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Diabetes mellitus is characterized by elevated levels of blood glucose and is ultimately
caused by insufficient insulin production from pancreatic beta cells. Different research
models have been utilized to unravel the molecular mechanisms leading to the onset of
diabetes. The generation of pancreatic endocrine cells from human pluripotent stem cells
constitutes an approach to study genetic defects leading to impaired beta cell
development and function. Here, we review the recent progress in generating and
characterizing functional stem cell-derived beta cells. We summarize the diabetes
disease modeling possibilities that stem cells offer and the challenges that lie ahead to
further improve these models.
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INTRODUCTION

More than 450 million people worldwide are diagnosed with diabetes, a number unfortunately expected
to increase dramatically in the next decades (1). Diabetes unfolds when the pancreatic beta cells fail to
secrete enough insulin to meet physiological demand, resulting in abnormally high blood glucose levels.
Our understanding of the distinct molecular mechanisms that lead to beta cell failure in the different
types of diabetes has remarkably improved thanks to progress in the genetic characterization of people
with diabetes and the development of animal and cellular models (2). Among these models, the
generation of islet cells from human pluripotent stem cells is gaining traction as a useful approach to
dissect diabetes molecular mechanisms (3). In this review, we aim to summarize recent progress in
diabetes disease modeling using human pluripotent stem cells, discussing current limitations and
potential improvements. We particularly focus on advances in functional islet cell generation, and how
these cells may be utilized to study beta cell insulin secretory defects.

Beta cell failure leading to diabetes occurs in different ways. While in type 1 diabetes, beta cells
are destroyed by cytotoxic T lymphocytes (4), in type 2 diabetes, which represents 90% of all
diabetes cases, the beta cells are dysfunctional as a result of maladaptation to elevated demand for
insulin secretion, usually in the context of systemic insulin resistance (5, 6). Both type 1 and type 2
diabetes (T2D) result from interactions between a polygenic background and environmental factors
like viral infections or obesity (7). Other forms of diabetes that are less frequent result from highly
penetrant monogenic mutations that impair beta cell development and/or function. They can
manifest at birth, transiently or permanently, in what is known as neonatal diabetes, or in the young
adult (10–25 years of age), termed maturity onset diabetes of the young (MODY) (2, 8). While
genetic variants in ~30 loci are associated with neonatal diabetes and MODY, over 50% of clinically
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diagnosed cases remain genetically unexplained despite
continuous efforts to find causative genetic variants by using
genome sequencing (9, 10).

The characterization of the genetic defects associated with these
different types of diabetes has improved the understanding of the
molecular mechanisms that trigger or increase the risk for this
disease. Genome-wide association studies have so far identified
over 400 association signals across ~200 loci associated with T2D.
These genetic variants are particularly enriched in coding and
non-coding genomic regions characteristic of pancreatic islet
cells, highlighting their central role in the development of
diabetes (11–13). Interestingly, several genetic variants associated
with T2D are in loci of genes that are also mutated in cases of
neonatal diabetes and MODY [e.g. KCNJ11 (14, 15), HNF1A (16,
17), GCK (18, 19)]. These genes are critical for beta cell function
and the severity of the disease is determined by the precise
molecular mechanism disrupted by the particular genetic variant
and its functional impact. There is a spectrum within diabetes in
which the pathogenetic mechanisms might range from protein-
truncating mutations causing neonatal diabetes due to pancreas
developmental failure (20, 21), to increased T2D risk due to
regulatory variants modulating adult islet cell function (22, 23).
While genetic studies have identified numerous candidate genetic
variants associated with different types of diabetes, functional
validation of their impact on glucose homeostasis requires
models that recapitulate as faithfully as possible human
islet physiology.

