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As the fast development of wearable devices and Internet of things technologies, real-time
monitoring of ECG signals is quite critical for cardiovascular diseases. However, dynamic
ECG signals recorded in free-living conditions suffered from extremely serious noise
pollution. Presently, most algorithms for ECG signal evaluation were designed to divide
signals into acceptable and unacceptable. Such classifications were not enough for real-
time cardiovascular disease monitoring. In the study, a wearable ECG quality database
with 50,085 recordings was built, including A/B/C (or high quality/medium quality/low
quality) three quality grades (A: high quality signals can be used for CVD detection; B: slight
contaminated signals can be used for heart rate extracting; C: heavily polluted signals need
to be abandoned). A new SQA classification method based on a three-layer wavelet
scattering network and transfer learning LSTM was proposed in this study, which can
extract more systematic and comprehensive characteristics by analyzing the signals
thoroughly and deeply. Experimental results (mACC = 98.56%, mF1 = 98.55%, SeA =
97.90%, SeB = 98.16%, SeC = 99.60%, +PA = 98.52%, +PB = 97.60%, +PC = 99.54%,
F1A = 98.20%, F1B = 97.90%, F1C = 99.60%) and real data validations proved that this
proposed method showed the high accuracy, robustness, and computationally efficiency.
It has the ability to evaluate the long-term dynamic ECG signal quality. It is advantageous to
promoting cardiovascular disease monitoring by removing contaminating signals and
selecting high-quality signal segments for further analysis.

Keywords: dynamic electrocardiogram, signal-quality assessment, wavelet scattering, signal-quality index, long
short-term memory network

INTRODUCTION

Cardiovascular diseases (CVDs) are the most common non-communicable diseases globally,
responsible for an estimated 17.8 million deaths in 2017, accounting for 31% of all global
deaths, of which more than three quarters were in low income and middle-income countries
(Liu et al., 2018; Roth et al., 2018). Therefore, early continuous monitoring and prevention for CVDs
are very urgent. The recent commercial availability of wearable devices and Internet of things (IoT)
technologies with cardiovascular disease detection capabilities has revolutionized the diagnosis and
management of these commonmedical issues, as it has placed the power of arrhythmia detection into

Edited by:
Jichao Zhao,

The University of Auckland,
New Zealand

Reviewed by:
Lakhan Dev Sharma,

VIT-AP University, India
Óscar Barquero-Pérez,

Rey Juan Carlos University, Spain

*Correspondence:
Shengxiang Xia

xias@sdjzu.edu.cn
Chengyu Liu

chengyu@seu.edu.cn

Specialty section:
This article was submitted to

Computational Physiology and
Medicine,

a section of the journal
Frontiers in Physiology

Received: 27 March 2022
Accepted: 30 May 2022
Published: 30 June 2022

Citation:
Liu F, Xia S, Wei S, Chen L, Ren Y,
Ren X, Xu Z, Ai S and Liu C (2022)
Wearable Electrocardiogram Quality

Assessment Using Wavelet Scattering
and LSTM.

Front. Physiol. 13:905447.
doi: 10.3389/fphys.2022.905447

Frontiers in Physiology | www.frontiersin.org June 2022 | Volume 13 | Article 9054471

ORIGINAL RESEARCH
published: 30 June 2022

doi: 10.3389/fphys.2022.905447

http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2022.905447&domain=pdf&date_stamp=2022-06-30
https://www.frontiersin.org/articles/10.3389/fphys.2022.905447/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.905447/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.905447/full
http://creativecommons.org/licenses/by/4.0/
mailto:xias@sdjzu.edu.cn
mailto:chengyu@seu.edu.cn
https://doi.org/10.3389/fphys.2022.905447
https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2022.905447


the hands of the patient (Liu et al., 2019b). However, the dynamic
long-term ECG signals suffer from extremely serious noise
pollution due to the dynamic long-term unsupervised free-

living monitoring environment (Huerta et al., 2019). A recent
study of 100 patients undergoing cardioversion for atrial
fibrillation showed that 34% of wearable devices’ ECG

FIGURE 1 | Flowchart of the proposed method.
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recordings were categorized as “unclassified” by the device
algorithm due to unclear reasons or baseline artifacts and low
amplitude recordings (Kaptoge et al., 2019). Poor
electrocardiographic signal quality can result in
misinterpretation and inappropriate results, hazard the correct
diagnosis information (Andrea et al., 2018), increases the risk of
false alerts (Liu et al., 2011), which may lead to unnecessary
medical referrals and testing (Ip, 2019), and increase the
workload of physicians (Zhao and Zhang, 2018).
Consequently, it is quite urgent to evaluate the quality of
wearable dynamic ECG signals, to eliminate signals with
serious noise pollution, to distinguish between clean signals
that can be used for disease diagnosis and mildly
contaminated signals that can only be used for heart rate
extraction, which can effectively reduce false alarm and avoid
interference with CVD diagnosis (Xu et al., 2021).

