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To research carbonylated proteins and screen molecular targets in the rat striatum on regular aerobic exercise, male Sprague-
Dawley rats (13 months old, n = 24) were randomly divided into middle-aged sedentary control (M-SED) and aerobic exercise
(M-EX) groups (n = 12 each). Maximum oxygen consumption (VO2max) gradually increased from 50%–55% to 65%–70% for a
total of 10 weeks. A total of 36 carbonylated proteins with modified oxidative sites were identified by Electrospray Ionization-
Quadrupole-Time of Flight-Mass Spectrometer (ESI-Q-TOF-MS), including 17 carbonylated proteins unique to the M-SED group,
calcium/calmodulin-dependent protein kinase type II subunit beta (CaMKII𝛽), and heterogeneous nuclear ribonucleoprotein
A2/B1 (Hnrnpa2b1), among others, and 19 specific to the M-EX group, ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCH-
L1), andmalic enzyme, among others. Regular aerobic exercise improved behavioral and stereological indicators, promoted normal
apoptosis (P < 0.01), alleviated carbonylation of the CaMKII𝛽 and Hnrnpa2b1, but induced carbonylation of the UCH-L1, and
significantly upregulated the expression levels of CaMKII𝛽, CaMKII𝛼, and Vdac1 (p < 0.01) and Hnrnpa2b1 and UCH-L1 (p <
0.01), as well as the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin pathways (PI3K/Akt/mTOR)
pathway-related genes Akt andmTOR. Regular aerobic exercise for 10 weeks (incremental for the first 6 weeks followed by constant
loading for 4 weeks) enhanced carbonylation of CaMKII𝛽, Hnrnpa2b1, and modulated apoptosis via activation of CaMK and
phosphoinositide 3-kinase/protein kinase B/mTOR signaling. It also promoted normal apoptosis in the rat striatum, which may
have protective effects in neurons.

1. Introduction

Posttranslational modifications including phosphorylation,
glycosylation, and carbonylation alter the relative molecular
mass and isoelectric point of proteins and, consequently,
their activity and functions. Carbonyl stress refers to the
production of reactive carbonyl species that exceeds the
body’s scavenging capacity, resulting in the carbonylation of
proteins and other macromolecules and pathophysiological
changes including accelerated aging [1] through formation of

amyloid and neurofibrillary tangles, nuclear protein enrich-
ment, and neuronal accumulation of lipofuscin pigment
granules.

Toxic carbonyl compounds are generated in the body as
byproducts of the reactions that form the major biological
macromolecules—i.e., lipids, carbohydrates, and proteins.
These compounds include unsaturated aldehydes and ketones
related to oxidative stress such as 4-hydroxy-nonennal
(HNE), acrolein, formaldehyde, and malondialdehyde as
well as advanced glycation end products and free radicals
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produced by the degradation of sugars. Carbonylation leads
to the formation of oxidized proteins; carbonyl-ammonia
reactions cause intramolecular or intermolecular cross-
linking, which affects normal protein structure and function
[2–5]. Carbonylated proteins are considered as a general
indicator of oxidative stress, in which reactive oxygen species
accumulate in cells and cause irreversible damage to DNA,
RNA, and lipids [6]. Oxidative stress has been implicated
in a variety of neurological diseases including Alzheimer’s
disease, PD, and amyotrophic lateral sclerosis.

Lesions in different parts of the striatum can produce
changes in muscle tone and involuntary movements such
as dyskinesia in Parkinson’s disease (PD) and chorea in
Huntington’s disease. Striatal dopamine content, as measured
by positron emission tomography, is correlatedwith learning,
hearing, and memory [7, 8]. On the other hand, learning
and memory are thought to be dependent on the number
of dopamine receptors in the striatum; continuous depletion
of dopamine in the striatal system leads to dysfunction
of memory or recognition in PD patients [9]. Impairment
of striatal function such as through afferent modulation
of dopaminergic neurons of the midbrain is an important
marker of PD [10, 11].

Exercise is used in rehabilitation medicine to activate
restorative biological processes. Long-term regular aerobic
exercise has been shown to improve the body’s antioxidant
capacity, reduce damage caused by free radicals, suppress
lipid peroxidation, and reduce lipofuscin deposition, thereby
contributing to the maintenance of brain health and delay-
ing brain aging. It was previously reported that long-term
moderate-intensity exercise during middle age reduces the
risk of PD development in later life [12–14].

The present study investigated whether regular aero-
bic exercise can prevent oxidative stress-associated protein
carbonylation in middle-aged rats by peptide mass and
fingerprinting analysis.

2. Materials and Methods

2.1. Experimental Animals and Ethics Statement. Specific
pathogen-free 13-month-old male Sprague-Dawley (SD) rats
(n=24, 693.21±68.85g) were supplied by the Animal Center
of East Biotechnology Services Company (Changsha, Hunan,
China; License number: Xiang scxk 2009-0012). Four rats
were housed in each standard cage (3 cages/group) with free
access to food and water. All animals were kept in an air-
conditioned room maintained at a constant temperature of
20∘C to 25∘C with a relative humidity of 45% to 55%. Rats
were subjected to a cycle of 12 h light and 12 h darkness.
All animals were acclimated to laboratory conditions for 2
weeks, prior to the start of the experiment. A total of 24
rats were randomly assigned to two groups—middle-aged
sedentary control group (M-SED, n=12) and aerobic exercise
runner group (M-EX, n=12) by elderly weight. All animal
procedures were approved by the local ethics committee (the
Institutional Review Board of Hunan Normal University)
and the Guidelines for Care and Use of Laboratory Animals
(Washington (DC) 2011). Disposal of animals was done in
accordance with “The guidance on the care of laboratory

animals” (the provisions were issued in 2006 by the Ministry
of Science and Technology of the People’s Republic of
China).

