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A B S T R A C T   

Social media like Weibo has become an important platform for people to ask for help during 
COVID-19 pandemic. Using a complete dataset of help-seeking posts on Weibo during the COVID- 
19 outbreak in China (N = 3,705,188), this study mapped their characteristics and analyzed their 
relationship with the epidemic development at the aggregate level, and examined the influential 
factors to determine whether and the extent the help-seeking crying could be heard at the indi-
vidual level using computational methods for the first time. It finds that the number of help- 
seeking posts on Weibo has a Granger causality relationship with the number of confirmed 
COVID-19 cases with a time lag of eight days. This study then proposes a 3C framework to 
examine the direct influence of content, context, and connection on the responses (measured by 
retweets and comments) and assistance that help-seekers might receive as well as their indirect 
effects on assistance through the mediation of both retweets and comments. The differential in-
fluences of content (theme and negative sentiment), context (Super topic community, spatial 
location of posting, and the period of sending time), and connection (the number of followers, 
whether mentioning others, and verified status of authors and sharers) have been reported and 
discussed.   

1. Introduction 

The beginning of 2020 witnessed a sudden outbreak of COVID-19 in Wuhan, which became a major public event affecting the 
whole country, and even the world. In the early stages of the outbreak, a lack of knowledge of the virus and inadequate preparation of 
relevant medical resources, along with psychological panic, confusion, and helplessness, brought about severe social crisis. Many 
people turned to social media to cry for help. Social media has played an important role in spreading these help-seeking messages and 
facilitating possible problem-solving, which deserves a systematic analysis. 

What are the basic characteristics of help-seeking messages spreading on major social media platforms such as Weibo and do they 
reflect the development of the pandemic? Can people hear others’ crying for help during the public health and social crisis? Which 
factors influence the diffusion and effectiveness of help-seeking messages? In this paper, we focus on the help-seeking in the COVID-19 
pandemic and use computational methods to analyze the large-scale dataset of help-seeking messages on Weibo, hoping to better 
understand the help-seeking and assistance behaviors online. 
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Specifically, we propose a 3C framework to explain the main factors influencing the responses received by help-seeking posts and 
problem-solving reported at last. 3C refers to Content, Context, and Connection. To be more specific, “Content” is composed of the 
theme and emotional attributes of help-seeking posts; “Context” denotes the spatial and temporal characteristics of the posts; 
“Connection” refers to the ability of the posts to reach out to other people (e.g. mentioning behavior using “@”). We thus contribute to 
the study of shared experiences during the COVID-19 pandemic by focusing on the help-seeking on social media and understanding this 
issue with the content-context-connection framework. 

The world is still suffering from the COVID-19 pandemic, with the infected number keeps growing up. Besides the physical health 
damage, the pandemic could trigger mental health problems (Abbas et al., 2021; Moreno et al., 2020; Saltzman et al., 2020). Global 
recovery involves the improvement in both the physical and mental health status of people around the world and requires not only 
control over the infected number but also more sophisticated ways of coordination, collaboration, and caring with each other, 
empowered by social media as an important social connection and mobilization mechanism. Vulnerable people would still voice for 
help on social media during the whole recovery process. One society with high resilience should be able to learn from the past to 
prepare for the future and carry out institutions designed for individual welfare and sustainable societal robustness (Keck & Sakda-
polrak, 2013). With the knowledge of help-seeking on social media from the early stage of COVID-19, people should be able to generate 
thoughtful response plans for future crises and facilitate global recovery. 

2. Literature review 

2.1. Help-seeking on social media and its relationship with the development of pandemic 

Social media serve as an important platform where people generate, consume and disseminate informational and emotional content 
in daily life (Qu et al., 2009), thus becoming a potential attention space for help-seekers to voice for help during public crises (Alshaabi 
et al., 2021; Andersson & Sundin, 2021; Luo et al., 2020). Evidence from disaster studies has shown that people voice for help during 
disasters (Chu et al., 2021; Dahal et al., 2021). Several kinds of entities including communities, governments, individuals, organi-
zations, and media outlets are active in the communication on social media during disasters (Houston et al., 2015). As a bottom-up 
information convergence platform empowering the exchanges of informational, emotional, and instrumental support among 
normal people, social media could help governments and volunteers coordinate and manage (Ding & Zhang, 2010) to monitor the 
real-time dynamics of hazards, capture the needs, locate victims (Sharp & Carter, 2020), and ease the problem of information 
asymmetry (Li et al., 2020a). In this way, the communication influences empowered by social media could eventually bring about 
actual help at last including aid and donations (Gurman & Ellenberger, 2015). 

We are interested in how people used Weibo as a help-seeking platform during the early stage of COVID-19. Especially, we first 
examine the basic temporal, spatial, and theme distribution characteristics of help-seeking posts. During COVID-19, more attention has 
been paid to the hospitalization of infected patients. While other various voices asking for help beyond hospitalization during the 
pandemic shouldn’t be ignored. So we will investigate the content typology of posts and look deeper into the proportions and fluc-
tuation patterns of each category during different phases of the epidemic (Spence et al., 2015). 

Based on these discussions, we propose the first research question: 

RQ1: What are the temporal (RQ1a) and spatial (RQ1b) distribution, and main content types (RQ1c) of help-seeking posts on Weibo 
during the outbreak of COVID-19? 

There is possible mutual predictability between epidemic development and help-seeking behavior at the aggregate level. On one 
hand, the more people infected, the more people would ask for help. The infection could have been the original trigger of help-seeking 
behavior online. On the other hand, the number of help-seeking posts on social media can be treated as an early warning of the COVID- 
19 development. There is always a time lag between infected signs and confirmed diagnoses, which could be even longer in the early 
stage of COVID-19 given the limited medical and social resources. In this way, the help-seeking posts could have released potential 
signs of a trend underlying the virus spreading process. Researchers have investigated the possibility of predicting the outbreak of 
pandemics based on social media data (Samaras et al., 2020; Shen et al., 2020). However, there is no empirical study to examine 
whether help-seeking posts could play as an indicator to predict the number of infected. Should the predictability be confirmed, we 
might be able to have help-seeking messages as supplement information for epidemic monitoring and offer a guide on the allocation of 
social resources when facing public health crises. 