The quality evaluation of wearable dynamic ECG signals has
aroused the researchers’ extensive attention (Satija et al., 2018; Liu
et al., 2019a; Huerta et al., 2019; Liu F. et al., 2020). As early as in
2011, the PhysioNet Cardiology Challenge addressed the issue of
developing an efficient algorithm being able to run in real-time on
a mobile phone, which can be able to indicate within a few
seconds, while the patient is still present, if the ECG is of adequate
quality for interpretation, or if another recording should be made
(Silva et al., 2011). From then on, many wearable ECG signal-
quality assessment (SQA) methods have been developed, and a
variety of signal-quality indexes (SQI) have been explored based
on the extraction of statistical, morphological, nonlinear, or time-
frequency domain features etc. from the signals (Smital et al.,
2020). For instance, Li et al. (2008) proposed a bSQI index based
on the principle that different R-wave detectors should be nearly
the same for clean ECG signals, while they should have different
results for ECG signals polluted by noises, and got a good grade in
the 2011 PhysioNet/CinC Challenge (Clifford and Moody, 2012).
Based on this index, Liu et al. (2018) proposed the generalized
bSQI index, generalized the two QRS detector–based bSQI to
multiple QRS detector–based bSQI, and mainly studied the
effects of type and number of R wave detectors on signal-
quality assessment performances. Smital et al. (2020) proposed
continuous signal-to-noise ratio curve using the time-frequency
domain approach, including the Wavelet Wiener Filtering
method and short-time Fourier transform frequency approach,
to estimate real-time quality assessment of long-term ECG signals
recorded by wearables in free-living conditions. He et al. (2020)

proposed a fuzzy comprehensive evaluation algorithm based on
characteristics of ECG waveform and each band, to
comprehensively evaluate the quality of ECG signals.

However, existing SQA methods highly demand robust
methods for accurate and reliable detection and measurement
of morphological and RR-interval features from noise-free and
noisy ECG signals. Although the ECGmorphology feature–based
methods have shown promising results in noise-free ECG
recordings, accuracy and robustness of QRS complex detection
and waveform delineation methods are significantly degraded in
the presence of severe muscle artifacts and other external noise
(Satija et al., 2017). Also, most SQA methods graded the dynamic
ECG signal quality into two groups: acceptable versus
unacceptable (or good versus bad). In fact, in some wearable
ECG signals only R wave could be detected, other waves such as P
or ST were drowned out by the noise (Xu et al., 2021). These
signals cannot be used for some CVD detection, but they also
cannot be abandoned as heart rate information can be obtained.
Therefore, these signals could not be simply divided into
acceptable or unacceptable. In this study, a wearable ECG
quality database with 50,085 recordings was built, which
included A/B/C (or high quality/medium quality/low quality)
three quality grades (A: high-quality signals can be used for CVD
detection; B: slightly contaminated signals can be used for heart
rate extracting; C: heavily polluted signals need to be abandoned).
The research has revealed that traditional indexes merely based
on morphological, nonlinear, or time-frequency domain features
did not perform well on this database, as class B signals were
easily confused with class A signals. It is essential to extract more
systematic and comprehensive characteristics by analyzing the
signals thoroughly and deeply.

The wavelet scattering algorithm, proposed by Mallat (2012),
Bruna and Mallat (2013), and Anden and Mallat (2014) using the
deep convolutional network architecture, iterated over wavelet
convolution, nonlinear modulus, and averaging operators to
compute higher-order scattering coefficients, which can build
the translation invariant, stable and informative signal
representation. The wavelet transform method provided
stability under the action of small diffeomorphism, while the
nonlinear operation and the integration over time give translation
invariance (Tang et al., 2015). Cascading wavelet transforms
allowed the recovery of high frequencies lost when averaging
the absolute values of coefficients of previous wavelet transforms
(Destouet et al., 2021). These preprocessing methods provided an

TABLE 1 | Five signal quality scores for the 10-s ECG segments.

Score Description for signal
quality scoring

1 ECGs have a clear QRS complex and T wave. Baseline wander does not influence the identification for QRS.
0.75 Transient high amplitude impulse exists, but not more than three episodes. The majority of QRS complexes can be visually

clearly identified.
0.5 Both large baseline wander and transient high amplitude impulse exist. It is challenging to visually clearly identify the QRS

complexes in a 2–3 s time window.
0.25 More serious lager noises exist, such as strong Gaussian noise and signal saturation and others. In these noise episodes, it is

impossible to identify the QRS complex. But at least 4–5 s continuous identifiable heart beats are visible.
0 Strong noises occupy in the more than 5 s episode. It is very hard to identify the heart beat for the most signal.
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in-depth analysis of signals. First-order scattering coefficients
characterize persistent phenomena such as tendency and
envelope, while second-order scattering coefficients
characterize transient phenomena such as shock signals and
amplitude modulation (Anden and Mallat, 2014). The wavelet
scattering method has been wildly used for acoustic scene
classification (Li et al., 2019), speech recognition (Fousek
et al., 2015; Joy et al., 2020), and heart sound classification
(Mei et al., 2021), which yielded efficient representations for
audio processing. However, wavelet scattering currently was
seldom used in ECG analysis and application. Sepúlveda et al.
(2021)extracted features of the signal at different time scales using
the wavelet scattering algorithm for emotion recognition. Also,
Liu Z. et al. (2020) employed wavelet scattering transform for
ECG beat classification.

In this study, in order to address the classification issue of A/B/
C three quality levels wearable ECG signals, a new SQA
classification model was proposed based on a three-layer
wavelet scattering network and transfer learning long short-
term memory (LSTM) method. As the result shows, it
performed very well on the quality assessment of wearable
dynamic ECGs.

MATERIALS AND METHODS

Figure 1 displays the flowchart of the proposed method. It first
established a wearable ECG quality database with
50,085 recordings from two public databases. Then, a quality
pre-assessment was established, to delete the lead-fall signals and
pure noise, and to avoid the adverse impact of invalid samples on
the training models. Also then, the scattering characteristic
matrix was extracted by applying a three-layer wavelet
scattering network. Finally, a bi-directional long short-term
memory (Bi-LSTM) network was employed to train the
classification model.