2.2. Exercise Protocol. The aerobic exercise regime used in
this study was proposed by Koltai and Zhang [15], with
reference to the exercise load standards of Bedford [16]. All
animals in the M-SED and M-EX groups were first subjected
to a 5-day adaptation period on a rat treadmill (slope gradient
0%, ZH-PT-1 Treadmill, Li Tai Bio-Equipment Co., Ltd.,
Hangzhou, Zhejiang, China). Adapted training was carried
out at a speed of 10m/min and a gradient of 0%, for a
gradually increasing duration of time—10min on the first
day, 20min on the second day, and 25min on the third
day. During this period, they were placed on a belt facing
away from the electrified grid (0.6mA intensity), twice a day.
For the actual experiment, the M-EX group underwent daily
training by running at 15m/min (equivalent to approx. 50% to
60% peak oxygen uptake) [16], on a slope of 0∘, for a duration
of 15min. During the first week at the start of the training, the
exercise duration was increased gradually from 15min to the
second week 20min, the third week 25min, the fourth week
30min, and the fifth and sixth week 35min.TheM-EX group
underwent daily training by running at 20m/min and main-
tained speed for a week (equivalent to approx. 65% to 70%
peak oxygen uptake) (Bedford et al., 1979), on a slope of 0∘,
for a duration of 35min during the seventh to tenthweek.The
acceleration of the treadmill was set such that, at about 3min
after the start of the training, the final speed of 20m/min was
achieved. To ensure that the animals completed the exercise
regime, we used sound stimulation and a small wooden
stick to stimulate the animals’ tails, when necessary. We
also used electrical stimulation to keep the rats at one-third
distance on the treadmill runway. Animals were required to
perform the training 6 days a week for a total of 10 weeks
[17].

2.3. Tissue Specimen Collection and Analysis. On the day
following the last exercise schedule, the ratswere anesthetized
with chloral hydrate (400mg/kg, i.p.) and decapitated. The
striatum (Stereotaxic Atlas of the Rat Brain; George Paxinos.,
2005) [18] was excised from all rats. Tissue samples were
stored at−80∘Cuntil being ready to be used for carbonylation
proteomics and immunoblot assays. All surgical procedures
were performed under anesthesia induced by chloral hydrate.
All efforts were made to minimize suffering and distress in
animals.

At least three rats from each group were used for
the paraffin section sample preparation. After the above
ascending aorta was infused with physiological saline, it
was then perfused with 4% paraformaldehyde 0.1M phos-
phate buffer (pH 7.4) (4∘C) 400ml-500ml, until the ani-
mal’s liver hardened and the tail was stiff, and the per-
fusion was completed. Brains were taken and kept in a
4% paraformaldehyde 0.1M phosphate buffer overnight at
4∘C (no more than 48 h). The next day, they were trans-
ferred to 30% sucrose and dehydrated to a low level. Then
they were routinely dehydrated, waxed, paraffinized, and
embedded.
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2.4. Behavioral Monitoring

2.4.1. Open-Field Experiment (OFT). Open-field behavior
apparatus: All equipment and software were purchased from
SD Instruments (San Diego). The open-field device was
divided into a central zone and a surrounding zone, which
consists of an uncovered cuboid device of length × width ×
height of 100 × 100 × 40 cm, with four walls being black and
the bottom being white.The bottom is divided into 25 square
squares (20 × 20 cm), and each large square is subdivided
into 400 small squares (1 × 1 cm). The device was placed in
a room with a light intensity of 20 lux and no background
noise, placing the digital camera directly above the unit. The
bottom and walls of the open field were cleaned with 75%
alcohol for removing odor. Each rat was preexposed for 5min
in the open-field device; then 2 tests were performed.

Open-field behavior parameters: The open-field device
was divided into a central zone and the surrounding zone.
Five behavioral patterns were recorded in the open-field
experiments, namely, motor behavior, exploration behav-
ior, thigmotaxic behavior, immobile-sniffing, and grooming
behavior. All kinds of behaviors were mainly reflected in the
central grid’s staying time, number of spans, number of erec-
tions, number of cleansing, and number of defecations [19].

2.4.2. Adhesion Removal Experiment. Five rats in each group
were randomly selected for nasal adhesion removal and front
paw adhesion removal Experiment. Referring to the method
of Schallert et al. [20], training is adapted firstly and then
adherent removal experiments.

2.5. Hematoxylin and Eosin (HE) Staining. 5𝜇m slices were
sectioned by 820 Rotary Tissue Slicer (AO Company, Ameri-
can).ThenHE routine steps were as follows: dewaxing hydra-
tion, hematoxylin staining for 10–15min, color separation
with 1% hydrochloric acid alcohol, 5% eosin staining for
1min, dehydration with gradient alcohol, clearing of tissue
sections with xylene, sealing in neutral gum, and taking pho-
tos in 40×magnification with OLYMPUS BX52 Microscopic
Image Acquisition System (Olympus Corporation, Japan).

