for E. coli;
0.603, 0.801 and 0.836, respectively for G. kaustophilus; 0.557, 0.779
and 0.782, respectively for M. tuberculosis; and 0.571, 0.785 and
0.770, respectively for S. typhimurium.

Comparison of STALLION with single feature-based
models

To show the advantage of our proposed stacked approach, we
compared STALLION with the single feature-based models. We
selected the top 10 single feature-based models from Figure 2
and compared them with STALLION for six species. Figure 5
shows that STALLION significantly outperformed single feature-
based models for all six species, whose MCC was 6.9–9.4% higher
for B. subtilis, 8.8–11.1% higher for C. glutamicum, 3.7–6.1% higher
for E. coli, 24.9–28.2% higher for G. kaustophilus, 8.6–11.7% higher
for M. tuberculosis and 26.2–29.3% higher for S. typhimurium. The
superior performance of STALLION over the single feature-based
models was primarily due to the novelty introduced in our
approach, which included (i) feature fusion strategy, (ii) selecting
the optimal feature set from hybrid features for each classifier
independently and their respective baseline model construction
and (iii) selecting an appropriate classifier for stacking model
construction.

Feature contribution analysis

To understand the contribution of different features in the opti-
mal feature set for each species, we analyzed their composi-
tion and distribution. It is worth mentioning that five classifier
models have different optimal feature subsets for each species.
Instead of focusing on each subset, we considered the maximum
size of the optimal feature subset that potentially includes the
other four subsets for five species (B. subtilis, C. glutamicum,
E. coli, M. tuberculosis and S. typhimurium). For example, in C.
glutamicum, RF, ERT, GB, XGB and AB contained 30, 38, 31, 52 and
44D optimal feature subsets, respectively. Here, 52D had other
feature subsets. However, in G. kaustophilus, different optimal
subsets were combined to investigate their role.

Figure 6 indicates that the feature distribution in the optimal
feature set among six species showed significant differences;
however, some subtle similarities were noted. Particularly, AAI
contributed 22.4%, 59.6%, 44.2%, 28.8%, 50.0% and 24.4% of the
total optimal features for B. subtilis, C. glutamicum, E. coli, G.
kaustophilus, M. tuberculosis and S. typhimurium, respectively. This
result implies that the AAI feature contribution is important
for six species, suggesting their critical importance in Kace
prediction. Six encodings (AAC, DPC, CKSAAGP, CTF, Zscale and
BLOS) consistently contributed to the optimal feature set for all
species. Still, the contribution level varied among them suggest-
ing a supporting role played in Kace prediction. Furthermore, we
observed that GTPC and GDPC, GTPC, NRF and GTPC and BINA
did not contribute to the final prediction for C. glutamicum, E.
coli, G. kaustophilus and M. tuberculosis, respectively. Overall, apart
from AAI, the rest of the feature contribution varied considerably
among species, thus suggesting that Kace sites in these species
might have different characteristics.
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Figure 5. Performance comparison between STALLION and single feature-based models in classifying Kace from non-Kace sites during cross-validation. (A) B. subtilis

(B) C. glutamicum, (C) E. coli, (D) G. kaustophilus, (E) M. tuberculosis and (F) S. typhimurium.

Performance validation using the independent test

We further evaluated STALLION using independent datasets
and compared their performances with the existing method.
Since 2009, several computational tools have been reported for
Kace site prediction. Notably, Chen et al. [37] recently evaluated
species-specific ProAcePred 2.0 predictor using an independent
dataset and compared the performance with existing meth-
ods, including species-specific ProAcePred, general predictors
viz. EnsemblePail, PSKAcePred, Phosida and PLMLA. The result
showed that ProAcePred 2.0 significantly outperformed generic
predictors and their previous version ProAcePred. Therefore,
only ProAcePred 2.0 was considered in this study for compar-
ison and other methods were excluded for the following rea-
sons: (i) comparing species-specific predictor with a generic
predictor is unfair, which is evident from previous studies [36,
37] and (ii) ProAcePred 2.0 is the upgraded version of ProA-
cePred.