Rodent animal models have provided abundant knowledge of
pancreatic development and beta cell physiology. The generation
of genetically modified mouse models have contributed to
understanding the role of genes involved in these processes
(21, 24). However, animal models have inherent limitations
due to key differences with humans at the genetic and
physiological level (25, 26). Primary human islets obtained
from the pancreas of cadaveric donors are a valuable research
material to study diabetes. They have been used to study
particular aspects of human islet physiology (27) and to
understand how genetic variation affects islet function (28).
However, human islet preparations are scarce and exhibit
considerable variability in terms of purity, function, and cell
type composition after isolation (29–32). Furthermore, isolated
human islets are challenging to keep in culture for extended
periods of time, and the ability to use them to study the effect of
particular genetic variants is limited by the current capabilities to
genetically manipulate them. As an alternative, there have been
many attempts to generate immortalized human beta cells
resulting in the derivation of several cell lines that are now
widely used in research. They constitute a renewable source of
beta-like cells that can be used to perform diverse in vitro
experiments. In particular, EndoC-bH lines have proven to be
a particularly useful model since they present glucose-stimulated
insulin secretion in vitro and are transcriptomically similar to
primary beta cells (33, 34). Such lines can be utilized to study the
impact of particular genetic variants and perform drug
screenings since they are amenable to genetic modification and
other perturbations (23, 34). A drawback of these cells is that
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they are aneuploid, which can be a confounding factor for genetic
studies (35). They also proliferate, which compromises the
functional characteristics of adult beta cells (36, 37). This has
been resolved in conditionally immortalized versions of this cell
line where the SV40LT oncogene used to transform them can be
removed by inducible genetic recombination (37, 38); these cells
continue to be a useful resource for the field.

Differentiated human pluripotent stem cells (hPSCs)
represent another source of human beta cells. hPSCs can be
derived from human embryos (human embryonic stem cells,
hESCs) (39) or from somatic cells via nuclear reprogramming
(human induced pluripotent stem cells, hiPSCs) (40). Notably,
hiPSCs can be obtained from somatic cells of people that carry
diabetes-associated genetic variants. By doing so, pluripotent cell
lines preserving the donor genetic background can then be
differentiated in vitro into particular cell types to model the
molecular consequences of the genetic variant under study (41).
Importantly, hPSCs are amenable to different genome editing
approaches, facilitating the correction or introduction of desired
genetic variants. This is a useful approach to generate optimal
isogenic controls or to create new models when donor sources
are not available (42).

Here we discuss the possibilities of using hPSCs to model the
impact of diabetes-associated genetic variants on the physiology
of the beta cell, focusing on the molecular mechanisms impairing
insulin secretion.
BETA CELL INSULIN SECRETION DEFECTS

All forms of diabetes have in common the ultimate dysfunction
of the pancreatic beta cells and the consequent inadequate
circulating insulin levels. Beta cells constitute about 60% of the
cells in the human islets. They are highly intermingled with the
other endocrine cells, in particular with glucagon producing
alpha cells, the second most abundant type, a configuration
that is crucial for the optimal function of the beta cells (43,
44), and somatostatin secreting delta cells that dampen the
release of both insulin and glucagon (45). The particular
organization of human islet cells is remarkably heterogeneous,
with variable islet size and cell type composition across parts of
the pancreas, but also showing important variation across
individuals and from birth to adulthood (29–31).

In conjunction with glucagon secreting alpha cells, beta cells
keep human fasting blood glucose concentrations around 5 mM,
normoglycemia, by adjusting their insulin secretion output (44).
Beta cells are fine-tuned glucose sensors with an intricate
machinery that enables them to respond with exquisite
precision to deviations from normoglycemia, such as during
meals, to minimize glucose excursions (46, 47). Genetic variants
that result in the disruption of these molecular mechanisms
impact the capacity of beta cells to secrete insulin in a regulated
manner. These can cause reduced insulin secretion, leading to
the development of different forms of diabetes, or increased
insulin secretion (hyperinsulinism) (20, 48). We discuss some of
these in detail below (summarized in Table 1 and Figure 1).
March 2021 | Volume 12 | Article 642152
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Islet cells are profusely vascularized, and this facilitates the
sensing of circulating blood glucose levels. Glucose is imported
into human beta cells primarily via glucose transporters 1
(GLUT1) and 3 (GLUT3). Glucose transporter 2 (GLUT2), the
Frontiers in Endocrinology | www.frontiersin.org 3
main transporter in rodent beta cells, is expressed at lower levels
in human beta cells (100). Interestingly, genetic variants
associated with T2D are found in GLUT2 (51) suggesting an
important role in human beta cells.
TABLE 1 | Genetic defects leading to dysregulated beta cell insulin secretion.