2.6. Assessment of Apoptosis by TUNEL. The TdT-mediated
end-residues, deoxyribonucleotide-terminal transferase-
mediated nick end labeling (TUNEL), were used to detect
the nuclear DNA fragmentation during the early stages of
apoptosis, with In Situ Cell Death Detection Kit (POD)
instructions. Under normal light microscope observation
(OLYMPUS BX52 Microscopic Image Acquisition System
and Simple PCI Microscopic Image Analysis System), the
positive apoptotic cells showed brown or brown nucleus
staining. Part of the cytoplasm could also be positively stained
by spiking DNA fragments; normal nonapoptotic cells and
negative control cell nuclei were stained. Hematoxylin is dyed
blue, the nucleus is relatively large, and the shape and size
are the same. The pigmented positive cells were identified
as apoptotic cells according to the following criteria: a
single scattered distribution; a nuclear morphology with
apoptosis; no inflammatory reaction around. For positive
cells lacking apoptotic nuclear morphology, astrocytes are

not considered to be apoptotic cells unless their staining
intensity contrasts sharply with the background and they
are in a single distribution. Six sections were randomly
observed per section under a light microscope (×400), and
each field was at least 500 cells. The average number of
positive apoptotic cells per 100 cells, i.e., the Apoptosis Index
(AI), was measured using the Simple PCI microscopic image
analysis software.

2.7. Carbonylation Proteomics

2.7.1. Protein Extraction. Tissue homogenization used a Bei-
jing Kangwei Century Technology animal cell (tissue) total
protein extraction kit (No. CW0891) and an F6/10-6G ultra-
fine homogenizer (Fluko, Shanghai, China) in an ice bath.
Hydrazide chemistry was employed to derivatize protein
carbonyls from the samples (at least 3-4 samples for each
concentration per treatment group) and the tissue weight
was about 200mg to extract the carbonylated protein [21].
Biotinylation was with 10% 50mM biotin hydrazide added
to a final concentration of 5mM. The reaction was at room
temperature for 2 h or at 4∘C for 4 h to completely biotinylate
the carbonylated proteins. To obtain protein crude extracts,
samples were centrifuged at 4∘C, at 3000–4000 × g for
10min; then centrifugation was repeated two to three times.
Reductive amination used 5M NaCNBH3 added to a final
concentration of 15mM, and the reaction was performed at
4∘C for 1 h.The Schiff base was reduced to a secondary amine
using a mild reducing agent, sodium cyanoborohydride, to
prevent hydrolysis of the Schiff base to form a carbonyl group.
The protein solution was filtered through a 0.45 𝜇m filter,
and protein quantification was performed using Coomassie
Brilliant Blue.

The protein solution was transferred to an ultrafiltration
tube and ultrafiltered using 200 times the volume of the
solution in phosphate-buffered saline (PBS) to remove the
biotin hydrazide. To enrich for carbonylated proteins, 100𝜇L
of avidin beads was added to each protein sample, and the
reaction was carried out at 4∘C for 30min before transferring
to the Spin column. The bottom cover was removed and
centrifuged at 600 × g for 1min. To separate the carbonylated
proteins, after sealing the Spin column cover, 100𝜇L PBS was
added, and D-biotin was added at a final concentration of
5mM; the reaction occurred at 4∘C for 1 h. After addition
to D-biotin and replacement buffer, the supernatant was
transferred to a 10 kDUltra-0.5 ultrafiltration tube and rinsed
with 150–200𝜇L of 50mM NH4HCO3, centrifuged at 14,000
× g for 10min, and repeated three times to fully remove the
D-biotin. The carbonylated proteins were collected, and after
the D-biotin was sufficiently removed, 100 𝜇L of NH4HCO3
was added to the ultrafiltration tube, and the ultrafiltration
tube was further rinsed with NH4HCO3 at 50 𝜇L/rinse. The
carbonylated proteins were frozen and stored at 80∘C. The
extracted carbonylated proteins were quantified using the
Coomassie Brilliant Blue assay.

2.7.2. Protein Enzymolysis. Affinity-purified carbonylated
proteins were concentrated in a 10 kDa Ultra-0.5 ultrafiltra-
tion tube to near dryness. For denaturation, 8 𝜇L of urea was
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added to 200 𝜇L of 0.1M Tris/HCl, pH 8.5, and mixed for
1min and then centrifuged at 14,000 × g for 15min. Disulfide
bonds were disrupted using 180 𝜇L of 8M urea and 20𝜇L of
1M dithiothreitol added to a final concentration of 100mM.
After shaking for 10–60 s, the incubation was performed at
56∘C for 1 h. Centrifugation was at 14,000 × g for 15min. Free
sulfhydryl groups were blocked by adding 100 𝜇L of freshly
prepared iodoacetamide (IAA) (final concentration, 50mM)
andplacing them in the dark at room temperature (or 4∘C) for
30min; then the samples were centrifuged at 14,000 × g for
15min. In addition to dithiothreitol and IAA, 100 𝜇L of 8M
urea was added, mixed for 1min, followed by centrifugation
at 14,000 × g for 15min, and the solution in the cannula was
discarded twice. Displacement of urea was accomplished by
adding 200 𝜇L of 50mM ammonium bicarbonate, mixing for
1min, and then centrifuging at 14,000 × g for 30min. The
cannula solutionwas discarded, and rinsingwas repeated two
to three times [22, 23].