It is worth mentioning that the independent dataset for
each species was submitted to the ProAcePred 2.0 web server
(http://computbiol.ncu.edu.cn/PAPred) and the predictions were
computed based on the given default threshold. Notably, the
ProAcePred 2.0 returns Kace site and its predicted probability
value, but not non-Kace predicted probability values. There-
fore, it might be unfeasible to compute the AUC value with
partial probability information. However, we compared the per-
formances between two methods in terms of MCC, which is
an intuitive and straightforward metric while dealing with an
imbalanced dataset, as mentioned in [90]. Our evaluation results
showed that STALLION achieved MCC of 0.295, 0.329, 0.390, 0.259,
0.380 and 0.202 for B. subtilis, C. glutamicum, E. coli, G. kaustophilus,
M. tuberculosis and S. typhimurium, respectively (Figure 7 and
Supplementary Table S2). STALLION outperformed ProAcePred

2.0 by >20.0% in MCC value for five species (B. subtilis, C. glutam-
icum, E. coli, G. kaustophilus and M. tuberculosis) and 9.1% in MCC
value for S. typhimurium. STALLION provided better performance
than ProAcePred2.0 because of the following: (i) Unlike ProA-
cePred 2.0, we excluded KNN feature encoding from the stacking
framework based on our systematic analysis that identified
the overfitting nature of KNN encoding during cross-validation
(see section below); (ii) Unlike ProAcePred 2.0 simple feature
selection approach, we employed a rigorous process by utiliz-
ing three different scoring functions and SFS to identify the
optimal feature set independently for each classifier, which is
time-consuming and (iii) Unlike a single model in ProAcePred
2.0, our stacking strategy integrates five tree-based ensemble
baseline models leading to more accurate Kace site predic-
tions.

Like STALLION and the best single feature-based models’
cross-validation performance comparison, we carried out inde-
pendent tests. Figure 8 shows that STALLION outperformed sin-
gle feature-based models for all six species, whose MCC was
2.39–10.68% higher for B. subtilis, 1.18–6.08% higher for C. glutam-
icum, 4.0–9.5% higher for E. coli, 2.5–8.7% higher for G. Kaustophilus,
3.51–10.89% higher for M. tuberculosis and 11.29–19.54% higher for
S. typhimurium. These results yet again highlight the significance
of our systematic approach in model construction.

Overfitting nature of KNN encoding in Kace prediction

KNN feature encoding is widely applied for the identifica-
tion of PTM sites, including previous Kace site prediction
methods [36, 37]. Similar to previous studies, we also incor-
porated it into 11 encodings in the stacking framework.
The preliminary result showed that all species models’
prediction performance significantly improved compared

http://computbiol.ncu.edu.cn/PAPred
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab376#supplementary-data
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Figure 6. Distribution analysis of generated optimal feature sets across the six species. Panels (A)–(F) illustrate distributions of feature types included in optimal feature

sets for B. subtilis, C. glutamicum, E. coli, G. kaustophilus, M. tuberculosis and S. typhimurium, respectively. Each panel containing three figures represent number of each

feature type selected in the optimal feature set, portion of the types of features selected in the optimal feature set, and percentage of each feature type selected in the

optimal feature set.

with the STALLION during cross-validation. However, the
corresponding model performance with independent datasets
was slightly better than the random prediction and con-
siderably lower than the STALLION. Hence, we excluded
KNN encoding from the stacking framework (STALLION). To
better understand the phenomenon, we developed KNN-
based five tree-based models for each species and examined

their cross-validation and independent validation perfor-
mances (Table 2). The results showed that four (RF, ERT,
AB and XGB) out of five classifiers achieved similar per-
formances, which were marginally better than GB with
average AUCs of 0.895, 0.901, 0.888, 0.888, 0.895 and 0.872
for five models, namely B. subtilis, C. glutamicum, E. coli, G.
kaustophilus, M. tuberculosis and S. typhimurium, respectively.
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Figure 7. Performance comparison between STALLION and ProAcePred2.0 in classifying Kace from non-Kace sites during independent test. (A) B. subtilis (B) C. glutamicum,

(C) E. coli, (D) G. kaustophilus, (E) M. tuberculosis and (F) S. typhimurium.

