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Abstract

By the end of 2022, there had been a reduction in new cases and deaths caused by coronavirus

disease 2019 (COVID-19). At the same time, new variants of the severe acute respiratory syn-

drome coronavirus 2 virus were being discovered. Critically ill patients with COVID-19 have

been found to have high serum levels of proinflammatory cytokines, especially interleukin (IL)-6.

COVID-19-related mortality has been attributed in most cases to the cytokine storm caused by

increased levels of inflammatory cytokines. Dexamethasone in low doses and immunomodulators

such as IL-6 inhibitors are recommended to overcome the cytokine storm. This current narrative

review highlights the place of other therapeutic choices such as proteasome inhibitors, protease

inhibitors and nuclear factor kappa B inhibitors in the treatment of patients with COVID-19.
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Introduction

The severe acute respiratory syndrome

caused by COVID-19 (severe acute respirato-

ry syndrome coronavirus 2; SARS‑CoV‑2)
represents a considerable worldwide threat

to global health with the development of a

cytokine storm being the primary leading

cause of mortality in hospitalized critical

cases.1 Cytokine release syndrome is
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pathognomonic for severe progressive clin-
ical COVID-19.2 Interleukin (IL)-6, IL-1,
IL-17, tumour necrosis factor-a (TNF-a)
and other cytokines are significantly associ-
ated with high viral load and severe lung
injury.3 IL-6 is considered to be the patho-
physiological hallmark and the main
predictor of progression of COVID-19.4

IL-6-inhibitors, such as siltuximab targeting
IL-6 or tocilizumab and sarilumab target-
ing IL-6 receptors, may provide a life-
saving therapeutic tool for critically-ill
patients.5 A previous study observed an
improved clinical outcome with a higher
survival rate in severe cases following toci-
lizumab use.6 Nuclear factor kappa B
(NF-jB) plays a central role in the cytokine
storm and is linked with severe COVID-19
cases.7 Transcription factors of NF-jB
have an enhancing effect on expression of
several cytokines such as IL-1, IL-2, IL-6
and TNF-a.8 NF-jB also promotes the
expression of genes encoding adhesion mole-
cules such as E-selectin and inducible
enzymes involved in inflammatory responses
such as inducible nitric oxide synthase and
cyclooxygenase-2.8 The NF-jB inhibitor cro-
molyn was observed to ameliorate cytokine
storm-induced inflammation in COVID-19
patients.9 Interestingly, proteasome inhibitors
such as bortezomib and carfilzomib impede
viral entry and replication.10 These agents
could be another therapeutic strategy for
the treatment of COVID-19 as they might
help reduce the cytokine storm associated
with SARS-CoV-2-induced inflammation.11

Clinically proven protease inhibitors such as
camostat mesylate could be a prophylactic
tool that blocks the cellular entry of
SARS-COV-2.9–11

The current narrative review focuses on
the potential therapeutic tools that could be
used for critically ill patients with COVID-
19 and how pharmacogenomic studies are
providing promise for targeting different
molecules, which could be used in advanced
human clinical trials. It is hoped that this

research will help in designing an effective

protocol for managing severe cases and at

the same time could be a potentially pro-

phylactic weapon that increases the efficacy

of available COVD-19 vaccines.