Mechanism
affected

Genes Impact of genetic defect Type of disease References

Glucose import
and metabolism

GCK Reduced or increased glucokinase activity results in abnormal glycolytic flux, ATP
generation, and insulin secretion

ND, MODY, T2D, CHI (18, 19, 49)

G6PC2 Loss of function mutations are associated with reduced fasting glycemia T2D (50)
SLC2A2 (GLUT2) Loss of function mutations result in impaired glucose uptake ND, T2D (11, 51)
HK1 Abnormal silencing of HK1 in beta-cells results in increased glycolytic flux, ATP

generation and insulin secretion
CHI (52)

SLC16A1 (MCT1) Promoter mutations impair SLC16A1 silencing in beta-cells, resulting in abnormal
pyruvate uptake, increased ATP generation, and insulin secretion

CHI (53)

GLUD1 Gain of function mutations result in increased entrance of glutamate in TCA cycle,
increased ATP generation, and insulin secretion

CHI (54)

HADH Loss of function mutations result in abnormal activation of GLUD1, increased
glutamate into TCA, ATP generation, and insulin secretion

CHI (55, 56)

UCP2 Gain or loss of function mutations alter the mitochondrial uncoupling activity of
UCP2, resulting in abnormal ATP generation and insulin secretion

T2D, CHI (57, 58)

mtDNA Mitochondrial DNA mutations impair oxidative phosphorylation, ATP generation, and
insulin secretion

– (59)

Membrane
depolarization

KCNJ11 Gain or loss of function mutations result in abnormal closure or opening of the
channel, altered membrane depolarization, and insulin secretion

ND, MODY, T2D, CHI (55, 60–62)

ABCC8 Gain or loss of function mutations result in abnormal closure or opening of the
channel, altered membrane depolarization, and insulin secretion

ND, MODY, T2D, CHI (14, 15, 55,
63, 64)

KCNQ1 Genetic variants in this locus are associated with T2D risk. T2D (11, 65)
Membrane
receptors

GLP1R Genetic variants in this locus are associated with lower fasting glucose levels.
Altered GLP-1 signaling affects amplification of insulin secretion.

T2D (66)

GIPR Genetic variants associated with reduced GIP signaling, impair incretin-mediated
amplification of insulin secretion.

T2D (67)

MTNR1B A genetic variant increasing melatonin signaling lowers cAMP levels, inhibiting insulin
secretion.

T2D (68)

Insulin synthesis
and secretion

INS Loss of function mutations disrupt INS protein synthesis, folding, transport or
bioactivity.

ND, MODY, T2D (11, 69)

SLC30A8 (ZNT8) Different coding genetic variants increase risk or protect against T2D. T2D (70–72)
ADCY5 Non-coding genetic variant reduces ADCY5 expression, which couples glucose to

cAMP generation, increasing T2D risk.
T2D (73, 74)

ER homeostasis WFS1 Loss of function mutations lead to elevated ER stress and beta cell dysfunction. ND, T2D (75)
CDKAL1 Loss of function mutations induce beta cell ER stress and hypersensitivity to

glucotoxicity and lipotoxicity.
T2D (76)

THADA Coding genetic variants associated with increased T2D risk. T2D (77)
MANF Loss of function mutations cause childhood diabetes and a neurodevelopmental

disorder.
ND, T2D (78, 79)

YIPF5 Loss of function mutations impaired ER-to-Golgi trafficking leading to increased beta
cell ER-stress.

ND (80)

Transcriptional
regulation

PDX1 Loss of function mutations impair transcriptional regulation of pancreatic
development and adult islet cell function.

ND, MODY, T2D (81–84)

RFX6 Loss of function mutations impair transcriptional regulation of pancreatic
development and adult islet cell function.