Granger (1969) raised a definition of "causality" in 1969, explaining Yt causes Xt if including the past value of the time series Yt can 
improve the prediction of future Xt. It is a statistically predictable relationship rather than real causality based on the logic of 
counterfactuals (Shojaie & Fox, 2022). Therefore, scholars call this relationship as "Granger causality" to distinguish it from other 
notions of causality. In later research, the Granger causality test has been widely used to determine whether a variable could serve as 
an indicator of another (Bastos et al., 2015; Freelon et al., 2018; Russell Neuman et al., 2014). So we propose the second question to test 
the possible bidirectional predictability between help-seeking on Weibo and the development of the epidemic for the first time: 

RQ2: Is there a Granger causality relationship between help-seeking on Weibo and the development of the epidemic (measured by 
the number of new diagnoses)? 
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Fig. 1. A conceptual framework of 3C (content-context-connection) to explain the diffusion and effect of help-seeking information on social media.  
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2.2. The diffusion and effect of help-seeking online: 3C (content-context-connection) framework 

Besides the aggregate-level analysis of the basic distribution of help-seeking on Weibo and its relationship with the pandemic 
development, which could benefit the public governance, this study also examines the diffusion and effects of online help-seeking at 
the individual level, which might help individuals voice for help more efficiently during public crises. That is, we care about whether 
and under which conditions people’s crying could be heard, responded to, and helped finally. The research regarding the online re-
sponses of help-seeking could be understood as macro-level information diffusion, which has been studied with various dimensions 
such as the diffusion size (Cheng et al., 2014), depth and breadth (Vosoughi et al., 2018), speed (Jiang & Scott, 2010), and structural 
features (Goel et al., 2015), among which diffusion size served as a basic dimension for most studies (Chen et al., 2022; Luo et al., 
2020). So this study will examine the diffusion size measured by retweet and comment number of help-seeking behaviors. Different 
from previous studies, we not only examine the responses from the communication and information diffusion perspective but also 
examine the actual results that the help-seekers receive at last. It is still unclear which influence factors facilitate the helping result, and 
whether the collective participation in retweeting and commenting online could be translated into actual help. Thus, a new and 
comprehensive theoretical model is needed in this domain of research. Based on the synthesis of the literature, we propose a theoretical 
framework featured by 3C with mediation to explain the diffusion and effect of help-seeking on Weibo, which emphasizes two 
mechanisms: (1) 3C (Content, Context, and Connection) serve as three key factors to explain whether and to what extent that 
help-seeking posts get noticed by other netizens and their problems get resolved at last; (2) the diffusion of help-seeking information 
serves as a facilitating mediator between 3C and assistance (Fig. 1). 

First coined by Gibson (1977) in ecological psychology field, and then adapted by Norman (1999) and other scholars, the concept of 
“affordance” is widely used to understand what artifacts such as media technologies allow people to do (Bucher & Helmond, 2017). In 
communication studies, the term “communicative affordances” proposed by Hutchby (2001)) focuses specifically on the enabling and 
constraining potentials of technology for communication (Schrock, 2015). Following this conceptualization, scholars have analyzed 
the affordances of social media which structure the engagement of users such as visibility, editability, persistence and association 
(Treem & Leonardi, 2013) as well as lower-level affordances connected with specific features of particular platforms (Postigo, 2016). 
Various social media affordances are also highlighted to show beneficial for health-related help-seeking practice, such as the affor-
dances of community co-creation and social relationships (Lin & Kishore, 2021) and the affordance of large-scale visibility (Chen et al., 
2022; Stephens et al., 2020). For example, super topic community on Weibo can be taken as an example for community co-creation 
affordance, and retweeting and mentioning others with “@” could be perceived as representation of social relationship affordance, and 
both of them facilitate visibility affordance. These affordances thus encourage people to voice for help on Weibo. 

Although social media affordances facilitate help-seeking, the highly-competitive information environment brings an obstacle for 
these help-seeking voices to be heard. Public attention is limited in load (Hilgartner & Bosk, 1988) and follows the zero-sum prop-
osition (Zhu, 1992). To be heard, one help-seeking post should be equipped with abilities that enable itself to compete in the highly 
competitive attention space on social media and trigger certain reactions from the audience. Suggested by HSM model (Heuri-
stic-Systematic Model), heuristic processing and systematic processing could happen at the same time to determine the attention and 
attitude towards messages (Chen & Chaiken, 1999; Zhang et al., 2014). The heuristic processing is based on simple informational cues 
(e.g. source credibility) while systematic processing relies on more comprehensive analysis of content, such as topic recognition 
(Chaiken, 1987). The competing abilities of help-seeking messages thus reside in their performance to arouse the dual-processing. 
Correspondingly, the abilities needed could be understood from three dimensions: the content’s ability to arouse attention, to 
compete with other contextual factors, and to reach out to people by connection potentials. While the content dimension mainly works 
on the systematic processing, the context and connection dimensions mainly interact with heuristic processing. 

2.2.1. Content: ability to arouse attention 
First of all, content contains two sub-dimensions: theme and emotion. The attention patterns vary between discussions of different 

topics (Gruhl et al., 2004; Luo et al., 2020). It is reasonable to infer that different help-seeking themes could imply a different level of 
emergency. During the outbreak of COVID-19, the number of infected patients climbed up sharply, while the medical resources were 
limited especially in Wuhan city, and thus few proportions of the people were able to be tested for the virus and got admitted to 
hospitals. It was the most urgent need of the citizens since people were losing their lives if there was no adequate treatment. At that 
time, the available medical resources and patients do not have sufficient information about each other. Weibo thus became the most 
time-saving and labor-saving way for the government to know the detailed state of these patients. Under such a circumstance, the 
sharing behavior could help the patients to receive more attention from medical organizations and public health departments. 
Therefore, H1.1 is proposed to test the influence of theme on the diffusion and effect of help-seeking posts and especially focuses on the 
influence of asking for hospitalization. 

H1.1: The theme of help-seeking posts could influence the retweets, comments, and assistance they receive, especially the theme of 
asking for hospitalization receives more retweets (H1.1a), comments (H1.1b), and have a higher chance to get assistance (H1.1c). 

The degree of emotional expression in messages has been also found to influence the popularity of information diffusion on social 
media. According to previous studies (e.g., Schweiger & Quiring, 2005; Zhang et al., 2014), messages written in a more sentimental 
manner will create feelings of intimacy and magnify the effort of user input. Emotional words would arouse a higher level of brain 
responses and cause the attention of readers (Goldenberg & Gross, 2020). Research on Facebook and other social media have verified that 
the sentiment of messages could trigger more cognitive involvement (Mauri et al., 2011), which was in turn correlated with information 
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sharing behavior (Luminet et al., 2000; Peters et al., 2009; Stieglitz & Dang-Xuan, 2012), retweeting (Goldenberg & Gross, 2020), and 
feedback (Kramer et al., 2014). Compared with unemotional content, retweeting (Firdaus et al., 2018; Naveed et al., 2011) and com-
menting (Burke & Develin, 2016) generally occur more commonly with exposure to negative emotion. The negative sentiment was also 
proven to be associated with higher perceived risks (Lwin et al., 2022), thus significantly influencing the acceptance of policy (Rodri-
guez-Sanchez et al., 2018) and driving the timely help from the government to ensure social stability (Li et al., 2019). 