The cytokine storm

Clinical and laboratory research has demon-

strated a hyperactive dysregulated inflam-

matory immune response and excessive

release of proinflammatory cytokines and

chemokines in patients with severe

COVID-19.12–14 The excessive and random

release of cytokines (known as a cytokine

storm) may lead to severe, life threatening

and lethal complications. The severity of

symptoms depends on the response of

patient’s immune system to the virus; when

there is an aggressive inflammatory response

with the release of large amount of cyto-

kines, the symptoms of COVID-19 infection

will be severe and may be lethal.15–17

Cytokines, especially IL-6, play a central

role in the development of acute respiratory

distress syndrome (ARDS), which is consid-

ered to be the most severe complication of

COVID-19 infections.18

Targeting and blocking the cytokine

storm can help in the discovery of new

methodologies to treat COVID-19 infec-

tions and reduce its complications.17,19

A previous study showed that the blockage

of type 1 interferons in the early stages of

COVID-19 infection will determine which

cytokines will be involved in the storm

and reduce the release of cytokines.20

Moreover, a number of studies showed

that the cytokine storm can be blocked by

the use of interleukin inhibitors, especially

IL-6 inhibitors, which can be used to treat

severe COVID-19 cases.21–26

Targeting NF-jB

COVID-19 is an RNA virus enveloped by

outer spike proteins. These spike glycoproteins
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are recognized by Toll-like receptors
(TLRs), especially TLR6, TLR7 and
TLR8, which are found on innate immune
system cells and this recognition leads to the
activation of NF-jB.27–29 Studies have
demonstrated that NF-jB is activated in
COVID-19 infections,27–29 leading to what
is called a cytokine storm because NF-jB is
responsible for the secretion and regulation
of inflammatory cytokines and different
chemokines.7,8,27–29 Knowing the role of
NF-jB in severe COVID-19 pathogenesis
might lead to the development of new meth-
odologies to treat this infectious disease
by the inhibition and blocking of NF-jB,
which could suppress the cytokine
storm.7,27–33 Known inhibitors of NF-jB
include proteasome inhibitors (VL-01, bor-
tezomib, carfilzomib and ixazomib), Bruton
tyrosine kinase inhibitor (acalabrutinib),
nucleotide analogue (remdesivir), TNF-a
monoclonal antibodies (infliximab and ada-
limumab), N-acetylcysteine and corticoste-
roids (dexamethasone).27 Montelukast, a
drug that used for asthma patients, has a
positive effect in modifying the activity of
NF-jB and cytokine storm.28

Interleukin-6 and COVID-19

Interleukin-6 plays important roles in auto-
immunity,34 inflammatory processes,34

cytokine storms and cytokine release syn-
drome (CRS).35 Moreover, IL-6 induces
the secretion of proteins such as C-reactive
protein (CRP), ferritin and fibrinogen and
inhibits albumin synthesis.36 In terms of
COVID-19, IL-6 can produce a hyper-
innate inflammatory response.37 Serology
analysis of COVID-19 patients demonstrat-
ed higher serum IL-6 levels in patients in
the severe stage of COVID-19 compared
with patients in the mild–moderated stage
of COVID-19.38,39 In addition, it has been
found that IL-6 is linked to COVID-19
stages and radiological findings.40–43

A study conducted in Italy argued that

IL-6 can be used as a predictive tool for

COVID-19 disease progression.44

Interleukin-6 blocking agents that have

been used for the treatment of COVID-19

include tocilizumab, sarilumab, siltuximab

and clazakizumab.45–58 Tocilizumab is

used to treat rheumatoid arthritis, systemic

juvenile idiopathic arthritis45,46 and the

CRS that might develop following the use

of some types of immunotherapies.47

A study of 21 severely ill COVID-19

patients who received tocilizumab treat-

ment demonstrated an improvement in

their symptoms and radiological findings.25

Likewise, another study found that tocilizu-

mab decreased the need for mechanical ven-

tilation and intensive care unit admission in

COVID-19 patients.48 In addition, tocilizu-

mab has been found to treat the neuropsy-

chiatric manifestations of COVID-19.49,50

Findings from a 64-year-old male who

received tocilizumab for haemophagocytic

lymphohistiocytosis syndrome and COVID-

19 showed lower levels of IL-6.51 Sarilumab

is an IL-6 inhibitor that is used for the treat-

ment of rheumatoid arthritis.52 Results from

a study of 28 patients with COVID-19 disease

who received a single dose of sarilumab dem-

onstrated an improvement in recovery time.53

In another study, 53 patients were treated

with sarilumab (14 of them were from the

intensive care unit) and they exhibited an

improvement in their clinical condition.54

Another study showed similar results on

eight patients who were treated with sarilu-

mab.55 Another monoclonal antibody that

binds to IL-6 and neutralizes its effect is sil-

tuximab.56 In a cohort study, it was reported

that siltuximab adjusted the risk of mortality

rate.56 Lastly, clazakizumab is a humanized

immunoglobulin G monoclonal antibody,

which works against IL-6 and can be used

in the treatment of rheumatoid arthritis.57

In cases of COVID-19 with raised CRP and

IL-6 levels, clazakizumab positively affects

respiratory function and the level of
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inflammatory markers, and decreases the
need for oxygen therapy.58