For enzymolysis, the separated carbonylated proteins
in the Ultra-0.5 tube were ultrafiltered to dryness, then
20𝜇L of NH4HCO3 was added to the UF tube, and the
solution was transferred to a clean centrifuge tube with
10 𝜇L of NH4HCO3. The sample was rinsed twice, each time
with mixing and centrifugation. The final protein solution
was mixed and subsequently trypsin digested. 10× trypsin
was diluted to a final concentration of 20𝜇g trypsin in
50 𝜇L ammonium bicarbonate (100𝜇L) and then reacted in
a 37∘C for 18 h. The enzymatically digested peptide sam-
ples were freeze-dried using a vacuum freeze dryer and
stored at −80∘C until use for mass spectrometry analyses
[22, 23].

2.7.3. ESI-Q-TOF-MS. The ESI-Q-TOF-MS (Brooke Inc.,
USA) and the liquid chromatography mass spectrometer
equipped with a C18 reversed-phase column, capillary liq-
uid chromatograph, and nanoliter spray source were used
for mass spectrometry. The ESI-Q-TOF-MS spectra were
measured on a micrOTOF-Q II mass spectrometer (Bruker
Daltonics, Fremont, CA, USA) using nanocolumns (75mm
× 150mm; Dionex, Sunnyvale, CA, USA) in conjunction
with nano-liquid chromatography (LC) (Ultimate 3000;
Dionex) for protein identification (nanoLC-MS/MS) with an
autosampler pump.

The digested peptide mixture produced by trypsin
hydrolysis was injected into the mass spectrometer from
the autosampler dish. The ESI source was as follows: 1.2 kV,
desolvation temperature, 150∘C. The sample was introduced
with a flow rate of 0.3𝜇L/min using a water/acetonitrile
gradient. All mass spectra were in positive ion mode and
the collision gas was argon for MS/MS measurements. The
instrument calibration range was 100–3000m/Z and the
external calibration standard (Tunemix; Bruker)was supplied
by Agilent Technologies, Santa Clara, CA, USA. MS and
MS/MS data were automatically collected and processed by
Bruker 4.0 software (Bruker).

2.7.4. Carbonylation Proteomics Data Analyses and Bioinfor-
matics. The MS data were searched by using the database of

the MASCOT server (version 2013, Matrix Science-Mascot-
MS/MS-Ions Search). The parameters included the Swiss-
Prot/Uniprot database, and trypsin lysis, which allowed one
uncut site. The species were as follows: rat; MS/MS fragment
ion mass error set to 0.2Da. Because Mascot has a limit
of nine modifications per search, the variable modifiers
were searched multiple times and each sample contained a
maximum of six modifiers at a time. According to Madian
et al. [23], the oxidative modification sites of carbonylated
proteins were searched in several steps.The first modification
was fixed as follows: cysteine was iodoacetamidated to car-
bamidomethyl (C) without variable modification; the second
step was fixed. Modifications included carbamidomethyl
(C), variably modified to oxidation or hydroxylation (C-
terminal G, D, F, HW, K, M, N, R, Y). Then, changes in the
variable modification from cysteine sulfenic acid-tryptophan
oxidation to oxolactone were performed. The term “keratin
filaments” appears in the Gene Ontology (GO) Cellular
Component Ontology, and “Keratin, type I cytoskeletal 15”
was included in the gene name. Protein abundance was based
on the protein-rich fraction database (PaxDb2.0), and protein
function and subcellular localization were searched through
the Uniprot database. Information on signal pathway analysis
of carbonylated proteins was obtained using the GeneMA-
NIA Prediction Server (Version 2.8). The carbonyl protein
network was obtained from the GeneMANIA Cytoscape
plugin (version 3.2) and STRING9.0 multiple name analysis
software.

2.8. Western Blot Analysis of CaMKII 𝛼 and 𝛽. We used the
BCA Protein Assay Kit (Wellbio, American Diagnostica Inc.,
Bloomberg, USA) to determine total protein concentration
and performed the assay according to the manufacturer’s
instructions. Total cellular protein extracts were separated
on 10% SDS-polyacrylamide gel and transferred to PVDF
membranes. A T-Pro prestained protein ladder was used
as a molecular marker to estimate the size of the proteins.
The membranes were incubated with the primary antibod-
ies, anti-CaMK II 𝛽(∼55 kD,11533-1-AP, Proteintech Group,
USA), anti-CaMK II𝛼 (∼55 kD, NO.20666-1-AP, Proteintech
Group, USA), and anti-GAPDH (∼36kDa, NO.10494-1-AP,
Proteintech Group, USA) followed by an HRP-conjugated
secondary antibody (Proteintech). The separated proteins
were detected by developing the PVDF membranes (NO.
10285-1-AP, Proteintech) with a ChemiLucent ECL Detection
System (Millipore, Billerica, MA, USA). The exposed X-ray
films were scanned using the Tanon Gel Image Shooting
System (Tanon, Shanghai, China), and data analysis was
performed on the Tanon Gel Image Processing System and
Image J (National Institute of Mental Health, Bethesda,
Maryland, USA).

2.9. Real-Time Quantitative Polymerase Chain Reaction (RT-
qPCR) Detection of Target mRNA. Total RNA was extracted
using the TRIzol (Invitrogen, Carlsbad, California, USA)
and miRNeasy mini kit (QIAGEN, Hilden, Germany) kits,
which effectively covers all types of RNA (Table 1). RNA
solution was determined by UV spectrophotometer (ND-
1000, Nanodrop Technologies, Wilmington, USA) and the
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Table 1: Primers for RT-qPCR.