H1.2: The help-seeking posts containing negative sentiment receive more retweets (H1.2a), comments (H1.2b), and have a higher 
chance to get assistance (H1.2c). 

2.2.2. Context: ability to compete with other messages 
We examine both spatial and temporal contextual factors. By spatial, we imply both cyberspace and geographic space. 
In cyberspace, there is a specific “Super Topic” community for posting COVID-19-related help-seeking messages on Weibo, which 

increased their possibility of being diffused and assisted. First, the super topic community provided a supplementary channel of visibility. 
People who clicked into the super topic community could receive messages from help-seekers without bothering to search or follow 
particular help-seekers. People could even subscribe to this community to follow help-seeking messages continuously, which facilitates 
both information diffusion and matching between help-providers and help-seekers. Second, the super topic community was also featured 
by credibility. Evidence showed that posts in the COVID-19 super topic community followed a standard format with clear and detailed 
information (Li et al., 2020b), which helped increase credibility (Chen et al., 2021) and thus could facilitate diffusion and assistance. 

H2.1: The help-seeking posts sent from the “Super Topic community” receive more retweets (H2.1a), comments (H2.1b), and have 
a higher chance to get assistance (H2.1c). 

We also emphasize the geographic location from where the post was generated. Only a few studies examine this macro-level factor 
when analyzing the information diffusion on social media. During the disaster and crisis, the posts from where the disaster and crisis 
happened attracted more attention (An & Mendiola-Smith, 2020). Earthquake-related studies also found that the physical proximity 
between the user and the center of the disaster was an influencing factor in posts’ virality (Li et al., 2021). During the outbreak of 
COVID-19, the attention of the whole country was attracted to Hubei province, while its medical resources were most limited. So H2.2 
is proposed to test the differential influence of Hubei for diffusion and assistance. 

H2.2: The help-seeking posts sent from Hubei receive more retweets (H2.2a), comments (H2.2b), but have a lower chance to get 
assistance (H2.2c). 

We consider the influence of temporal context on diffusion and effect in two ways: the medical resources available in different 
periods for explaining assistance, and netizens’ attention and exposure intention changes for explaining diffusion. The whole period is 
divided with the time spots of the 4th, 8th, and 13th of February. 4th February is selected because the Leishenshan hospital started to 
provide treatment for infected people on that day. On 8th February, another hospital called Huoshenshan and a field hospital were also 
put in use. Ten other field hospitals opened for treatment of patients with mild symptoms on 13th February. The assistance should be 
much more accessible with more medical resources available. On the other hand, research on commenting behavior revealed an 
avoidance of exposure to help-seeking messages due to powerlessness and frustration in the long term (Chen et al., 2021). People are 
faced with the risk of a low perceived sense of well-being or even depression and trauma if they keep exposed to bad information on 
social media (Khodabakhsh & Ahmadi, 2020; Zhong et al., 2021). Social media avoidance as a way of self-protection, together with the 
decline of attention, could result in fewer retweeting and commenting behaviors. Thus H2.3 is proposed: 

H2.3: The help-seeking posts sent within periods with more medical resources (later time) receive fewer retweets (H2.3a) and 
comments (H2.3b) but have a higher chance to get assistance (H2.3c). 

2.2.3. Connection: ability to reach out to people 
This dimension denotes the ability of a post to connect to the potential audience in the diffusion network on social media, which 

includes at least four important factors: the number of author’s followers, whether the author is a verified user, whether the post 
mentions others by using @, and whether involving verified users in its retweet chain. 

Previous studies have confirmed the importance of the number of the authors’ followers in the information diffusion process 
(Cheng et al., 2014; Firdaus et al., 2018). The number of followers on Twitter is associated with perceived source credibility (West-
erman et al., 2012), leading to higher content acceptance (Rui et al., 2013). Moreover, people with a larger number of followers are 
more likely to become influencers in the network (Bakshy et al., 2011; Cha et al., 2010) with a higher ratio of being diffused (Petrovic 
et al., 2011). Besides, accounts with large follower numbers have a significant impact on the perceived seriousness of the health crisis 
of their followers (Bi et al., 2018), which could give it a priority in help-providing decisions conducted by the authorities. 

H3.1: The help-seeking posts sent from authors with more followers receive more retweets (H3.1a), comments (H3.1b), and have a 
higher chance to get assistance (H3.1c). 

Besides the original audience generated from the follower list, the mentioning function using “@” on Weibo allows users to draw 
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attention from certain users. It thus becomes an important strategy for connecting with other users on social media, reminding the 
people who are mentioned to respond to the original post by retweeting or commenting (Chen et al., 2021). Researchers have taken the 
“@” as a predictor of cascade size (Jiang & Scott, 2010) and the possibility of being retweeted (Naveed et al., 2011; Petrovic et al., 
2011). Also, mentioning behavior created a directed and a repeated path between help-seekers and the mentioned people, which 
increased the possibility of bridging help-providers with help-seekers, thus promoting the chance to be helped. 

H3.2: The help-seeking posts containing mentioning others with “@” receive more retweets (H3.2a), comments (H3.2b), and have 
a higher chance to get assistance (H3.2c). 

According to Sundar (2008), authors’ authoritativeness as a feature of connective affordance could assign credibility to a given 
message. Posts posted by authoritative authors would be more likely to be acted upon (Chaiken, 1987). The verified status of users is 
one of the most visible attributes of authors’ authoritativeness. The verified users on Weibo have a special symbol “V” at the right 
bottom of their profile photo, meaning that the identities of these users were confirmed by Weibo. Evidence from Twitter indicated no 
significant effect of verified status on content credibility (Edgerly & Vraga, 2019; Vaidya et al., 2019). However, in the context of 
help-seeking, when people competed for limited attention in such a moment of severe resources shortage, the verified status becomes 
an important clue for higher self-disclosure and enhances the help-seeking trustworthiness. A study from China showed that the 
verified status was significantly negatively associated with the diffusion size of help-seeking posts about COVID-19 (Li et al., 2020b). 
However, the authors only considered two types of help-seeking including emotional support and supplies support from medical 
institutions and individuals, which were only a fraction of the whole help-seeking picture. Besides, participators involved not only 
individuals but also verified organizations or groups that could offer actual assistance. So the verified status of the author and sharers 
can be treated as an important sub-dimension of the connection ability. The verification status on Weibo is generally divided into two 
main types: verified individuals and verified organizations (blue V). We will distinguish these two types of verified users from common 
users in the following analysis. 