Database
A total of 50,085 recordings of wearable ECGs were used in this
study, which were from the Brno University of Technology ECG
Quality Database (BUTQDB) (Nemcova et al., 2020) and the
2011 PhysioNet/CinC Challenge (Goldberger et al., 2000; Silva
et al., 2011). In the Brno University of Technology ECG Quality
Database, the data comprise 18 long-term recordings of single-
lead ECGs, collected from 15 subjects (9 females, six males) aged
between 21 and 83 years. The signals are longer than 24 h which
were detected using the Bittium Faros 180 device (mobile ECG
recorder) under free-living conditions. All patients on the
datasets did not have any diagnostics. The database contains
signal-quality labels for partly data provided by three ECG
experts, as well as the consensus of these experts, who
grouped the signals into three quality classes.

Class A (high quality): all significant waveforms (P\QRS\ST\T
waves) are clearly visible and the onsets and offsets of these
waveforms can be detected reliably. The recording with no
obvious noise can be used for the diagnosis of cardiovascular
disease.

Class B (medium quality): the noise level is increased and
significant points in the ECG are unclear (for example, PR
interval and/or QRS duration cannot be measured reliably),
but QRS complexes are clearly visible and the signal enables
reliable QRS detection. Heart rate can be measured correctly.

Class C (low quality): QRS complexes cannot be detected
reliably and the signal is unsuitable for any analysis. Heart rate
cannot bemeasured correctly. These signals will interfere with the
diagnosis of the cardiovascular disease and need to be removed.

In this study, the annotated recordings and segments have
been divided into many fragments of unequal length based on the
signal-quality labels provided by ECG experts. Each fragment has
an independent label. Also, we segmented the annotated
fragments into 10-s fragments with no overlap. Also, a sample
of 10-s is the input data to the classificationmodel. The number of
class A is 11,708, class B is 7,860, and class C is only 657. It was
obvious that data distribution was unbalanced. As we know,
imbalanced classes will greatly reduce the generalization ability of
the classification model (Clifford et al., 2012). Balancing the
database classes can overcome this problem. In this study, we
balanced the dataset by expanding the class C data using two
ways: one is importing same class data from other databases, and
the other is adding noise to clean data.

A total of 1,000 recordings of standard 12-lead ECGs were
provided by the 2011 PhysioNet/CinC Challenge (Silva et al.,
2011). In 1,000 12-lead ECGs, 773 were labeled as “acceptable,”
225 were “unacceptable,” and two were “intermediate.” Each
signal had a length of 10 s. All patients on the datasets did not
have any diagnostics. In Liu et al. (2018), every single channel of
ECGs had been scored and re-labeled by five researchers, and a
total of 9,941 acceptable and a total of 2,059 unacceptable 10-s
ECG segments were obtained. In this study, based on the scores in
the Liu et al. (2018) and Liu et al. (2019b), we annotated all the
leads (10 s segments) individually. For every single channel of
ECGs, five scores Si, i � 1/5 were given by five researchers as
presented in Table 1. Also, the average score �S(�S � 1

5∑5
i�1Si) was

used as a threshold. The signals were re-labeled as “class A” if it
was higher than 0.75, as “class B” if it was higher than 0.25 and
lower than 0.75. Otherwise, the signal was labeled as “class C”. We
obtained a total of 4,455 “class A,” a total of 5,486 “class B,” and a
total of 2,059 “class C” 10-s ECG segments.

If all signals from these two databases were used together
simply, the number of class A would be 16,163, class B would be
13,346, and class C would be only 2,716. It was obvious that data
distribution was also extremely unbalanced. In this way, class B
7860 signals from the Brno University of Technology ECG
Quality Database were employed to expand the class C data
by adding noise from the PhysioNet noise stress test database
(NSTDB) (Moody et al., 1984). Also, 10,000 recordings chosen
randomly form class A were also used to expand the class B
database (3,000) and class C database (7,000) by adding noise
from NSTDB, for class B; the signal-to-noise ratio (SNR) was
equal to 10db, for class C was -10bd. In the NSTDB database,
three types of noise were exiting, record bw contains baseline
wander noise, record em contains electrode motion artifact with a
significant amount of baseline wander and muscle noise as well,
and record ma contains mainly muscle noise (Clifford et al.,
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2012). Because the baseline wander (bw) has little effect on signal
quality, Gaussian noises were added to this type of noise to
generate new noisy records gbw. Table 2 shows the details of
dynamic ECG quality assessment database composition.

Signal-Quality Pre-assessment
Signals from different databases need to be preprocessed. First,
each ECG signal was down-sampled to 250 Hz. Then, the
min–max standardization method was used to map the
original ECG signal data to [0–1]. Lead fall is very common in
wearable dynamic ECG signals. Lead fall detection was an
important way to decrease data storage costs and computing
overhead for wearable devices. Figure 2 shows several typical
cases of lead-fall signals. In this study, if one ECG signal was
present with a constant voltage of more than 80% of the
recording, it was defined as lead falling. Occasionally, detached
electrodes were adhered to clothing and received Gaussian noise
signals. If the signal was pure noise, it was needed to be
eliminated. Based on the spectrum range of ECG signal, that
is, 0–40 Hz, if the ratio of power spectrum energy of the signal in
the range of 0–40 Hz to the total energy is less than 30%, it
indicates that the main component of the signal is not the ECG
signal but the noise signal, which can be directly discarded. By
pre-assessment, 1,029 lead off and pure noise signals were
eliminated, which belong to the class C. The calculation
formula is as follows:

MPSQI � ∫40Hz

0Hz
p(f)df

∫500Hz

0Hz
p(f)df (1)

PNSQI � { 1 pure noise if MPSQI< 30%
0 otherwise

. (2)

Wavelet Scattering Analysis
The wavelet scattering network has the characteristics of
translation invariance, deformation stability, and high
frequency preservation (Bruna and Mallat, 2013), and it is
very sensitive to the deformation of wearable dynamic ECG
signals. In this study, the scale function ϕI and Morlet wavelet
function ψλ were employed to construct a three-layer wavelet
scattering network. Through this network, ECG signals generate
scattering coefficients of order 0, 1, and 2, which can cover the

whole frequency domain of the signal. The network constructing
steps are as follows:

1) ECG signal X(t) was convoluted with the scale function ϕI to
obtain the 0-order wavelet scattering coefficient S0.