Role of the proteasome system

The cellular proteasome system is the main-
stay in the protein degradation process.59

The ubiquitin-proteasome system is a
system that leads to the degradation of
protein by affecting proteasome action.11

Moreover, the ubiquitin-proteasome system
plays a role in cell cycle progression, apopto-
sis, cell transduction and cell transcriptional
regulation.60 Proteasome inhibitors are used
for the treatment of multiple myeloma and
Mantel cell lymphoma with well-known
side-effects including thrombocytopaenia,
neutropaenia and peripheral neuropa-
thy.61,62 In terms of COVID-19 disease, pro-
teasome inhibitors affect viral replication,
the entry of the virus into the eukaryotic
cell, RNA synthesis and the protein struc-
ture of the virus.11,63–67 In addition, protea-
some inhibitors block NF-jB and inhibit
cytokine release,12,68 which makes protea-
some inhibitors promising therapeutic
options for treating COVID-19 disease.

An example of a proteasome inhibitor is
carfilzomib, which provides a higher level
of inhibition compared with other protea-
some inhibitors.69 A previous study
reported that carfilzomib is the therapeutic
choice for treating COVID-19 cases based
on the performance of a molecular dynamic
simulation followed by a binding free
energy calculation, which showed that car-
filzomib has a high binding free energy.70

Another example of a proteasome inhibitor
is MG132, which is a synthetic peptide alde-
hyde.71 A previous study reported that
MG132 suppressed SARS‑CoV‑2 replica-
tion by interacting with the early stage of
the viral life cycle when compared with
other inhibitors such as lactacystin that
demonstrated very limited effects on repli-
cation.72 MG132 inhibits m-calpain, which
plays a role in SARS‑CoV‑2 replication.73,74

Although MG132 has shown promise in
inhibiting proteases,75 it does not inhibit
SARS‑CoV‑2 replication due to protea-
some or autophagy impairment.71 It was
reported that MG132 has an antiviral
effect on viruses such as herpes simplex
virus 1,76 hepatitis E,77 human cytomegalo-
virus,78 porcine circovirus type 279 and cox-
sackievirus B3.80 However, MG132 exerts
different mechanisms of controlling the
cell entry of these viruses by interacting
with the ubiquitin-proteasome system
rather than inhibiting proteases.76–79

Viral proteases as targets for
pharmacogenomics

Viral proteases play an important role in
viral entry in the cell, viral replication, matu-
ration of essential viral proteins and the
immune response for the virus infection.81–83

Pharmacogenomics plays a role in atten-
uating the protease genome and designing
agents that block their actions. For exam-
ple, several studies demonstrated that
understanding the important role of viral
proteases makes them an attractive target
for treating severe COVID-19 cases using
protease inhibitors.81–83 There are numer-
ous proteases, but this review will only
focus on the following: transmembrane
serine protease 2 (TMPRSS2), a disintegrin
and metalloprotease 17 (ADAM17), main
protease (Mpro), 3-chymotrypsin-like prote-
ase (3CLpro) and papain-like protease
(PLpro).

Studies showed that the angiotensin-
converting enzyme 2 (ACE2) receptor acts
as a gate for SARS-COV-2 to cross and
enter host cells and TMPRSS2 facilitates
this process by cleaving the spike protein
and enabling it to bind to the ACE2 recep-
tor, which initiates viral entry into the
cells.84–94 ACE2 and TMPRSS2 are found
in heart, liver, kidneys, brain and
other organs, which explains the presence
of the extrapulmonary manifestations of
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COVID-19 infection.84,90 A previous study
demonstrated that ARDS treatment out-
comes were affected by ACE genotype.87

The role of ACE2 as a receptor and
TMPRSS2 as a primer make these two mol-
ecules good targets in the treatment of
COVID-19 by suppressing them.89,91–93,95–97

TMPRSS2 inhibitors include bromhexine
hydrochloride, camostat mesylate and
nafamostat mesylate.89,91,97–101 Bromhexine
hydrochloride is used as a prophylactic or
as a treatment to decrease the hospital
stay, intubation and mortality rates.97,98