H3.3: The help-seeking posts sent from authors with the verified status receive more retweets (H3.3a), comments (H3.3b), and 
have a higher chance to get assistance (H3.3c). 
H3.4: The help-seeking posts with the verified status of the sharers receive more retweets (H3.4a), comments (H3.4b), and have a 
higher chance to get assistance (H3.4c). 

2.2.4. Diffusion as mediators 
We argue that the diffusion of help-seeking information could serve as a mediator between 3C factors and assistance. The logic 

behind is twofold: diffusion is conceptually different from effect as either retweeting or commenting is relatively easily taken while 
assistance depends on additional social and medical resources; diffusion could facilitate the problem-resolving by amplifying people’s 
voices and attracting help-providers’ attention, which could then translate into the priority of assistance. One of the biggest obstacles 
in the rescue is that help-seekers and help-providers are not always well-connected. For example, a case study on the Nepal earthquake 
found that helpers turned to the official page of the police while victims didn’t (Subba & Bui, 2017). In the case of Weibo, users can 
connect these two groups of people by both retweeting and commenting on help-seeking messages (Sharp & Carter, 2020). Besides, 
people who are exposed to a higher proportion of help-seeking messages in their information feed tend to provide physical help 
(DiCarlo & Berglund, 2020), suggesting the importance of continuous and repeated diffusion of help-seeking messages. The more times 
one message is shared, the higher chance it might have to reach help-providers. Also, the priority of assistance remained another 
problem in help-providing. Evidence from earthquake showed that collective participation in information sharing could also generate 
an impact on the response priority of help-providers (Subba & Bui, 2017). Thus, H4 and H5 are proposed: 

H4: Retweet (H4a) and comment (H4b) are correlated with assistance. 
H5: Retweet (H5a) and comment (H5b) mediate the relationship between 3C factors and assistance. 

3. Method 

3.1. Data collection and processing 

We collected all original posts that contained four expressions of “help” in Chinese (“求助”,“求救”,“求帮助”,“求解决”) and all posts 
from “pneumonia patients help-seeking Super Topic” community from Weibo between 1st December 2019 and 15th March 2020. The 
data was collected from a highest-level API which was directly authorized by the Weibo company, which allowed us to collect a 
complete dataset on this topic (the initial N = 29,453,546, among which 1,228,462 are original posts). 

We then used the following cleaning method on original posts first and then collected all the forwarded posts based on the original 
ones. The classification task for data cleaning aimed to extract COVID-19-related help-seeking posts. We designed different cleaning 
strategies for posts before and after 21st January 2020.1 For posts before that time (n = 452,035), we firstly used the matching rule 

1 On 20th January 2020, President Xi Jinping gave instructions on the pandemic prevention and control for the first time. On the same day, a 
senior medical scientist Zhong Nanshan first announced the virus was contagious among people. 
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based on the TF-IDF results of posts (n = 28,107) that contained “coronavirus”, “pneumonia” or “COVID-19′′ to get 3246 COVID- 
related messages; we then manually checked all these posts and found only 119 COVID-19 help-seeking posts posted by individuals 
or organizations, which excluded the noises such as news reporting on help-seeking as our research purpose was to examine whether 
the voices of people crying for help could be heard rather than analyzing news reporting about help-seeking. To ensure this strategy 
worked, we again manually checked a random sample (n = 2672) from the 448,789 posts left and found none of them were related to 
COVID-19 help-seeking. For posts after 21st January 2020 (n = 776,427), we conducted a supervised pretrained Bert model with a 
manually-coded sample of 5000 with a sound performance (precision=0.94, recall=0.92, F1=0.93) and recognized 64,127 help- 
seeking posts. We further manually checked a random sample (n = 5000) and found a precision of 0.95. Thus, we got a clean data-
set of original help-seeking posts on Weibo during the COVID-19 outbreak in China (N = 64, 246). 

After identifying related original posts, we collected all their retweets and got 3640,942 retweets, which form the final corpus for 
analysis (N = 3705,188), together with the original posts. 

3.2. Measurements and data analysis 

The measurements of key variables are shown in Table 1. To determine the categories of help-seeking posts, we manually labeled 
the help-seeking categories of 5000 posts sampled from 64,246 original posts and identified nine themes. Then we applied the Bert 
model using annotated posts as a training set with a sound performance (precision=0.77~0.94, recall=0.81~0.96, F1=0.80~0.95, 
please refer to Table 2 for details) to determine the categories of all other help-seeking posts. 

To answer the second research question referring to the relationship between the number of help-seeking posts and the diagnoses 
numbers national wide and in Hubei, we conducted a Granger causality test between these two variables. It helps us to determine if the 
past value of the independent variable has the predictive function for the current value of the dependent variable. 

We then run a logistic regression model with mediation to test research hypotheses, using the "BruceR" package in R (with 5000 
Bootstrap samples). As shown in Table 1, the responses received by help-seeking posts were measured by retweet number and 
comment number. To find out the posts that received assistance eventually, we extracted retweets with the keywords method first (a 
combination of "already" and "thank you") and then checked the results (n = 3979) manually to get the final results (n = 988). 

4. Results 

4.1. Basic description and granger analysis (RQ1 & 2) 

4.1.1. Temporal distribution 
For RQ1a, we found 64,246 original posts seeking help in the dataset, and 15,017 of them were posted in the Super Topic com-

munity. The number of help-seeking posts reached its peak on 5th February 2020. The Super Topic community witnessed the biggest 
volume on 8th February 2020 and posts from other channels peeked on 25th January 2020 (Fig. 2). 

4.1.2. Spatial distribution 
Until 15th March, Hubei (N = 21,860) ranked first among all provinces in terms of the number of help-seeking posts, corresponding 

to its worst status of the epidemic during the outbreak of COVID-19. It is worth mentioning that the second place was occupied by 
Beijing (N = 5042) whose number of confirmed cases ranked only 13th. While Hunan, whose diagnoses ranked 5th place only sent 
1745 posts to seek help (ranked 10th place, see Table 3). 

4.1.3. Content distribution 
We calculated the proportions of each help-seeking type (RQ1c). As we argued, not all help-seeking posts on social media ask for 

hospitalization. The request for hospitalization accounts for 38.2% of all help-seeking posts, followed by prevention supplies requests 
from organizations (19.9%) and daily life assistance (14.3%). The various help-seeking voices deserve to be heard (Fig. 3). 