S0X(t) � X(t)pϕI (3)

2) ECG signal X(t) were convoluted with the first-order wavelet
functions, ψλ1,i

, and the first-order scattering propagation
operators Uλ1,i were generated by nonlinear modulus
operation.

U λ1,i �
∣∣∣∣∣X(t)pψλ1,i

∣∣∣∣∣, i � 1/n. (4)

3) The first-order wavelet scattering coefficients S1,i are obtained
by the convolution of propagatorsUλ1,i and scaling function ϕI.

S1,iX(t) �
∣∣∣∣∣X(t)pψλ1,i

∣∣∣∣∣pϕI , i � 1/n. (5)

4) The first-order scattering propagator Uλ1,i were convoluted
with the second-order wavelet functions ψλ2,j

, and the second-
order scattering propagators Uλ2,i,j were generated by the
nonlinear modulus operation.

U λ2,i,j �
∣∣∣∣∣∣∣∣∣∣X(t)pψλ1,i

∣∣∣∣∣pψλ2,j

∣∣∣∣∣, i � 1/n, j � 1/m. (6)

5) The second-order wavelet scattering coefficients S2,i,j are
obtained by the convolution of the second-order scattering
propagators Uλ2,i,j and scaling function ϕI.

S2,i,jX(t) �
∣∣∣∣∣∣∣∣∣∣X(t)pψλ1,i

∣∣∣∣∣pψλ2,j

∣∣∣∣∣pϕI , i � 1/n, j � 1/m. (7)
The scattering network can contain more than three layers, but

in practice, energy is dissipated with each iteration. Therefore, in
this study, three layers were employed. The zero-order wavelet
scattering coefficient S0 mainly average the input ECG signal. The
first-order wavelet scattering coefficient S1 captures details lost in
the first step, similar to the scale-invariant feature transformation
function. The second-order wavelet scattering coefficient S2
provides supplementary information that improves
classification. The scattering characteristic matrix is composed
of these three-layer scattering coefficients S0, S1, S2. Figure 3

TABLE 2 | Dynamic ECG quality assessment database composition.

Quality class # Record Source Sampling frequency (Hz) Record length (second)

A 16,163 11,708 BUTQDB 1,000 10
4,455 2011 PhysioNet/CinC 500 10

B 16,346 7,860 BUTQDB 1,000 10
5,486 2011 PhysioNet/CinC 500 10
3,000 Class A signal set randomly + NSTDB — 10

C 17,576 657 BUTQDB 1,000 10
2,059 2011 PhysioNet/CinC 500 10
7,860 Class B signal form BUTQDB + NSTDB — 10
7,000 Class A signal set randomly + NSTDB — 10

Total 50,085 — 250 10
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displayed the three-layer wavelet scattering network, and three
classes of signals.

Figure 4(A) shows that time-domain plots of the scale function
ϕI and Morlet wavelet function ψλ were employed in the study.
Invariance scale I in the scale function needs to be confirmed based
on the length of data and sampling frequency. A total of 41 first-
order wavelet functions and 7 second-order wavelet functions were
used to build this wavelet scattering network, as shown in Figures 4
(C) and (D). Also, Figure 4 (B) described the Littlewood–Paley
sums for these scattering filter banks. Wavelet scattering networks
could automatically extract feature extraction and could also
reduce the signal dimension. The scattering characteristic matrix
with dimension 81 − by − 20 was generated by this wavelet
scattering network for one ECG signal with a length of
2,500 samples. For scattering coefficients of order 0, an input
signal was first averaged using the scale function, which was the

first matrix 1 × 20. For scattering coefficients of order 1, performing
a continuous wavelet on the input signal yield a set of scalogram
coefficients. Also, a modulus was applied to these coefficients and
then the outputs were filtered with the wavelet low-pass filter
yielding a set of order-1 scattering coefficients. It was the second
matrix 41 × 20. For scattering coefficients of order 2, the same
process was applied to the scalogram coefficients to obtain the third
matrix 39 × 20. These three matrixes formed a scattering
characteristic matrix with a dimension of 81 × 20. The columns
(20) can be considered as the time dimension and 81 can be
considered as the scale dimension. But this time dimension was
after processed by average operation. Also, this scale dimension
was also after processed by nonlinear modulus and averaging
operators. It was different from the time-frequency map
generated by the wavelet transform. A long short-term memory
(LSTM) classifier with ADAM solver was used for classification.

FIGURE 2 | Typical cases of lead-fall signals.
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EVALUATION METHOD

The evaluation indexes used in this study are sensitivity (Se),
precision (+P), comprehensive index F1measure for A\B\C three
quality grades, and modified accuracy (mACC). Se is the
proportion of a certain class that has correctly predicted the
total number of all real classes in the test dataset, including
SeA, SeB, SeC . +P is the proportion of the certain class that has
correctly predicted the total number of predicted to be this class
in the test set, including +PA,+PB,+PC. F1 measure includes
F1A, F1B, F1C for class A/B/C, respectively. mF1 is an average
value of these three indexes.