Target gene Accession number Sequence (5󸀠—3󸀠)

𝛽-actin F: GAGATTACTGCTCTGGCTCCTA
R: GGACTCATCGTACTCCTGCTTG

CaMK IIa KCC2A RAT GeneCopoeia, Inc, USA Catalog#: RQP049239
Vdac1 VDAC1 RAT GeneCopoeia, Inc, USA Catalog#: RQP051105
Itpr1 PI3R RAT GeneCopoeia, Inc, USA Catalog#: RQP045271
Akt1 Akt1 RAT GeneCopoeia, Inc, USA Catalog#: RQP051482
mTOR mTOR RAT GeneCopoeia, Inc, USA Catalog#: RQP050125
UCH-L1 UCH-L1 RAT GeneCopoeia, Inc, USA Catalog#: RQP049756
Hnrnpa2b1 ROA2 RAT GeneCopoeia, Inc, USA Catalog#: RQP055531

Table 2: The results of open-field experiments.

Groups Central grid’s staying time (s) Spans Erections Cleansing Defecations
M-SED 17.60±8.36 17.40±9.95 4.20±1.93 1.80±0.37 1.00±0.63
M-EX 6.40±3.34∗∗ 23.60±9.64∗ 7.00±2.81∗ 7.60±1.96∗ 1.00±0.45
M-SED, middle-aged sedentary control group; M-EX, middle-aged aerobic exercise runner group; ∗𝜌 < 0.05 ∗∗𝜌 < 0.01 vs. M-SED.

ratio of 260/280 (the purity of RNA) ranged from 1.8 to 2.1,
indicating that the RNA solution can be used in the next
experiment.

Analyzed from the amplification profile and dissolution
profile of the target mRNA by RT-qPCR, it is shown that
the amplification efficiency was high, the Tm value was of
uniform nature and specificity, and there were no nonspecific
amplification and dimer formation.

At least three samples were randomly assigned in each
group, and the RT-qPCR was performed for confirming the
amplification curve and melting curve, and recording the
Ct (cycle threshold) value of each gene mRNA. The mRNA
expression of the target gene was quantitatively determined
by using the method of 2-delta Ct as the internal reference.

Target gene mRNA relative quantity = 2−��Ct

��Ct

= (Cttarget − Ct𝛽−actin)Samples

− (Cttarget − Ct𝛽−actin)Control

(1)

2.10. Statistical Analysis. Data from all experiments are pre-
sented as mean ± SEM. Statistical analysis was performed
using predictive analytics software statistics 16.0 (SPSS Inc.,
Chicago, IL, USA). Comparisons across the experimental
groups were performed using one-way analysis of variance
(ANOVA). The results of behavior experiments were ana-
lyzed by repeated measures of variance. Statistical signif-
icance of the effects of the experimental treatment was
determined by comparing the areas under the curve (p<0.05).

3. Results

3.1. Behavioral Monitoring Indicators in Aging Rats

3.1.1. Results of Open-Field Experiments. The open-field
experiment is a sensitive method commonly used in animal

experiments to detect dopaminergic function activity defi-
ciency [24]. Central lattice retention time was significantly
lower in the M-EX as compared to the M-SED group (P <
0.01). On the other hand, the number of spans, erections,
and cleansing episodes was higher in the M-EX than in the
M-SED group (P < 0.05), while there was no significant
difference in defecation (P > 0.05) (Table 2).

3.1.2. Results of Adhesion Removal Experiment. The detec-
tion of adhesion removal experiment when detecting motor
defects may be a more sensitive experimental method than
the field test and is often used to detect mild striatal pathway
dysfunction [20]. The nasal adhesion removal experiment
was completedwithin 3min (Table 3).The time to remove the
nasal adhesions was shorter in the M-EX than in the M-SED
group (P < 0.01). All rats removed the adhesive material from
their forepaws within 5min, but the time taken was longer in
the M-EX than in the M-SED group (P < 0.01).

3.2. HE Staining and Microscopic Imaging of the Striatum.
A histological analysis of HE-stained striatal tissue sections
revealed that the matrix was clearly separated and the gap
between the matrix and striatum was smaller in the M-SED
than in the M-EX group, in which the matrix was more
compact and the gap was larger (Figure 1).

3.3. Results of the TUNEL Assay. Normal nuclei in the
striatumwere stained blue whereas apoptotic nuclei appeared
brown. There were more apoptotic nuclei in the M-SED
than in the M-EX group (Figure 2). Some apoptotic nuclei
appeared vacuolated and some in the M-EX group appeared
follicular with a darker color.

Apoptotic nuclei were detected in the rat striatum; the
rate of apoptosis was 100% (Table 4).The apoptotic index was
57% higher in theM-EX than in theM-SED group (P < 0.01).

3.4. Differential Carbonyl Proteomics Analysis. The ESI-Q-
TOF-MS/MS analysis identified 36 carbonylated proteins
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Table 3: The results of adhesion removal experiment.

Groups The nasal adhesion removal experiment (s) The paw adhesion removal experiment (s)
M-SED 26.13±7.42 8.97±1.86
M-EX 10.56±2.47∗∗ 15.41±2.82∗∗

M-SED, middle-aged sedentary control group; M-EX, middle-aged aerobic exercise runner group; ∗𝜌 < 0.05 ∗∗𝜌 < 0.01 vs. M-SED.