ND, MODY (85–87)

NEUROD1 Loss of function mutations impair transcriptional regulation of pancreatic
development and adult islet cell function.

ND, MODY (88–90)

GLIS3 Coding and non-coding genetic variants impair transcriptional pancreatic
development and adult islet cell function

ND, MODY, T2D (91–93)

HNF1A Coding and non-coding genetic variants impair transcriptional pancreatic
development and adult islet cell function.

MODY, T2D, CHI (16, 17, 94)

HNF1B Coding and non-coding genetic variants impair transcriptional pancreatic
development and adult islet cell function.

ND, MODY, T2D (95, 96)

HNF4A Coding and non-coding genetic variants impair transcriptional pancreatic
development and adult islet cell function.

MODY, T2D, CHI (54, 97)

TCF7L2 Coding and non-coding genetic variants impair transcriptional pancreatic
development and adult islet cell function.

T2D (98, 99)
Marc
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ND, Neonatal Diabetes; MODY, Maturity Onset Diabetes of the Young; T2D, Type 2 Diabetes; CHI, Congenital Hyperinsulinism.
Summary of genetic variants that impact on molecular mechanisms involved in insulin secretion by the beta cell, classified by the mechanism affected and detailing the impact of the genetic defect.
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Imported glucose is phosphorylated by glucokinase (GCK), a
low affinity hexokinase. Diverse genetic defects in GCK lead to
different kinds of insulin secretion phenotypes, resulting in a range
of disease severity, from neonatal diabetes and MODY, to increased
T2D risk and congenital hyperinsulinism (18, 19, 49). Other
regulators of glucose phosphorylation have also been implicated
in insulin secretion dysregulation. For example, glucose-6-
phosphatase 2 (G6PC2) harbors genetic variants associated with
reduced fasting glycemia (50), while the abnormal beta cell
expression of “disallowed gene” (101) hexokinase I (HK1) has
been linked to congenital hyperinsulinism (52).

Oncephosphorylated, glucose is retainedwithin thebeta cell and
it enters the glycolytic pathway to generate pyruvate. Pyruvate is
then further oxidized in the mitochondrial tricarboxylic acid cycle,
generating abundant chemical energy in the form of ATP, and thus
increasing the ATP to ADP ratio. This results in depolarization of
the beta cell membrane via closure of the ATP-sensitive potassium
channels (K+

ATP), triggering insulin secretion. Thus, oxidative
metabolism of pyruvate constitutes a crucial coupling process
enabling regulated insulin secretion (102). As an alternative to
this canonical, one-state model of insulin secretion, recent work by
Lewandowski et al. proposes a dynamicmodel inwhich beta cells in
high glucose conditions oscillate between two states: a biosynthetic
state in which conversion of ADP and phosphoenolpyruvate into
ATPandpyruvate bypyruvate kinase results in closure of theK+

ATP

channels, triggering exocytosis, followed by a state of active
oxidative phosphorylation that supports the elevated ATP to
ADP ratio sustaining membrane depolarization until exocytosis-
associated processes reduce the ATP levels (103, 104). Activators of
Frontiers in Endocrinology | www.frontiersin.org 4
pyruvate kinase resulted in potentiated GSIS in both rodent and
human islets, suggesting that pyruvate kinase may be a potential
therapeutic target for T2D (53). Different defects related to the
abnormal incorporation of metabolites into the tricarboxylic acid
cycle are associated with congenital hyperinsulinism and T2D.
Impaired silencing of the pyruvate and lactate transporter
SLC16A1 (MCT1), a beta cell disallowed gene, results in
congenital hyperinsulinism (53). Gain of function missense
mutations in GLUD1, glutamate dehydrogenase, or loss of
function mutations in hydroxyacyl-coenzyme A dehydrogenase
(HADH) increase incorporation of glutamate into the TCA cycle
leading to congenital hyperinsulinism (54–56). Also, genetic
variation in the mitochondrial uncoupler UCP2 has been
associated with T2D and congenital hyperinsulinism (57, 58). In
addition, mitochondrial DNA mutations that impair ATP
generation cause syndromes that present with diabetes of variable
severity (59).