The SARS‑CoV‑2 virus can activate
ADAM17,102 which plays a role in the
development of a cytokine storm by activat-
ing TNF-a and IL-6 receptor.102,103

ADAM17 and TMPRSS2 are essential for
viral entry and cell fusion, thus ADAM17
mediates ACE2 shedding and converts it to
its active form; and then TMPRSS2 cleaves

the virus spike protein to enable its binding
with the ACE2 receptor that initiates the
viral entry into the cells.84–94,102,104,105

Alpha-1 antitrypsin (A1AT), a protein
found in the human body that it is the
most common protease inhibitor found in
the plasma, works as an antiviral and anti-
inflammatory molecule.106–108 Researchers
found that A1AT inhibits the activity of
TMPRSS2 and ADAM 17, so it interferes
with the viral entry into the cell.106–110

Furthermore, A1AT has important anti-
inflammatory and immune-regulatory
activities by inhibiting NF-jB, IL-8,
TNF-a and neutrophil elastase.106,107

These functional characteristics of A1AT
make it an attractive target for the treat-
ment of COVID-19 infection.

Several studies reported the importance
of discovering that the Mpro inhibitors
interfere with viral entry and

Figure 1. Pharmacogenetic targets for potential therapies for patients with severe coronavirus disease
2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 virus. NF-jB, nuclear
factor kappa B; IL-6, interleukin-6; TLRs, Toll-like receptors; ARDS, acute respiratory distress syndrome.
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Table 1. Summary of the most important recent studies about the management of COVID-19 disease
caused by the severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) virus.

Author Conclusion

Caricchio R et al.2 Cytokine release syndrome is pathognomonic for severe progressive

clinical COVID-19.

Hirawat R et al.16 The severity of symptoms depends on the response of the patient’s

immune system to the virus. When there is an aggressive inflam-

matory response with the release of large amounts of cytokines, the

symptoms of COVID-19 infection will be severe and it may be lethal.

Khiali S et al.18 Cytokines, especially IL-6, play a central role in the development of

acute respiratory distress syndrome, which is considered to be the

most severe complication of COVID-19 infections.

Kunnumakkara AB et al.19 Targeting and blocking the cytokine storm can help in the discovery of

new ways to treat COVID-19 infections and reduce its

complications.

Shrihari TG28 This study reported that NF-jB is activated in COVID-19 infections

leading to what is called the cytokine storm. NF-jB its responsible

for the secretion and regulation of inflammatory cytokines and

different chemokines.

Gudowska-Sawczuk M et al.31 Knowing the role of NF-jB in severe COVID-19 pathogenesis might

lead to the development of new methodologies to treat this infec-

tious disease by the inhibition and blocking of NF-jB, which could

suppress the cytokine storm.

Wang WK et al.37 IL-6 can produce a hyper-innate inflammatory response.

Kaneko A46 IL-6 inhibitors that are used for the treatment of COVID-19 include

tocilizumab, sarilumab, siltuximab and clazakizumab

Faheem et al.67 Proteasome inhibitors affect COVID-19 replication, the entry of the

virus into the eukaryotic cell, RNA synthesis and the protein struc-

ture of the virus.

Kircheis R et al.68 Proteasome inhibitors function by blocking NF-jB, which inhibits

cytokine release.

Amin SA et al.83 Viral proteases play an important role in viral entry, viral replication,

maturation of essential viral proteins and the immune response to

the virus infection.

Rossi �AD et al.94 The ACE2 receptor acts as a gate for the SARS-COV-2 virus to cross

and enter host cells and TMPRSS2 facilitates this process by cleaving

the spike protein and enabling it to bind to the ACE2 receptor, which

initiates the viral entry to the cells.

Ansarin K et al.97 The role of ACE2 as a receptor and TMPRSS2 as a primer make these

two molecules good targets in the treatment of COVID-19 by sup-

pressing them.

Zhuravel SV et al.101 TMPRSS2 inhibitors include bromhexine hydrochloride, camostat

mesylate and nafamostat mesylate.

Zlacká J et al.105 ADAM17 and TMPRSS2 are essential for viral entry and cell fusion.