F1A � 2 × TNA

NA + TA
, F1B � 2 × TNB

NB + TB
, F1C � 2 × TNC

NC + TC
, (8)

mF1 � 1
3
(F1A + F1B + F1C), (9)

mACC � TNA + TNB + TNC

N(the number of all the samples in the test set). (10)

where TNA, TNB, and TNC are the number of signals accurately
predicted as classes A, B, and C, respectively. NA, NB, and NC are
the number of all real class A, B, and C signals in the test set,
respectively. TA, TB, and TC are the number of all predicted to be
class A, B, and C signals in the test set, respectively.

Classification Model
The total number of signals in the database was 50,085. By pre-
assessment, 1,029 lead-off and pure noise signals were eliminated.
Remaining 49,056 signals were used to study the classification
performance of the wavelet scattering network. In this study, a bi-
directional long short-termmemory (Bi-LSTM) network with the
adaptive moment estimation (ADAM) solver was employed to
train the classification model. The maximum number of epochs
was 1,000. To reduce the amount of padding in the mini-batches,
choose a mini-batch size of 490. The 10-fold cross-validation was
employed to evaluate the classification performance of the model.
All the segments were randomly divided into 10 groups. Also, the
number of signals for each fold was 4,905.

FIGURE 3 | Three-layer wavelet scattering network.
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Real-Time Validation
For real-time SQA performance analysis, the reliability of the
whole wavelet scattering network method on real wearable
dynamic ECG signals was tested. A Lenovo H3 dynamic ECG
device was used for this experiment. Figure 5 shows the
schematic diagram of device wearing. There were 60 subjects
(24 females, 36 males) aged between 19 and 24 years in this
experiment. For each subject, a 10-min duration of dynamic ECG
signals was recorded under different physical activity conditions.
The subjects wearing Lenovo H3 dynamic ECG devices were
asked to perform different activities for 10-min duration,
including sitting, walking, jogging, sitting, running, sitting,
jumping, and sitting. In order to eliminate the interaction
between two different physical activities, the subject was asked
to sit and rest after strenuous exercise, such as running and
jumping. The continuous wearable ECG signals collected by the

Lenovo H3 device were transmitted to the phone via Bluetooth.
The ECG signal was segmented with a frame length of 10 s and a
hop-size of 1 s. The proposed wavelet scattering network SQA
classifier evaluated the quality of the whole signal. The scattering
characteristic matrix of the segment signals was generated by the
proposed three-layer wavelet scattering network. A classification
model was trained by all the signals (a total of 49,056) in the
constructed database. By this classifier, the segmented signal was
classified into different quality levels.

RESULT

Tables 3 shows the confusion matrices of the classification results
for an independent test set, and table 4 displays 11 evaluation
indexes (mACC,mF1, SeA, SeB, SeC,+PA,+PB,+PC, F1A, F1B, F1C)

FIGURE 4 | (A) Time-domain plots of the scale function andMorlet wavelet function; (B) Littlewood–Paley sums; (C) 41 first-order wavelet functions; (D) 7 second-
order wavelet functions.

FIGURE 5 | Schematic diagram of device wearing.
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of the average classification results for 10 cross-validation. As it
turns out, the classification performance of the wavelet
scattering network classifier was very great. The mean values
of 11 evaluation indexes were nearly all greater than 98%
(mACC = 98.56%, mF1 = 98.55%, SeA = 97.90%, SeB =
98.16%, SeC = 99.60%, +PA = 98.52%, +PB = 97.60%, +PC =
99.54%, F1A = 98.20%, F1B = 97.90%, F1C = 99.60%), only
97.90% for SeAand F1B, 97.6% for +PB. Particularly for class
C, SeC,+PC, F1C were all greater than 99%.

For classification performance comparisons, 27 typical SQA
methods were selected (picaSQI (Li et al., 2014), tSQI (Liu F. et al.,
2020), kSQI (Clifford et al., 2012), ELZ_compl_SQI (Zhang et al.,
2014), sSQI (Clifford et al., 2012), bSQI_4 (Liu et al., 2018),
DisEn_SQI (Li et al., 2015), pSQI (Li et al., 2008), bsSQI (Li et al.,
2014), iSQI (Liu et al., 2019b), basSQI (Li et al., 2014), ApEn_SQI
(Pincus et al., 1991), bSQI_2 (Li et al., 2008), HpSQI (Liu F. et al.,
2020), FuzzyEn_SQI (Di Marco et al., 2012), SampEn_SQI (Chen
et al., 2009), SDN_SQI (Everss-Villalba et al., 2017), eSQI (Li
et al., 2014), MSQI (Tobon Vallejo et al., 2014), MpSQI, LpSQI
(Liu F. et al., 2020), rsdSQI (Li et al., 2014), purSQI (Nemati et al.,
2010), pcaSQI (Behar et al., 2013), PLI_SQI (Everss-Villalba et al.,
2017), LZ_compl_SQI (Zhang et al., 2016), and hfSQI (Li et al.,
2014)). These SQA methods were mainly based on the SQI
indexes extracted from the time domain, frequency domain
features, QRS waves, nonlinear characteristic, and others. The
support vector machine (SVM) classifier was employed to train
the classification model. As shown in Table 4, the classification
accuracy of multi SQIs for 10-fold cross-validation was 85.33%.

Considering the overfitting influence of deep learning, cross-
database validation was carried out to verify the generalization
ability of this proposed method. All signals from BUTQDB were
used as training data, while all signals from the 2011 PhysioNet/
CinC were used as testing data, and vice versa, all signals from the
2011 PhysioNet/CinC were used as training data, while all signals
from BUTQDB were used as testing data. Table 4 also displays
the results of cross-database validation. For these two classifiers,
classification accuracies were all greater than 80%. It was not as
good as 10-fold cross-validation. The classification accuracy of
multi SQIs for cross-database validation was about 75%.