Figure 8. Performance comparison between STALLION and single feature-based models in classifying Kace from non-Kace sites during independent test. (A) B. subtilis

(B) C. glutamicum, (C) E. coli, (D) G. kaustophilus, (E) M. tuberculosis and (F) S. typhimurium.
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Table 2. Performance comparison of various classifiers on KNN encoding during training and independent tests

Species Classifier MCC ACC Sn Sp AUC MCC ACC Sn Sp AUC

B. subtillis RF 0.599 0.799 0.757 0.840 0.907 0.105 0.573 0.608 0.569 0.630
ERT 0.605 0.802 0.833 0.771 0.903 0.106 0.568 0.616 0.563 0.612
GB 0.583 0.791 0.778 0.805 0.857 0.108 0.558 0.632 0.550 0.562
AB 0.623 0.805 0.701 0.908 0.908 0.106 0.650 0.504 0.666 0.623
XGB 0.652 0.799 0.597 1.000 0.899 0.070 0.702 0.368 0.737 0.581

C. glutamicum RF 0.616 0.808 0.816 0.800 0.915 0.168 0.610 0.687 0.602 0.690
ERT 0.599 0.799 0.786 0.813 0.917 0.168 0.610 0.687 0.602 0.676
GB 0.590 0.795 0.806 0.784 0.828 0.124 0.590 0.627 0.587 0.608
AB 0.646 0.823 0.844 0.801 0.922 0.203 0.607 0.759 0.592 0.678
XGB 0.648 0.821 0.886 0.757 0.923 0.196 0.578 0.783 0.558 0.673

E. coli RF 0.582 0.791 0.776 0.806 0.905 0.152 0.559 0.654 0.534 0.631
ERT 0.578 0.789 0.806 0.772 0.905 0.151 0.559 0.651 0.535 0.624
GB 0.576 0.788 0.780 0.797 0.824 0.131 0.543 0.645 0.517 0.582
AB 0.610 0.804 0.755 0.852 0.909 0.241 0.622 0.693 0.604 0.657
XGB 0.627 0.782 0.565 1.000 0.895 0.146 0.675 0.424 0.741 0.610

G. kaustophilus RF 0.612 0.806 0.796 0.816 0.908 0.104 0.502 0.706 0.484 0.630
ERT 0.631 0.816 0.811 0.820 0.912 0.061 0.479 0.647 0.464 0.625
GB 0.626 0.813 0.801 0.825 0.835 0.058 0.474 0.647 0.458 0.582
AB 0.646 0.823 0.816 0.830 0.866 0.011 0.445 0.588 0.432 0.555
XGB 0.631 0.816 0.820 0.811 0.919 0.072 0.498 0.647 0.484 0.593

M. tuberculosis RF 0.663 0.831 0.820 0.843 0.928 0.241 0.646 0.735 0.634 0.681
ERT 0.652 0.826 0.836 0.816 0.917 0.237 0.641 0.735 0.628 0.666
GB 0.636 0.818 0.809 0.827 0.853 0.206 0.612 0.721 0.597 0.667
AB 0.685 0.842 0.806 0.878 0.932 0.234 0.656 0.706 0.650 0.689
XGB 0.694 0.845 0.791 0.899 0.845 0.197 0.651 0.647 0.652 0.649