People started to ask for help with daily life after Wuhan announced to lockdown on 23rd January, same was the help-seeking of 
“prevention method and symptom counselling”. After two days, the need for prevention supplies from both individuals and organi-
zations reached its peaks. The “donation’s transportation” and “prevention supplies request from organizations” were two major help- 
seeking types during the early stage of the COVID-19 outbreak before February. The second main peak of “prevention supplies request 
from organizations” occurs with a sharp increase of “being hospitalized”. The request of “being hospitalized” reached two highest 
volumes on 5th and 8th February respectively, around the days Huoshenshan (4th February) and Leishenshan (8th February) hospitals 
were put in use. It could be inferred that to some extent, the establishment of these two hospitals released the shortage of hospital-
ization resources needed by people. There was a roughly steady upward trend of “other diseases” help-seeking posts all over the time 
until “being hospitalized” fell back on 18th February. The limited medical resources started to incline to other diseases when the 
tremendous tension brought by the COVID-19 outbreak was slightly alleviated. As one of the key ingredients in the treatment of 
COVID-19, the call for plasma started to climb up after 11th February, when more patients were admitted to hospitals (Figs. 4 and 5). 

4.1.4. Relationship between the number of confirmed cases and help-seeking posts (RQ2) 
Before we run the Granger causality test, a Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test (Kwiatkowski et al., 1992) was con-

ducted to assess the stability of the time series. The result of KPSS ensured that after first-order difference processing, the number of 
posts across areas and topics, as well as the number of diagnoses didn’t have a unit root on the 1% level, and thus we had stable time 
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Table 1 
Measures of key variables.   

Dimension Variable Calculation 

Mediators Response Retweet The number of retweets   
Comment The number of comments 

Dependent 
variable 

Assistance Assisted Is there any progress of assistance measured by later expressions on problem-resolving or appreciations (e.g., 
Thanks, Thanks for helping, Thanks a lot, My problem has been resolved, among others) 

Independent 
variables 

Content Theme Nine types of help-seeking content detected using Bert algorithm (see Table 2)   

NegSen The ratio of negative sentiment words calculated with LIWC (Simplified Chinese version)  
Context SuperTopic Whether these posts were sent in super topic community   

Hubei Whether these posts were sent from Hubei province   
Period Divided by 4th Feb., 8th Feb., and 13th Feb.  

Connection Followers Number of the author’s followers   
@ Whether the author mentioned other users using “@”   
V_type Whether the author’s verification status was blue V, verified individual, or not verified user   
V_in_chain Number of verified users in retweet chain  

Table 2 
The Bert model performance on content classification (N = 5000).  

Categories Precision Recall F1 

ask for being hospitalized 94.74% 96.49% 95.60% 
epidemic prevention supplies (organization) 93.71% 92.41% 93.06% 
epidemic prevention supplies (individual) 88.06% 95.16% 91.47% 
daily life assistance 78.79% 81.89% 80.31% 
other diseases 81.25% 89.66% 85.25% 
prevention method and symptom counseling 94.57% 85.31% 89.71% 
transportation of donations 80.00% 84.21% 82.05% 
plasma 77.78% 93.33% 84.85% 
Pets 85.71% 100.00% 92.31%  

Fig. 2. Number of help-seeking posts over time.  

Table 3 
The top 5 provinces that sent the most help-seeking posts.  

Rank Province Number of posts Rank of confirmed cases 

1 Hubei 21,860 1 
2 Beijing 5042 13 
3 Guangdong 4176 2 
4 Zhejiang 2998 4 
5 Henan 2971 3 
… … … … 
10 Hunan 1745 5  
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series. The Granger test result shows that the number of help-seeking posts helped in the prediction of the confirmed cases with a time 
lag of 8 days for both nationwide and Hubei province. Nationally the prevention method and symptom counselling, daily life assistance 
and to be hospitalized can also predict confirmed cases with a time lag of 1, 2, and 3 days respectively. In Hubei, calls for prevention 
supplies from organizations and to be hospitalized can provide information about diagnoses numbers 4 days ahead Table 4. 

In the reverse direction, no Granger causality relationship was found from diagnoses numbers to help-seeking posts. The diagnoses 
numbers helped in the prediction of several help-seeking themes such as other diseases (3 days lag nationally and in Hubei) and plasma 
(4 days nationally and 1 day in Hubei) Table 4. 

Fig. 3. The proportions of each help-seeking category overall.  

Fig. 4. The trend of number of posts in each help-seeking category over time.  

Fig. 5. The trend of number of confirmed cases and help-seeking posts.  
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4.2. Predicting response and assistance (Hypotheses testing) 

The average number of retweets of all help-seeking posts was 58.27, and 22.86 for comments. In total 988 (1.69%) help-seeking 
posts received help at last Table 5. 

4.2.1. Direct influence of content 
For the content dimension, after controlling for all other variables, compared with daily life assistance, the theme "be hospitalized" 

has a significant positive correlation with the retweet (B = 51.360, p = 0.000) (H1.1a) and comment (B = 10.730, p = 0.004) (H1.1b), 
as well as assistance (B = 1.772, p = 0.000) (H1.1c). Another theme associated with medical treatment, “other diseases” receives more 
retweets (B = 34.94, p = 0.029) and are likely to get assistance (B = 1.233, p = 0.000). The theme of “plasma” and "Donation’s 
transportation", however, turned out to be significantly negatively related to the comments received, but have higher odds to receive 
help at last. “Prevention supplies (Organization)” received fewer comments. 

The degree of negative sentiment is positively related with both comments (B = 163.200, p = 0.036) (H1.2b) and assistance (B =
11.260, p = 0.000) (H1.2c), but not retweets (H1.2a). 

4.2.2. Direct influence of context 
Contextually, help-seeking posts from the super topic community received more comments (B = 17.670, p = 0.000) (H2.1b) and 

higher odds of being helped (B = 0.208, p = 0.011) (H2.1c) as expected, but not more retweets (H2.1a). 
Help-seeking posts from Hubei get more retweets (B = 33.510, p = 0.000) (H2.2a) and comments (B = 17.880, p = 0.000) (H2.2b) 

but lower odds to receive actual help (B=− 0.408, p = 0.000) (H2.2c) as expected. 
Compared with posts sent before 3rd February, help-seeking posts from 4th to 7th February received fewer retweets (B=− 49.620, p 

= 0.000) and posts from 8th to 12th received higher odds of being assisted (B = 0.600, p = 0.000), which partly supported H2.3a and 
H2.3c. All three later periods received fewer comments as expected by H2.3b. 

4.2.3. Direct influence of connection 
Follower numbers showed a positive relationship with retweet (B = 4.71E-05, p = 0.000) and comment (B = 2.79E-05, p = 0.000) 

as expected (H3.1a and H3.1b), but couldn’t directly influence the odds of being helped (H3.1c). 
Mentioning others in the posts results in more retweet (B = 19.410, p = 0.000) (H3.2a), but no significant improvement in comment 

(H3.2b) or assistance (H3.2c). 
The results for H3.3 were interesting: posts sent by verified individuals received more retweets and comments but no significant 

increase in the odds of being helped; posts sent by verified organizations received fewer retweets and comments but a significant 
increase in the odds of being helped. 