DISCUSSION

In this study, we proposed a new SQA classification method based
on a three-layer wavelet scattering network and built a wearable

ECG quality database with 50,085 recordings for A/B/C three
quality levels. The proposed SQA classifier had an excellent
performance on this database (mACC � 98.56%,mF1 � 98.55%)
for 10 cross-validation after all signals mixing. Particularly for class
C signals, the proposed approach worked very well and the
evaluation indexes were all greater than 99%. For class A and B
signals, the results were slightly worse, but all greater than 97%. The
wavelet scattering network used the deep convolution network
architecture, but filter parameters were predefined. In this study,
only the influence of the invariance scale was considered.
Meanwhile, for performance comparisons, 27 typical SQA
methods were selected to test the performance of this new
database. Considering the overfitting influence of deep learning,
cross-database validation and real-time validation were also carried
out. The classification performance of cross-database validation
was also admissible (mACC,mF1 ≥ 80%).

Influence of Invariance Scale
In this study, the proposed three-layer wavelet scattering network
was a deep learning framework which could extract
complementary compact information automatically. The
wavelet scattering network used the deep convolutional
network architecture iterates over wavelet convolution,
nonlinear modulus, and averaging (pooling) operators to
compute higher-order scattering coefficients, which build
translation invariant, stable, and informative signal
representations. But the filters of the wavelet scattering
network were predefined Morlet wavelets (Bruna and Mallat,
2013), which did not need to be learned from data. The Morlet
wavelets were a localized waveform, having a better frequency
resolution and stability to deformations, which could impose the
separation of the different quality signals. The nonlinear modulus
propagator recombines real and imaginary parts of complex
wavelet coefficients, which could keep the low frequency
averaging and obtain the translation invariant representation.
Although the modulus operator removed the complex phase and
lost information about the high frequencies, it kept the temporal
variation of the multiscale envelopes. Also, the high frequencies
information lost by the pooling can be recovered as wavelet
coefficients in the next layers as the wavelet transform was a
redundant representation. High order scattering coefficients
could characterize transient phenomena of the different noises
from free living. To recover this high-frequency information, a
new wavelet transform was implemented to the signal in the next
layers before the nonlinear modulus and pooling were performed.

The invariance scale was also termed as the interval of time-
shift invariance, which was defined by the size of the time
averaging window. The influence of this parameter was also
considered in this study. Also, the scattering coefficients were
computed at scales I � 1s, 2s,/8s, 9s, 10s. Figure 6 displayed the
classification results. As shown in Figure 6, the invariance scale I
changing had less influence on the accuracy. All 11 evaluating
indexes were above 93%. But obviously, when the invariance scale
was set to be 2s, the classification performance was best. The scale
I controlled the amount of translation invariance. When it was
too small, noises produced by gross movements, such as severe
drifting baselines, would miss some. When it was too large, the

TABLE 3 | Confusion matrices of the classification results for an independent
test set.

Confusion
matrix

Pred Sensitivity (Se)

A B C

Actual A 1,578 37 1 97.65%
B 23 1,597 8 98.10%
C 2 8 1,645 99.40%

Precision (+P) 98.44% 97.26% 99.46% 98.39%
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TABLE 4 | Classified results of 27 SQI-based SVM classifiers and proposed method.

SQA method SeA/% SeB/% SeC/% +PA/% +PB/% +PC/% F1A/% F1B/% F1C/% mF1/% mAcc/%

27 SQIs
+ SVM

10-fold cross-
validation

87.79 ± 0.97 72.75 ± 1.47 96.06 ± 0.51 77.9 ± 1.09 83.17 ± 0.76 96.2 ± 0.46 82.52 ± 0.69 77.6 ± 0.69 96.1 ± 0.53 85.4 ± 0.44 85.33 ± 0.34

Cross database
validation, BUTQDB
signals as training
data, 2011 PhysioNet/
CinC signals as testing
data

61.06 ± 0.45 74.26 ± 0.61 90.74 ± 0.39 65.46 ± 0.87 68.47 ± 0.44 94.38 ± 0.56 63.18 ± 1.02 71.25 ± 0.98 92.53 ± 0.65 75.65 ± 0.33 75.06 ± 0.25

Cross database
validation,
2011 PhysioNet/CinC
signals as training
data, BUTQDB signals
as testing data

63.48 ± 0.69 65.75 ± 0.94 98.03 ± 0.26 75.22 ± 0.47 62.06 ± 0.68 90.62 ± 0.67 68.85 ± 0.81 63.85 ± 0.78 94.18 ± 0.31 75.63 ± 0.84 77.65 ± 0.41

Wavelet
scattering
+ LSTM

10-fold cross
validation

97.90 ± 0.54 98.16 ± 0.58 99.60 ± 0.39 98.52 ± 0.81 97.60 ± 0.94 99.54 ± 0.16 98.20 ± 0.85 97.90 ± 0.84 99.60 ± 0.29 98.55 ± 0.40 98.56 ± 0.39

Cross database
validation, BUTQDB
signals as training
data, 2011 PhysioNet/
CinC signals as testing
data

79.26 ± 1.50 83.32 ± 0.84 92.33 ± 0.67 80.38 ± 0.77 82.17 ± 1.39 92.82 ± 0.92 79.81 ± 1.01 82.74 ± 1.39 92.58 ± 0.87 85.04 ± 1.48 85.32 ± 0.99

Cross database
validation,
2011 PhysioNet/CinC
signals as training
data, BUTQDB signals
as testing data

79.93 ± 1.03 75.68 ± 0.96 91.59 ± 0.84 84.44 ± 1.01 72.43 ± 0.99 90.11 ± 0.73 82.12 ± 0.88 74.02 ± 1.27 90.85 ± 0.65 82.32 ± 1.23 82.73 ± 1.11

The bold values were the results of the proposed method.
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convolution would lose partly high frequency information. In this
study, 2s was the best choice for the invariance scale. The
classification performances showed small differences in the
changing of the invariance scale. The variability within each
class A/B/C was not due to translation, but due to time-
domain deformations and spectrum noise.