S. typhimurium RF 0.540 0.770 0.768 0.773 0.893 0.096 0.542 0.700 0.535 0.615
ERT 0.551 0.775 0.783 0.768 0.843 0.106 0.564 0.700 0.558 0.645
GB 0.551 0.775 0.768 0.783 0.813 0.095 0.537 0.700 0.530 0.615
AB 0.591 0.796 0.788 0.803 0.906 0.048 0.520 0.600 0.516 0.619
XGB 0.602 0.801 0.823 0.778 0.907 0.003 0.507 0.500 0.507 0.603

Note: The first and the second columns represent the species and the ML classifiers. Columns 3–7 represent MCC, ACC, Sn, Sp and AUC of the ML classifier performance
on the training dataset. Columns 8–12 represent MCC, ACC, Sn, Sp and AUC of the ML classifier performance on the independent dataset.

The corresponding metrics on independent tests were 0.602,
0.665, 0.621, 0.597, 0.670 and 0.619 for the six species. The perfor-
mance gap (difference in AUC) between the training and inde-
pendent datasets in all six species significantly increased from
22.46 to 29.32%, clearly indicating the overestimation of KNN
encoding during training regardless of the classifiers. Owing to
the over-fitting nature of the KNN encoding scheme, we highly
recommend testing KNN encoding transferability before incor-
porating it into any computational frameworks requiring huge
computations.

Availability of online webserver

Publicly accessible web servers can help experimental or
biomedical researchers to identify the putative functional
sites, which will aid further experimental characterization.
To help the user identify high-throughput putative Kace sites
from six prokaryotic species, we implemented the STALLION
web server, which is freely accessible at: http://thegleela
b.org/STALLION. The STALLION web server is maintained
by an Apache HTTP server and configured in a 16-core
CentOs Linux 7.6 server machine with 64GB RAM and a
2 TB hard disk. We have given the detailed instructions for
using the STALLION in the following link: http://thegleela
b.org/STALLION/Staltutorial.html. In addition, we provided

the server running time of our independent datasets in the
above link.

Conclusions
This study presented STALLION, a stacking framework for the
accurate Kace site prediction from six different prokaryotic
species. STALLION employed 11 distinct feature encoding
schemes (categorized into three groups) to encode protein
fragments. Subsequently, a rigorous feature selection approach
was employed to carefully select the optimal feature set for
each of the five different tree-based ensemble algorithms and
constructed their respective baseline models for each species.
Finally, the predicted output was derived from five baseline mod-
els which were trained with an appropriate classifier to build
the stable, stacked STALLION models. Our proposed method
STALLION outperformed the current state-of-the-art predictor
for identifying Kace sites on the independent data sets across
six different species. It is expected that STALLION methodology
and a user-friendly web server based on the stacked model for
six prokaryotic species will expedite the discovery of putative
Kace sites and greatly assist the effort of a broader research
community for functional characterization. Our study identified
that heterogeneous and complementary features derived from
different perspectives helped to improve predictor performance.

http://thegleelab.org/STALLION
http://thegleelab.org/STALLION
http://thegleelab.org/STALLION/Staltutorial.html
http://thegleelab.org/STALLION/Staltutorial.html
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We will continually attempt to investigate other informative
features, examine their contribution and refine our prediction
platform.

Overall, the STALLION method has achieved a robust perfor-
mance in Kace site prediction, whose prediction performance
requires further improvement in several aspects. Novel com-
putational frameworks have been reported recently, including
a DL-based hybrid framework [86] and DL-based approaches
with automatically generated features [91, 92]. In future, we
will examine the possibility of these approaches and select the
appropriate one to further improve prediction performance of
Kace sites.

Key Points
• We propose a stacking framework STALLION and

implement it as a user-friendly webserver for accurate
identification of prokaryotic Kace sites.

• STALLION utilized 11 different features encoding
schemes and combined five tree-based ensemble
algorithms to build stable stacked models.

• Extensive benchmarking experiments demonstrated
that STALLION outperformed its constituent
baseline models in both training and independent
datasets, thus highlighting its excellent generalization
capability.

Supplementary data

Supplementary data are available online at Briefings in Bioin-
formatics.
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