Table 4: Apoptosis rates as determined by the TUNEL assay.

Groups apoptosis index (AI)
M-SED 7.00±2.71
M-EX 10.99±2.93∗∗

M-SED, middle-aged sedentary control group; M-EX, middle-aged aerobic
exercise runner group; ∗𝜌 < 0.05 ∗∗𝜌 < 0.01 vs. M-SED; AI, apoptotic index.

M-SED (×200) M-EX (×200 ) 

Figure 1: Microscopic images of HE staining. M-SED, middle-
aged sedentary control group; M-EX, middle-aged aerobic exercise
runner group; HE, haematoxylin and eosin (arrows indicate the
striatum matrix.).

with oxidation modification sites in both the M-SED and M-
EX groups. There were 17 and 19 carbonylated proteins with
such sites that were specific to the M-SED andM-EX groups,
respectively, whereas 40 of the proteins were common to both
groups (Table 5).

Carbonylated proteins with oxidation modification
sites that were unique to the M-SED group included
CaMKII𝛽, synaptosomal-associated protein 25 (Snap25),
synapsin-2 (Syn2), heterogeneous nuclear ribonucleoprotein
(Hnrnp)a2b1, complement component 1q subunit-like
protein (C1QBP), G protein/guanylate binding protein
(GnB)4, T-complex protein 1 subunit epsilon (Cct5), and
neuromodulin (Gap43). Those specific to the M-EX group
included isocitrate dehydrogenase [NAD] subunit alpha
(Idh3a), synaptophysin (Syp), ubiquitin carboxyl-terminal
hydrolase isozyme (UCH)-L1, elongation factor 1 (Eef1a1),
acid aldolase A fructose-diphosphate aldolase (ALDOA),
myelin-oligodendrocyte glycoprotein (MOG), and malate
dehydrogenase (MDH)2 (Table 5).

CAMKII𝛽 is a component of the N-methyl-d-aspartate
receptor (NMDAR) complex in excitatory synapses and may
regulate NMDAR-dependent potentiation of the 𝛼-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor and
synaptic plasticity. HnRNPs bind to neonatal transcripts and
are involved in messenger RNA biosynthesis, DNA repair,
telomere biogenesis, cell signaling, and gene expression regu-
lation. Studies have shown thatHnrnpa2b1 is closely related to

M-SED (×200) M-EX (×200 ) 

Figure 2: Microscopic images of TUNEL assay (arrows indicate
apoptotic nuclei). M-SED, middle-aged sedentary control group;
M-EX, middle-aged aerobic exercise runner group; TUNEL, TdT-
mediated dUTP nick end labeling.

No information,
5.93%

Nucleus,5.08%

Cell junction
Secreted

Cytosol, 5.08%

Mitochondrion,
19.49%

Cell membrane
Membrane

20%

Cytoplasm,
44.07%

Figure 3: Subcellular localization of carbonylated proteins in rats’
striatum.

the Ras-Raf-mitogen-activated protein kinase (MAPK)-ERK
signaling pathway [25].

A search of the Swiss-Prot/Uniprot database revealed
the localization of the identified carbonylated proteins as
cytoplasm (44.07%), mitochondria (19.49%), cell mem-
brane (20.34%), nucleus (5.08%), junction/secreted/cytosol
(5.08%), and no information (5.93%) (Figure 3).

Protein carbonyl modifications include (1) carbonyl
groups that can be oxidized by amino acid side chains (pro-
line, arginine, lysine, threonine, glutamic acid, and aspartate
residues) that are directly formed in proteins or the 𝛼-amide
or diamide pathway oxidatively cleaving the polypeptide
backbone; (2) proteins that can also be an indirect carbony-
lation product of lipid peroxidation, such as 4-hydroxy-2-
nonenal, 2-propionaldehyde, and malondialdehyde (Michael
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Figure 4: mRNA expression levels of Hnrnpa2b1 and UCH-L1 as
determined by RT-qPCR. M-SED, middle-aged sedentary control
group; M-EX, middle-aged aerobic exercise runner group; ∗ ∗𝜌 <
0.05 ∗ ∗𝜌 < 0.01 vs. M-SED; Hnrnpa2b1, heterogeneous nuclear
ribonucleoproteins A2/B1; UCH-L1, ubiquitin carboxyl-terminal
hydrolase isozyme L1.