Comparing With Other SQA Methods
At present, most studies about the signal-quality assessment
divided the ECG signals into acceptable and unacceptable.
There are fewer public databases with three quality levels. For
performance comparisons, 27 typical SQAmethods were selected
to test the performance of this new database. These methods
mostly had better performance on the database including two
classes of ECG signals. Multiple SQI feature–based classifiers
were lower than the proposed novel classification method. In
order to analyze the performances of these SQIs better, Figure 7
displays the distribution of these SQIs on the A/B/C quality levels
signals. Green, orange, and blue dots represent class A/B/C
signals, respectively. The SQIs, which are only based on the
QRS waves, such as bSQI-4 and bSQI-2, were defined by the
comparison of four or two QRS wave detectors on a single-lead
signal. They had good performance on the database with two
classes of ECG signals (mACC > 93% ) (Liu et al., 2018), but class
A signals are mixed up with class B signals, as shown in Figure 7.
It is because that QRS wave of class B signals also could be
detected accurately. The performance of tSQI and picaSQI was
slightly better. These two SQIs were computed not only based on
the QRS wave but also based on morphology consistency and
nonlinear characteristic (Li et al., 2014; Liu F. et al., 2020). The
tSQI was defined as the morphology consistency of any two ECG
beats within a fixed time window (Li et al., 2014), and the picaSQI
was defined as a periodicity measure of the ECG waveform
nonlinear characteristic (Liu F. et al., 2020). For other SQIs
based on time and frequency domain features, the distribution
ranges for A/B/C quality level signals had a large overlap region.

The class B signals were mostly contaminated by the noise with
high frequency and low amplitude, which can make partly class B
signals detected to be class A or C.

It should be noted that all these 27 SQIs that we selected were
unlikely to be the optimal indexes. We tried to pick as many
quality metrics as possible, but it is impossible to pick all of them.
Meanwhile, because some SQIs were published in a theoretical
way without the executable program, and some literature works
lacked detailed necessary preprocessing operations, some SQIs
were coded by us. Thus, the classing results in this study could be
different from those in the other studies, but the differences are
unimportant.

In this study, all the programs were implemented using
MATLAB 2020a. Table 5 illustrates the mean time costs and
standard deviation values of the 12 SQIs and the proposed
method by analyzing 49,056 10-s ECG segments in the
database. As shown in Table 5, the proposed method was the
most time-efficient compared with 12 SQIs. Also, 18.25 ms was
not a long-time cost for 10-s ECG segments.

Real-Time Validation and Cross-Database
Validation Analysis
For real-time SQA performance analysis, the reliability of the
whole wavelet scattering networks method on real wearable
ECG signals was tested. Figure 8 displays two segments of 10-
min duration of dynamical ECG signals, physical activities, and
evaluation results. As it turns out, under the sitting and walking
conditions, the quality of the ECG signal was very good and all
signals are assessed as class A, which can be used for the
cardiovascular disease diagnosis. In the jogging condition, some
signals were contaminated by weak artifacts and assessed as class B.
But they could not affect the R wave identification, which can be
used for the heart rate measure. In the running and jumping
conditions, most of the signals were contaminated by seriously
large noises caused by violentmotion and assessed as class C. These
signals will interfere with the diagnosis of the cardiovascular
disease and need to be removed. Also, the proposed SQA
method could identify the changing of the position. During the
changing stage, there were some fluctuations in the signal. These
signals were assessed as class B. The evaluation results show that
the proposed wavelet scattering network SQA classifier framework
has capability to assess wearable dynamic ECG signal quality.

In this study, cross-database testing was also carried out to
verify the generalization ability of this proposed method. As the
results show, classification accuracy was greater than 80%. The
performance of cross-database validation was not good as 10-fold
cross-validation. But for class C, SeC,+PC, F1C were all greater than
90%. The reason for this phenomenon is the great difference
between these two databases. The signals from BUTQDB were
single-lead ECGs with three quality classes, while the signals from
the 2011 PhysioNet/CinC Challenge were 12-lead ECGs with two
quality classes. Although we, based on the scores in Liu et al.
(2018), annotated all the leads individually, there are still
differences in the re-annotating. The morphological
characteristics of class C signals are obvious, and the evaluation
of experts is relatively consistent. However, the difference in

FIGURE 6 | Classification results for invariance scale I � 1s, 2s,/8s,
9s, 10s.
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morphological characteristics between class A and class B signals is
not particularly obvious, the evaluations between different experts
are different. If all the signals from the 2011 PhysioNet/CinC

Challenge were re-annotated based on the criteria of BUTQDB
strictly, the performance of cross-database validation will be better.
However, it will need more time cost.