ADAM17 mediates ACE2 shedding and converts it into its active

form. Then TMPRSS2 cleaves the virus spike protein to enable its

binding with the ACE2 receptor, which initiates viral entry to the

host cells.

(continued)
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replication.111–113 Melatonin has a positive
effect as an anti-inflammatory molecule,
inhibitor of Mpro and inhibitor of ACE2
because it inhibits calmodulin, which is
an essential intracellular component for
ACE2.113 Blocking of 3CLpro interferes
with viral entry and replication.114–118

Ethacrynic acid, naproxen, allopurinol,
butenafine hydrochloride, raloxifene hydro-
chloride, tranylcypromine hydrochloride
and saquinavir mesylate are a group of
drugs found to inhibit the activity of
3CLpro.114 Moreover, phosphate prodrug
such as PF-00835231 blocks the proteolytic
activity of 3CLpro.115–117 PLpro plays a role
in viral replication and innate immune
system hyperactivity (i.e. the cytokine
storm).83,119–122 As for other proteases, the
inhibition of PLpro would be expected to be
a treatment for SARS-CoV-2 infection.119–123

Tanshinone II-A sodium sulfonate and
chloroxine act as blockers of PLpro.122

Conclusion

Concepts about COVID-19 and its deleteri-
ous impact on human health that are not

yet clarified require nuanced research

studies in order to overcome severe disease

and improve the efficacy of the available

vaccines. Targeting different molecules

such as proteasome enzymes and NF-kB

via pharmacogenetic studies may help in

designing novel agents that can be investi-

gated in humans for their efficacy as

therapeutic drugs in treating critical cases

of COVID-19 or be used prophylactically

in adjusted doses after receiving the

available vaccines. These studies may be a

great breakthrough in combating the

cytokine storm that accounts for the seri-

ous outcomes observed in severely ill

patients. Together with protease inhibitors

and IL-6 inhibitors, proteasome inhibitors

and NF-kB inhibitors could be a signifi-

cant potential synergistic combination in

therapeutic protocols. Figure 1 presents

the molecular targets of potential therapies

for critically ill COVID-19 cases. Table 1

summarizes the main published

studies that have investigated potential

molecular targets for the management of

COVID-19.

Table 1. Continued.

Author Conclusion

Yang C et al.108 A1AT, a protein found in the human body that it is the most common

protease inhibitor found in the plasma, works as an antiviral and anti-

inflammatory molecule.

Feitosa EL et al.112 This study demonstrated that Mpro inhibitors counteract viral entry and

replication. Melatonin has a positive effect as an anti-inflammatory

agent, inhibitor for Mpro and inhibitor of ACE2 because it inhibits

calmodulin, which is an essential intracellular component for ACE2.

Chiou WC et al.114 The blocking of 3CLpro interferes with viral entry and replication.114–118

Ethacrynic acid, naproxen, allopurinol, butenafine hydrochloride,

raloxifene hydrochloride, tranylcypromine hydrochloride and

saquinavir mesylate are drugs found to inhibit the activity of 3CLpro.

Xu Y et al.122 As for other proteases, the inhibition of PLpro would be expected to be

a treatment for SARS-CoV-2 infection. Tanshinone II-A sodium

sulfonate and chloroxine act as blockers of PLpro.

IL-6, interleukin-6; NF-jB, nuclear factor kappa B; ACE2, angiotensin-converting enzyme 2; TMPRSS2, transmembrane

serine protease 2; ADAM17, metalloprotease 17; A1AT, alpha-1 antitrypsin; Mpro, main protease; 3CLpro, 3-chymotrypsin-

like protease.
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COVID-19: angiotensin-converting enzyme

2 (ACE2) expression and tissue susceptibil-

ity to SARS-CoV-2 infection. Eur J Clin

Microbiol Infect Dis 2021; 40: 905–919.
85. Zhang X, Li S and Niu S. ACE2 and

COVID-19 and the resulting ARDS.

Postgrad Med J 2020; 96: 403–407.
86. Shukla AK and Banerjee M. Angiotensin-

Converting-Enzyme 2 and Renin-

Angiotensin System Inhibitors in COVID-

19: An Update. High Blood Press

Cardiovasc Prev 2021; 28: 129–139.
87. Sie�nko J, Kotowski M, Bogacz A, et al.