The verified status of sharers has a significant positive correlation with retweet (B = 251.300, p = 0.000), comment (B = 72.140, p 
= 0.000), and assistance (B = 2.521, p = 0.000) as expected. 

Table 4 
Granger causality analysis of diagnose number and help-seeking posts.  

Independent variable China Hubei  

Min lag F p Min lag F p 

All posts 8 3.71 0.001 8 3.76 0.001 
Daily life assistance 2 7.641 0.001 13 2.132 0.023 
Pet 6 2.629 0.022 10 2.719 0.007 
Prevention supplies (Individual) 12 3.47 0.001 5 2.95 0.016 
Prevention supplies (Organization) 7 3.52 0.002 4 4.26 0.003 
Donation’s transportation  /   /  
Be hospitalized 3 5.31 0.002 4 4.11 0.004 
Plasma 11 2.08 0.030 14 2.19 0.018 
Prevention method and symptom counselling 1 4.27 0.041 9 8.94 0.000 
Other diseases  /  12 2.4 0.014  

Dependent variable China Hubei  
Min lag F p Min lag F p 

All posts  /   /  
Daily life assistance  /  6 2.228 0.048 
Pet 4 2.767 0.032 3 3.475 0.019 
Prevention supplies (Individual)  /   /  
Prevention supplies (Organization)  /   /  
Donation’s transportation  /   /  
Be hospitalized 5 5.855 0.000 12 2.139 0.025 
Plasma 4 7.626 0.000 1 4.052 0.047 
Prevention method and symptom counselling  /  12 2.159 0.024 
Other diseases 3 6.612 0.000 3 18.021 0.000  
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4.2.4. Diffusion as mediators 
We found that retweet number was positively related to actual help received (H4a), while comment number showed no significant 

relationship with the odds of being assisted, rejecting H4b. 
On the content dimension, hospitalization (B = 1.17E-04, p = 0.012) and other diseases (B = 1.24E-04, p = 0.024) showed positive 

indirect effects on assistance mediated by retweet. Contextually, the positive indirect effect from Hubei (B = 7.21E-05, p = 0.010) and 
negative indirect effect during the period of 4th to 7th February (B=− 1.11E-04, p = 0.002) to assistance were mediated by retweet. In 
terms of connection, there were significant positive indirect effects from the verified status of authors (B = 9.50E-05, p = 0.018) and 
sharers (B = 1.19E-03, p = 0.004) to the odds of getting assistance mediated by retweet. So H5a predicting the mediation role of 
retweet was partly supported, while H5b predicting the mediation role of comment was not supported. 

Table 6 

5. Discussion and conclusion 

5.1. Summary 

5.1.1. On aggregate-level analysis results 
Based on a systematic computational analysis of Weibo posts, we answered the first research question regarding the basic statistics 

of help-seeking posts. The data showed that people sent most help-seeking posts on 5th February 2020, and the rank of help-seeking 
post numbers across areas didn’t necessarily align with the number of confirmed cases. After the launch of the COVID-19 Super Topic 
community, it became an important help-seeking space for users on Weibo and the number of posts there had a sharp increase, showing 
the value of building a focused special section for people to post help-seeking requests during large-scale social crises like COVID-19 
pandemic. 

Our study went beyond the myth that hospitalization occupied help-seeking content during the outbreak of COVID-19 by exam-
ining the various types of help-seeking posts. It found that the content of help-seeking posts could be grouping into nine main cate-
gories. Their differential influences on diffusion and assistance in the later analysis also proved the value of examining various types of 
help-seeking. 

For research question 2, a Granger causality relationship from the number of help-seeking posts to the number of diagnoses was 
found with a time lag of 8 days both nationally and in Hubei province. Different types of help-seeking also showed various predict-
ability for epidemic development. Especially, the request for hospitalization could improve the prediction of diagnoses with a time lag 
of 3 days nationally and 4 days in Hubei. Prevention method and symptom counselling could predict diagnoses with a time lag of 1 day 
nationally and 9 days in Hubei. The longer time lag in Hubei possibly reflects the difficulty in being diagnosed at the early stage. 
Comparatively speaking, the power of predictability from epidemic development to help-seeking is weaker. These results suggest that 
the online data of help-seeking posts could be used to forecast the number of diagnoses of COVID-19 and be used as an important 
indicator to monitor other pandemics in the future. 

5.1.2. On 3C model analysis results 
We tested the hypotheses about the influential factors of response and assistance posts received based on the 3C (content-context- 

connection) framework proposed in this study. The results revealed that all three dimensions did show influences on the information 
diffusion and actual assistance received, though their influential directions, paths, and effect sizes vary across different sub- 
dimensions. The differences might come from the different logics behind three dependent variables (retweet, comment, and result) 
as well as their interactions with 3C factors. For example, retweet and comment mainly require and compete for people’s attention 
resources, while actual assistance requires additional medical and social resources. So, the types of resources of help-seeking content 
require, the supply and competition of resources in various contexts, as well as different abilities to connect with resources for 
connection factors, could help understand the various results in terms of 3C’s influences on the retweet, comment, and assistance. 
Furthermore, retweet and comment are different from each other in terms of their visibility as well as the ability to connect help- 

Table 5 
The retweet, comment and assistance help-seeking posts received.   

Number Retweet Comment Assistance   

Max Average Max Average Being helped Ratios of being helped 

Total 58,312 70,663 58.27 27,107 22.86 988 1.69% 
Daily life assistance 8333 11,423 9.15 11,117 10.84 24 0.29% 
Pet 1626 45,867 72.53 3603 11.60 15 0.92% 
Prevention supplies (Individual) 5503 2084 4.27 1708 8.43 12 0.22% 
Prevention supplies (Organization) 11,578 70,663 51.15 18,156 12.19 30 0.26% 
Donation’s transportation 1828 7919 24.38 414 4.23 22 1.20% 
Be hospitalized 22,248 69,960 104.03 27,107 43.51 791 3.56% 
Plasma 1222 12,355 59.82 1044 7.91 27 2.21% 
Prevention method and symptom counselling 1341 2640 5.63 1241 14.70 3 0.22% 
Other diseases 4633 12,421 67.46 2913 15.36 64 1.38% 

Note. We excluded 5934 help-seeking posts (9.2%) fell out of the main categories in this table. 
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Table 6 
Predicting retweet, comment, and assistance on help-seeking posts.    

retweet comment assistance retweet as mediator comment as mediator   

B B B indirect effect LLCI ULCI indirect effect LLCI ULCI  

constant − 17.720  9.225 * − 6.701 ***          
(12.710)  (3.596)  (0.234)         

content Theme (Daily life assistance as baseline)              
Pet 16.230  − 5.355  0.412  4.18E-05  − 5.03E- 