FIGURE 7 | Distribution of 27 SQIs on the A/B/C quality levels signals. Green, orange, and blue dots represent class A/B/C signals, respectively.
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In this study, the approach adding noise to clean data was used
to balance the database classes. Also, those clear recordings from
classes A and B used to upsample class C, were put back into the
original classes. It needs to be considered if this synthetic noise is
going to play a role in the classification results. If one clear
recording from class A is in the training set and it was also
corrupted by noises used to upsample the class C in the test set. If
this recording includes some information on the test set, this
information will tend to judge this recording as class A. However,
it was a contaminated recording and labeled as class C. Therefore,
if there is some information generated by balancing the dataset on
the test set, classification accuracy will be reduced. However, the
classification performance of this method was very good.
Therefore, the approach used to balance the dataset did not
influence the classification results. The testing of real signals
without synthetic addition was also carried out to consider the
influence of this balancing data approach. A new database was
built with 5,687 recordings without any synthetic noise added,

class A: 2,000, class B: 2,000, and class C: 1,687. We used 30% of
the data for testing and the remaining 70% of the data for
training. The values of 11 evaluation indexes were nearly all
greater than 90%,mACC = 94.05%,mF1 = 94.03%, SeA = 93.35%,
SeB = 91.25%, SeC = 97.55%, +PA = 94.44%, +PB = 92.73%, +PC =
94.94%, F1A = 93.89%, F1B = 91.98%, and F1C = 96.23%. The
reduction in the data volume reduced the accuracy of the model,
which was also acceptable. The approach of adding noise to clean
data to balance the database classes was also used in Clifford et al.
(2012).

Most notably, there is no unified evaluation criterion to
determine the quality levels of wearable ECG at present.
Different databases provide different evaluation methods. For
example, the data in the 2011 PhysioNet/CinC Challenge are 12-
lead recordings, having a length of 10 s 3–18 annotators marking
each signal, and each record was assigned to one of the three
groups (acceptable 773, indeterminate 2, and unacceptable 225)
based on the average score. Some studies considered that the label
of “acceptable” or “unacceptable” was for the whole 12 channels,
not for the single channel. Therefore, they re-labeled each channel
(Clifford et al., 2012; Liu et al., 2018), and balanced the classes by
adding noise to some of the clean data. However, in the BUTQDB
database, 18 single-lead signals longer than 24 h were recorded
using the Bittium Faros 180 device. The parts of signals were
selected to be grouped into three quality levels based on the labels
annotated by three experts. Also, some studies constructed a
manually annotated gold standard, collected and annotated ECG
recordings by themselves (Redmond et al., 2012; Satija et al., 2017;
Liu et al., 2019b; Smital et al., 2020). Different classification
standards and annotating methods could have great influence
on the SQA performance.

Limitations and Prospects
Wearable electrocardiogram quality assessment is quite crucial
for cardiovascular disease prevention and diagnosis. It is also an

TABLE 5 | Mean time costs and standard deviation values of 12 SQIs and
proposed method.

Method Mean time/ms SD/ms

picaSQI (Li et al., 2014) 4.04 0.41
tSQI (Liu et al., 2020a) 1.20 0.20
kSQI (Clifford et al., 2012) 1.14 0.13
ELZ_compl_SQI (Zhang et al., 2014) 31.74 6.55
sSQI (Clifford et al., 2012) 1.05 0.23
bSQI_4 (Liu et al., 2018) 6.83 0.65
DisEn_SQI (Li et al., 2015) 25.28 8.31
pSQI (Li et al., 2008) 2.15 0.25
bsSQI (Li et al., 2014) 2.01 0.30
iSQI (Liu et al., 2019b) 1.08 0.26
basSQI (Li et al., 2014) 3.31 0.43
ApEn_SQI (Pincus et al., 1991) 30.41 3.60
Proposed method 18.25 1.38

The bold values were the time cost and standard deviation of the proposed method.

FIGURE 8 | Two records about 10-min duration of dynamical ECG signals, physical activities, and evaluation results.
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important issue for wearable device development. Although the
proposed new method had great performance on the quality
assessment, it was not very well for cross-database validation. The
main reason is the difference between annotation methods and
classification grades. For future work, uniform and standardized
evaluation criterion is quite crucial for the wearable ECG quality
assessment.

CONCLUSION

This study aimed to provide amethod to classify wearable dynamic
ECG signals into three grades: high quality (A), medium quality
(B), and low quality (C). A new SQA classification method based
on a three-layer wavelet scattering network and transfer learning
LSTM was proposed, and a wearable ECG quality database with
50,085 recordings for three quality grades was built. In order to
avoid the adverse impact of invalid samples on the trainingmodels,
the quality pre-assessment was used to delete the lead-fall signals
and pure noise. A three-layer wavelet scattering network was
performed on the selected 10-s-long signal segments, which can
extract more systematic and comprehensive characteristics by
analyzing the signals thoroughly and deeply. The Bi-LSTM
network with ADAM solver was employed to train the
classification model. The 11 evaluating indexes
(mACC,mF1, SeA, SeB, SeC,+PA,+PB,+PC, F1A, F1B, F1C) were
98.56%, 98.55%, 98.52%, 97.60%, 99.54%, 98.20%, 97.90%,
99.60%, 97.90%, 98.16%, and 99.60%, respectively, suggesting
that the proposed method can effectively separate three quality
grades of wearable ECG signals. For efficacy validation, this
method was applied on the real-world data collected using the
Lenovo H3 dynamic ECG device. This method had the ability to
detect noise signals produced by vigorous activities. With the high
computational efficiency, it will have a good application on
wearable ECG devices, including removing contaminating
signals and selecting high-quality signal segments for CVD
diagnosis and analysis. This study verified the feasibility of
applying the wavelet scattering network model to wearable

ECG signal-quality assessment. Also, the general framework of
this classification method proposed in this study was sufficiently
flexible to be used in any given situation.
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