and/or Schiff bases are added to cysteine, histidine, or lysine
residues); and (3) the formation of advanced glycation end
products and free radical-oxidized proteins that formed
carbonylated proteins.These proteins can be oxidized inmore
than 35 ways and all three of these basic posttranslational
modifications can be distinguished bymass spectrometry.We
found that oxidatively modified sites involved 28 species, as
follows: Oxidation (C-termG), Oxidation (D), Oxidation (F),
Oxidation (HW), Oxidation (K), Oxidation (M), Oxidation
(N), Oxidation (R), Oxidation (Y) [oxidation or hydroxyla-
tion]; Oxidation (C) [cysteine sulfenic acid]; Oxidation (P)
[proline oxidation to glutamic semialdehyde]; Dioxidation
(C) [sulfinic acid]; Dioxidation (F) [phenylalanine oxidation
to dihydroxyphenylalanine]; Dioxidation (M) [sulphone];
Dioxidation (W) [tryptophan oxidation to formylkynure-
nine]; Dioxidation (K), Dioxidation (P), Dioxidation (R)
[dioxidation or dihydroxy]; Trioxidation (C) [cysteine oxi-
dation to cysteic acid]; HNE (C), HNE (H), HNE (K)
[4-hydroxynonenal Michael adduct]; glucosone (R) [con-
densation product of glucosone]; Lys->Allysine (K) [lysine
oxidation to aminoadipic semialdehyde]; 3-deoxyglucosone
(R) [3-deoxyglucosone adduct]; Arg->GluSA (R) [arginine
oxidation to glutamic semialdehyde]; Delta:H(2)C(5) (K)
[adduct formed frommalondialdehyde (MDA) ]; 4-ONE (C)
[4-Oxononenal]; Arg biotin hydrazide (R) [oxidized argi-
nine biotinylated with biotin hydrazide]; Lysbiotinhydrazide
(K) [oxidized lysine biotinylated with biotin hydrazide];
OxLysBiotin (K) [oxidized lysine biotinylated with biotin-
LC-hydrazide]; probiotinhydrazide (P) [oxidized proline
biotinylated with biotin hydrazide]; Thrbiotinhydrazide (T)
[oxidized Threonine biotinylated with biotin hydrazide];
Didehydro (T) [2-amino-3-oxo-butanoic acid]; Pro->pyro-
Glu (P) [proline oxidation to pyroglutamic acid]; Pro-
>Pyrrolidinone (P) [proline oxidation to pyrrolidinone];
Trp->Hydroxykynurenine (W) [tryptophan oxidation to

M-SED M-EX
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Figure 5: CaMKII𝛼 and 𝛽 expression in the rat striatum. M-SED,
middle-aged sedentary control group; M-EX, middle-aged aerobic
exercise runner group; ∗ 𝜌 < 0.05 ∗ ∗𝜌 < 0.01 vs. M-SED; CaMKII
𝛼 and 𝛽, Ca2+/calmodulin-dependent protein kinases 𝛼 and 𝛽;
GAPDH, glyceraldehyde-3-phosphate dehydrogenase.

hydroxykynurenine]; Trp->Kynurenin (W) [tryptophan oxi-
dation to kynurenine]; Trp->Oxolactone (W) [tryptophan
oxidation to oxolactone].

3.5. Screening Target Genes from Differentially Carbonylated
Proteins. The results revealed that further studies are needed
to elucidate the role of protein carbonylation of Hnrnpa2b1
and UCH-L1. The mRNA expression levels of UCH-L1
and Hnrnpa2b1 were significantly upregulated in the M-
EX group, as compared with the M-SED group (P < 0.01;
Figure 4).

3.6. Screening of the CaMK Pathway by Differential Carbony-
lation Proteomics. The carbonylated proteins with oxidation
modification sites unique to the M-SED group included
CaMKII𝛽. CaMKII𝛽 and CaMKII𝛼 are of themost abundant
protein kinases in the brain that regulate calcium signaling,
a critical molecule in multiple signal transduction pathways,
and play a key role in synaptic plasticity, learning, and
memory [26]. In addition, they are highly expressed in a
specific subcellular localization in neurons, wherein they
convert the intracellularly elevated calcium signals to a range
of target proteins, including ion channels and transcriptional
activators; the synaptic transmission has regulatory roles in
downstream signaling pathway-associated proteins [27].

CaMKII 𝛼 and 𝛽 protein level was upregulated in
the M-EX as compared to the M-SED group (P < 0.01;
Figure 5). Additionally, CaMKII𝛼 and voltage-dependent
anion-selective channel protein (VDAC)1 mRNA levels were
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Figure 6: mRNA expression levels of CaMKII𝛼 and Vdac1 by
RT-qPCR. M-SED, middle-aged sedentary control group; M-EX,
middle-aged aerobic exercise runner group; ∗𝜌 < 0.05 ∗ ∗𝜌 < 0.01 vs.
M-SED; CaMKII𝛼, Ca2+/calmodulin-dependent protein kinases or
CaM kinases 𝛼; Vdac1, voltage-dependent anion-selective channel
protein 1.

upregulated in the M-EX as compared to the M-SED group
(P < 0.01; Figure 6).

3.7. Screening of the Phosphoinositide 3-Kinase/Protein Kinase
B/Mammalian Target of Rapamycin (PI3K/Akt/mTOR) Path-
way by Differential Carbonylation Proteomics. mTOR not
only regulates cell proliferation and survival but also par-
ticipates in membrane transport and protein degradation,
especially in the regulation of protein translation levels.
Recently, rapamycin has been shown to promote autophagy
and apoptosis, remove abnormal proteins such as amyloid
polypeptide in AD and mutated 𝛼-synuclein in familial PD,
and thus treat related diseases [28].

PI3K mRNA level was downregulated (P > 0.05) whereas
the mRNA levels of Akt (P < 0.01) andmTOR (P < 0.05) were
upregulated in the M-EX as compared to the M-SED group
(Figure 7).

4. Discussion

4.1. Effects of Regular Aerobic Exercise on Protein Carbony-
lation in the Rat Striatum. The ESI-Q-TOF-MS/MS analysis
identified 36 carbonylated proteins in the rat striatum, of
which 17 and 19 were specific to the M-SED and M-EX
groups, respectively. The carbonylated proteins were related
to energy metabolism, mitochondrial inner membrane,
ATPase activity, development, synaptic conduction, axonal
targeting, and aging, suggesting that protein carbonylation
is selective and that the relative amount of protein does not
determine the degree of modification. Protein carbonylation
increases with aging and is especially abundant in elderly
individuals; nearly one-third of all proteins are carbonylated
[29, 30]. Erroneously translated proteins are prone to and
become less stable after carbonylation [31].