05 
3.19E-04 − 1.18E-05 − 7.69E- 

05 
4.76E- 
06  

(23.480)  (6.644)  (0.345)  (8.17E-05)    (2.20E-05)   
Prevention supplies (Individual) 2.763  − 2.922  − 0.110  5.75E-06  − 9.81E- 

06 
2.92E-05 − 5.20E-06 − 3.73E- 

05 
1.18E- 
06  

(15.430)  (4.366)  (0.358)  (9.51E-06)    (1.05E-05)   
Prevention supplies (Organization) 22.120  − 11.850 ** − 0.514  4.03E-05  7.88E-06 9.53E-05 − 1.85E-05 − 8.63E- 

05 
7.16E- 
06  

(13.530)  (3.829)  (0.296)  (2.16E-05)    (2.67E-05)   
Donation’s transportation 3.608  − 14.650 * 1.423 *** 1.44E-05  − 4.40E- 

05 
1.00E-04 − 5.00E-05 − 2.24E- 

04 
2.00E- 
05  

(23.080)  (6.531)  (0.308)  (3.45E-05)    (7.02E-05)   
Be hospitalized 51.360 *** 10.730 ** 1.772 *** 1.17E-04 * 5.22E-05 2.40E-04 2.09E-05 − 8.18E- 

06 
8.96E- 
05  

(13.270)  (3.755)  (0.220)  (4.65E-05)    (2.46E-05)   
Plasma 4.445  − 16.550 * 1.672 *** 1.97E-05  − 8.61E- 

05 
2.19E-04 − 6.28E-05 − 2.76E- 

04 
2.54E- 
05  

(27.220)  (7.701)  (0.296)  (7.43E-05)    (8.67E-05)   
Prevention method and symptom counselling 6.769  2.746  − 0.075  1.43E-05  − 2.79E- 

06 
5.56E-05 4.95E-06 − 3.15E- 

06 
4.49E- 
05  

(25.710)  (7.275)  (0.616)  (1.37E-05)    (9.49E-06)   
Other diseases 34.940 * − 2.857  1.233 *** 1.24E-04 * 5.20E-05 2.71E-04 − 8.69E-06 − 6.60E- 

05 
2.43E- 
06  

(16.030)  (4.536)  (0.245)  (5.50E-05)    (1.80E-05)   
Negative Sentiment 318.000  163.200 * 11.260 *** 4.46E-04  − 4.45E- 

04 
5.58E-03 1.96E-04 − 2.43E- 

04 
3.07E- 
03  

(275.200)  (77.850)  (2.912)  (1.64E-03)    (1.33E-03)   
context Super topic community 16.300  17.670 *** 0.208 * 3.54E-05  − 1.43E- 

05 
9.18E-05 3.28E-05 − 1.18E- 

05 
1.46E- 
04  

(10.590)  (2.997)  (0.082)  (2.68E-05)    (4.53E-05)   
Hubei 33.510 *** 17.880 *** − 0.408 *** 7.21E-05 * 2.93E-05 1.42E-04 3.29E-05 − 1.65E- 

05 
1.22E- 
04 

(continued on next page) 
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Table 6 (continued )   

retweet comment assistance retweet as mediator comment as mediator   

B B B indirect effect LLCI ULCI indirect effect LLCI ULCI  

(7.968)  (2.254)  (0.072)  (2.80E-05)    (3.79E-05)   
Period (1st Jan.~3rd Feb. as baseline)              
4th ~ 7th Feb. − 49.620 *** − 21.420 *** 0.197  − 1.11E- 

04 
** − 2.07E- 

04 
− 5.74E- 
05 

− 4.12E-05 − 1.74E- 
04 

1.66E- 
05  

(10.340)  (2.926)  (0.113)  (3.64E-05)    (5.53E-05)   
8th ~ 12th Feb. − 20.840  − 22.790 *** 0.600 *** − 5.15E- 

05  
− 1.56E- 
04 

4.05E-06 − 4.82E-05 − 1.95E- 
04 

2.27E- 
05  

(11.290)  (3.193)  (0.112)  (3.99E-05)    (6.05E-05)   
13th Feb. ~ 15th Mar. − 11.170  − 17.180 *** 0.231  − 2.58E- 

05  
− 8.58E- 
05 

1.55E-05 − 3.40E-05 − 1.41E- 
04 

1.47E- 
05  

(11.150)  (3.153)  (0.131)  (2.48E-05)    (4.39E-05)   
connection Follower 4.71E-05 *** 2.79E-05 *** − 1.58E- 

08  
1.02E-10  1.46E-11 2.94E-10 5.20E-11 − 8.27E- 

12 
2.81E- 
10  

(3.04E- 
06)  

(8.61E- 
07)  

(1.49E-08)  (6.68E-11)    (7.11E-11)   

@ 19.410 * 4.685  0.151  4.36E-05  5.74E-06 1.16E-04 8.99E-06 − 4.00E- 
06 

4.75E- 
05  

(8.586)  (2.429)  (0.078)  (2.75E-05)    (1.20E-05)   
V_type              
Verified Individual 44.470 *** 13.210 *** − 0.089  9.50E-05 * 3.63E-05 1.95E-04 2.41E-05 − 1.01E- 

05 
1.11E- 
04  

(9.535)  (2.698)  (0.081)  (4.00E-05)    (3.39E-05)   
Blue V − 99.010 *** − 60.790 *** 1.081 *** − 3.38E- 

04  
− 1.03E- 
03 

− 1.16E- 
05 

− 1.78E-04 − 9.60E- 
04 

2.87E- 
05  

(28.670)  (8.110)  (0.219)  (2.40E-04)    (2.44E-04)   
V_in_chain 251.300 *** 72.140 *** 2.521 *** 1.19E-03 ** 5.95E-04 2.21E-03 2.92E-04 − 1.29E- 

04 
1.20E- 
03  

(11.510)  (3.257)  (0.076)  (4.11E-04)    (3.77E-04)   
mediator retweet     1.44E-04 ***             

(2.34E-05)         
comment     1.24E-04              

(7.94E-05)         