COVID-19: The Influence of ACE

Genotype and ACE-I and ARBs on the

Course of SARS-CoV-2 Infection in

Elderly Patients. Clin Interv Aging 2020;

15: 1231–1240.
88. Kai H and Kai M. Interactions of corona-

viruses with ACE2, angiotensin II, and

RAS inhibitors-lessons from available evi-

dence and insights into COVID-19.

Hypertens Res 2020; 43: 648–654.
89. Mantzourani C, Vasilakaki S, Gerogianni

VE, et al. The discovery and development

of transmembrane serine protease 2

(TMPRSS2) inhibitors as candidate drugs

for the treatment of COVID-19. Expert

Opin Drug Discov 2022; 17: 231–246.
90. Dong M, Zhang J, Ma X, et al. ACE2,

TMPRSS2 distribution and extrapulmo-

nary organ injury in patients with

COVID-19. Biomed Pharmacother 2020;

131: 110678.
91. Li K, Meyerholz DK, Bartlett JA, et al. The

TMPRSS2 Inhibitor Nafamostat Reduces

SARS-CoV-2 Pulmonary Infection in

Mouse Models of COVID-19. mBio 2021;

12: e0097021.
92. Singh H, Choudhari R, Nema V, et al.

ACE2 and TMPRSS2 polymorphisms in

various diseases with special reference to

its impact on COVID-19 disease. Microb

Pathog 2021; 150: 104621.
93. Piva F, Sabanovic B, Cecati M, et al.

Expression and co-expression analyses of

TMPRSS2, a key element in COVID-19.

Eur J Clin Microbiol Infect Dis 2021; 40:

451–455.
94. Rossi �AD, de Ara�ujo JLF, de Almeida TB,

et al. Association between ACE2 and

TMPRSS2 nasopharyngeal expression and

COVID-19 respiratory distress. Sci Rep

2021; 11: 9658.
95. Sagawa T, Inoue KI and Takano H. Use of

protease inhibitors for the prevention of

COVID-19. Prev Med 2020; 141: 106280.
96. Hoffmann M, Kleine-Weber H, Schroeder

S, et al. SARS-CoV-2 Cell Entry Depends

on ACE2 and TMPRSS2 and Is Blocked

by a Clinically Proven Protease Inhibitor.

Cell 2020; 181: 271–280.
97. Ansarin K, Tolouian R, Ardalan M, et al.

Effect of bromhexine on clinical outcomes

and mortality in COVID-19 patients: A

randomized clinical trial. Bioimpacts 2020;

10: 209–215.
98. Maggio R and Corsini GU. Repurposing

the mucolytic cough suppressant and

TMPRSS2 protease inhibitor bromhexine

for the prevention and management of

SARS-CoV-2 infection. Pharmacol Res

2020; 157: 104837.
99. Breining P, Frølund AL, Højen JF, et al.

Camostat mesylate against SARS-CoV-2

and COVID-19 – Rationale, dosing, and

safety. Basic Clin Pharmacol Toxicol 2021;

128: 204–212.
100. Zhu H, Du W, Song M, et al. Spontaneous

binding of potential COVID-19 drugs

(Camostat and Nafamostat) to human

serine protease TMPRSS2. Comput Struct

Biotechnol J 2020; 19: 467–476.
101. Zhuravel SV, Khmelnitskiy OK, Burlaka

OO, et al. Nafamostat in hospitalized

patients with moderate to severe

COVID-19 pneumonia: a randomised

Phase II clinical trial. EClinicalMedicine

2021; 41: 101169.
102. Schreiber B, Patel A and Verma A.

Shedding Light on COVID-19: ADAM17

the Missing Link? Am J Ther 2020; 28:

e358–e360.
103. Zipeto D, Palmeira JDF, Arga~naraz GA,

et al. ACE2/ADAM17/TMPRSS2 Interplay

May Be the Main Risk Factor for

COVID-19. Front Immunol 2020; 11: 576745.

12 Journal of International Medical Research



104. Healy EF and Lilic M. A model for
COVID-19-induced dysregulation of
ACE2 shedding by ADAM17. Biochem

Biophys Res Commun 2021; 573: 158–163.
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