Carbonylated proteins specific to the M-SED group
included CaMKII𝛽, Snap25, Syn2, Hnrnpa2b1, and Gap43.
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Figure 7: mRNA expression levels of PI3K, Akt, and mTOR, as
determined by RT-qPCR. M-SED, middle-aged sedentary control
group; M-EX, middle-aged aerobic exercise runner group; ∗ 𝜌 <
0.05 ∗ ∗𝜌 < 0.01 vs. M-SED; PI3K, phosphoinositide 3-kinase; Akt,
protein kinase B; and mTOR, mammalian target of rapamycin.

On the other hand, CaMKII𝛽 and Hnrnpa2b1 mRNA lev-
els were upregulated in the M-EX group. HNE inhibits
oxidant-induced Ca2+ release from the mitochondria in
a concentration-dependent manner (10–50 𝜇M) [32, 33];
this requires oxidation of NADH to NAD+, which in
turn hydrolyzes NAD+ to niacinamide and mono-ADP-
ribose following transient binding of mono ADP-ribose to
mitochondrial proteins. Inhibition of pyridine nucleotide
hydrolysis by HNE results in Ca2+ overload in mitochondria
and inhibition of Ca2+-dependent mitochondrial enzymes,
leading to disruption of the cell cycle, and inhibition of DNA
synthesis and cell proliferation [34, 35].

Carbonylated proteins unique to the M-EX group
included Idh3a, Syp, Uchl1, Eef1a1, ALDOA, MOG, and
MDH2. Interestingly, the mRNA levels of UCH-L1 were
upregulated in this group, suggesting that regular aerobic
exercise modulates proteins associated with mitochondrial
and striatum development-related signaling transduction
proteins. However, additional studies are needed to clarify the
specificmechanisms involved. Exercise leads to stress (oxida-
tive and ischemia-reperfusion) mainly from differences in
energy metabolism and demand [36, 37].

4.2. Effects of Regular Aerobic Exercise on Apoptosis and
Regulation of the CaMK/mTOR Signaling Pathway in the
Rat Striatum. Accumulation of carbonylated proteins can
lead to polymerization of damaged proteins, dysregulation of
cellular function, and other pathophysiological changes that
accelerate aging. Proteins that are overoxidized and cross-
linked cannot be degraded by the proteasome, possibly due to
structural changes that render the catalytic site of the enzyme
complex unrecognizable or inaccessible, eventually leading to
apoptosis [38]. In the present study, we detected apoptotic
nuclei in the rat striatum; the rate of apoptosis was 100%, and
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the apoptotic index of the striatum was 57% higher in the M-
EX as compared to the M-SED group.

CaMKII, among the most abundant protein kinases in
the brain, regulates calcium signaling and plays an important
role in multiple signal transduction pathways involved in
synaptic plasticity, learning, and memory [26, 39]. We found
here that carbonylation of CaMKII𝛽 was specific to the
M-SED group, whereas the CaMK pathway-related genes
CaMKII𝛼 and VDAC1 were significantly increased in the
M-EX group, indicating that regular aerobic exercise is
beneficial for maintaining calcium regulation. CaMKII is an
important component of postsynaptic densities, accounting
for 30%–50% of all synaptic proteins [40]; it is thought to play
an important role in long-term memory. CaMKII phospho-
rylates synaptophysin I, which then fuses to the presynap-
tic membrane and stimulates neurotransmitter release [41].
Maintaining intracellular calcium homeostasis is critical for
neuronal functions; a perturbation of this process can lead to
cell damage or death [42, 43].

The PI3K/Akt/mTOR signaling pathway is involved in
cell survival [44], as well as cell proliferation, apoptosis,
and differentiation and metabolism [45, 46]. Interestingly,
Akt and mTOR transcript levels were upregulated by regular
aerobic exercise, which is known to induce CaMK and
PI3K/Akt/mTOR signaling pathways to prevent excessive
apoptosis in the rat striatum as a neuroprotectivemechanism.
In the injured spinal cord, treadmill exercise promoted the
recovery of motor function by suppressing apoptosis [47].
The beneficial effects of exercise may be attributed to the
increased release of neurotrophic factors via activation of
the PI3K/Akt pathway: exercise after brain injury increased
the production of nerve growth factor and brain-derived
neurotrophic factor and the activation of TrkA/B recep-
tor, which activated the PI3K/Akt pathway and inhibited
apoptosis of hippocampal neurons [48]. Long-term regular
aerobic exercise itself is a stress stimulus [17]; however, a
moderate amount of physical activity strengthens the body
[49–51] and can improve the functioning of various organs,
reduce the incidence of disease, and improve quality of life
[52, 53].

5. Conclusions

Regular aerobic exercise for 10weeks (incremental for the first
6 weeks followed by constant loading for 4 weeks) enhanced
carbonylation of CaMKII𝛽 and Hnrnpa2b1 and modulated
apoptosis via activation of CaMK and phosphoinositide 3-
kinase/protein kinase B/mTOR signaling. It also promoted
normal apoptosis in the rat striatum, which may have pro-
tective effects in neurons.
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