Note. *p< 0.05, **p< 0.01, ***p< 0.001. 
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seekers with help-providers, which could lead to different abilities to facilitate actual assistance. We will discuss these logics in detail. 
For the content dimension, the request for hospitalization received more retweets and comments, and showed a higher chance of 

being helped directly and indirectly (through the mediation of retweet). It is the only type that has all the above influential paths 
among all studied variables. This finding confirms that during the outbreak of COVID-19 hospitalization serves as the most emergent 
request for patients to cry on social media which attracts relatively larger audience attention and the public opinion (especially 
retweet) has been translated into actual assistance. At the same time, "other disease" also showed a positive relationship with retweet 
and assistance, suggesting the possibility that people tend to diffuse and help those crying for life-related problems. The medical 
treatment, which was in extreme shortage during the outbreak of the pandemic, required a priority arrangement, which could be 
influenced by public opinion. The life-related theme of “plasma” was also positively correlated with assistance while negatively 
correlated with comment. This pattern also applied to "donation’s transportation". The possible explanation resides in that request for 
plasma occurred only at the later stage of the COVID-19 outbreak, when the medical recourses were released while attention resources 
declined. The help-seeking on donations transportation was mainly sent by organizations, which could result in fewer supports in the 
form of commenting but more actual help. During crises, on one hand, individuals could be perceived as much more vulnerable 
compared with organizations, and thus people would be more willing to spread the information when faced with help-seeking mes-
sages from individuals; on the other hand, help-seeking messages sent from organizations implied larger group-level demands, which 
could be awarded priority in help-providing. 

As the other dimension of content, the negative sentiment contained in help-seeking posts brings more comments and assistance, 
but not retweets. The expression of negative emotion could imply a severer situation of help-seekers and arouse the perceived urgency 
of the audience, who then offer emotional support in the form of commenting, a more convenient and safer way to respond. 

The super topic community as a cyberspace context brought more comments and a higher possibility of being assisted, which 
confirmed the value of setting a special section for people to cry for help during public crises like the pandemic by platforms, which 
could facilitate more efficient information exchange and bridging between help-providers and the help-seekers. The geographic 
dimension (from Hubei) is positively related to both retweet and comment but negatively correlated with assistance, which proved our 
hypothesis about two different resources required by diffusion and actual help. The results on the influence of temporal factor also 
showed the validity of the same logic: with the help of more medical as well as social resources, help-seeking during the later time was 
more likely to be solved though they received fewer retweets or comments as the attention resources turned out to be more 
competitive. 

In terms of connection dimension, having verified sharers was the only factor showing significant positive direct influences on all 
three variables as well as indirect influence on assistance with the mediation of retweet. The relatively central position in the 
communication network and the higher credibility of verified sharers could help explain this finding. Having more followers brought 
more retweets and comments, which unfortunately couldn’t be translated into the actual helping results. The follower number does not 
guarantee a shorter distance from the resources to the help-seekers. Mentioning others in posts did show a positive correlation with the 
number of retweets while didn’t raise the number of comments or the chance of being helped. A study with interviews of help- 
providers has found that repeated and messy mentions could make the help-providing process less efficient (Chen et al., 2021). 
Interestingly, there is a roughly fair chance between verified individuals and organizations in terms of their influences on diffusion and 
assistance: verified individuals received more retweets and comments and then a higher chance of being helped with the mediation of 
retweet although the verified status couldn’t influence assistance directly; verified organizations received fewer retweets and com-
ments but showed higher chance of being helped. The possible reason explaining the difference between individual and organizational 
help-seeking has been discussed earlier in this section. 

Retweet was positively related to assistance, while comments showed no such impact. The key to getting actual help is to get closer 
to certain resources. Retweet can better facilitate this goal by making the message more visible. Indirect effects through the mediation 
of retweet were found from two themes (hospitalization and other diseases), being sent from Hubei and during 4th and 7th February, as 
well as the verified status of authors and sharers on assistance. So retweet plays an essential role in connecting help-seekers with 
resources in the situation. 

5.2. Importance and contributions 

This study contributes to the existing literature by systematically examining help-seeking on Weibo during the outbreak of COVID- 
19 using computational methods with a large-scale dataset for the first time. It has significant theoretical as well as empirical 
meanings. 

5.2.1 Theoretical. contribution 
The theoretical contribution is as following:  

• This paper analyzes the relationship between help-seeking posts on social media and the epidemic development at the aggregate 
level and explaining the influential factors for diffusion and effect of help-seeking by proposing a 3C framework at the individual 
level, inspired by media affordance framework and HSM model. It has shown that the number of help-seeking posts could become 
an important predictor to forecast the development of the epidemic eight days earlier. It has also proved the effectiveness of 3C 
(content, context, and connection) in determining whether and to what extent the help-seeking crying could be heard. 
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• Furthermore, this study goes beyond the extant studies focusing only on diffusion and examines the relationship between 3C and 
effect (being helped) with diffusion factors (retweet) as mediator for the first time. This model could thus help better understand the 
diffusion and effectiveness of help-seeking messages on social media and could be further developed in later studies. 

5.2.2. Empirical contribution 
Empirically, we summarize the contribution as following:  

• This study collected a rare complete dataset of help-seeking posts and re-posts with N = 3705,188 across the whole period of the 
COVID-19 outbreak to make a clear mapping of help-seeking during the pandemic, which has never been done by any previous 
studies. The data also enabled us to generate robust results for the testing of the theoretical model.  

• It also sheds light on the communicative dynamics of various types of help-seeking, including but not limited to the request for 
hospitalization. It could help the authorities to better understand the various help-seeking during the pandemic and work out 
possible solutions to meet these needs with careful balance. 

5.3. Implications for global recovery 

With the findings of this study, there are several implications for global recovery. First, the help-seeking crying is not limited to 
hospitalization, which reminds us that we should pay attention to other themes of help-seeking to avoid possible secondary crises. 
Second, the predictability between help-seeking messages and diagnoses numbers suggests a possible way to monitor another outbreak 
of pandemic as well as prepare resources ahead of the crisis. Third, results from the 3C framework confirmed the mediation role of 
retweeting in generating a higher chance of actual assistance, inspiring common people how to voice for help more efficiently in the 
pandemic. Last but not least, platform actions such as setting the super topic community were proven to be beneficial for receiving 
actual help, indicating the important role of digital platforms and their useful strategies could be further applied during global 
recovery. 

5.4. Limitation and future studies 

First, the measurement of assistance relied on the updated information provided by users. And thus, for those who didn’t share the 
assistance received, the result could not be traced by the dataset we used. Second, we assumed the retweeting behavior conducted by 
human beings in this study, while in fact, there could be noises brought by automated algorithms on Weibo. Future studies could use 
other assistance data as a complement and examine the possible retweeting algorithms during the diffusion process. 

5.5. Conclusion 

By investigating the response and assistance received by help-seeking posts during the period of COVID-19, we showed a clear 
picture of the need of people during a public health crisis, which is of great reference value for the prevention of social crises brought by 
pandemics global wide. At the same time, we proposed a 3C framework regarding the influencing factors of response and assistance 
those help-seeking posts could receive, which also leads to a guide for the better management and social governance of help-providing. 
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