The increase of ATP to ADP ratio triggers the closure of
membrane K+

ATP channels, formed by the proteins KCNJ11 and
ABCC8 (105). Channel closure leads to depolarization of cell
membrane and opening of additional Na+ and Ca2+ channels.
Ca2+ influx crucially couples membrane depolarization with
insulin exocytosis, in a process mediated by the Ca2+-sensing
proteins synaptotagmins which trigger the fusion of insulin
granules with the plasma membrane (105). Gain of function
mutations in KCNJ11 and ABCC8 resulting in constant channel
opening are the most common cause of neonatal diabetes due to
islet physiology defects (15, 60, 63). Genetic variation in these
genes can also cause MODY and increased T2D risk (61, 62).
FIGURE 1 | Insulin secretion molecular mechanisms affected in diabetes. Genetic defects can impair different processes involved in regulated insulin secretion
(known genes affected in red text): glucose import and metabolism (G6P, glucose 6-phosphate; LDH, lactate dehydrogenase; TCA, tricarboxylic acid cycle; abnormal
beta cell metabolism of non-glucose carbon sources due to failure in silencing of disallowed genes depicted in gray text), membrane depolarization, membrane
receptors, insulin synthesis and secretion, endoplasmic reticulum (ER) homeostasis, and transcriptional regulation.
March 2021 | Volume 12 | Article 642152
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Loss of function mutations that result in constant KATP closure,
or impair its trafficking to the membrane, lead to congenital
hyperinsulinism (14, 55). Furthermore, genetic variants in the
voltage-gated K+ channel KCNQ1 are associated with increased
T2D risk (65).

Influx of Ca2+ ions into depolarized beta cells induces insulin
exocytosis by activating the synaptotagmins and SNARE
proteins that regulate the fusion of insulin granules with the
plasma membrane (106). This exocytosis machinery is not only
regulated by the intrinsic pathway triggered by membrane
depolarization but is also critically modulated by the
intracellular levels of cyclic AMP (cAMP), in what is known as
the amplifying pathway (107). Incretin hormones glucagon-like
peptide-1 (GLP-1) and glucose dependent insulinotropic
polypeptide (GIP), released by intestinal enteroendocrine cells,
potentiate insulin secretion upon binding to their cognate G-
protein coupled receptors in the membrane of beta cells (108,
109). This binding results in the generation of cAMP and
activation of protein kinase A pathway resulting in augmented
K+ channel inhibition, Ca2+ influx, and insulin exocytosis (110).
GLP-1 also regulates the alpha cells in a glucose-dependent
manner, inhibiting glucagon at high glucose levels, and thereby
further contributing to glucose homeostasis (111, 112). GIP
stimulates glucagon secretion in a glucose-dependent manner
in healthy individuals, with enhanced activity at lower glycemia
(113). However, GIP stimulates glucagon secretion even in the
presence of hyperglycemia in subjects with T2D, and thereby
could contribute to the pathogenesis of T2D (113). Genetic
variants found in both the incretin receptors genes GLP1R and
GIPR have been associated with increased and decreased risk of
T2D (66, 67). Melatonin receptor 1 B (MTNR1B), another
G-protein coupled receptor present in the membrane of beta
cells, has also been linked to T2D. A genetic variant increasing
the expression of MTNR1B has been shown to lower cAMP
levels in beta cells, leading to reduced insulin secretion (68).
Furthermore, a genetic variant that results in reduced expression
of the adenyl cyclase five (ADCY5), which regulates beta cell cAMP
levels, has been associated with increased risk of T2D (73, 74).

Insulin protein is synthesized in remarkable amounts,
representing up to 50% of beta cell total protein synthesis
(114), and imposes a high demand on the protein folding
machinery of the endoplasmic reticulum (ER). These processes
are controlled by the unfolded protein response (UPR) pathway,
which is highly efficient in beta cells in order to cope with the
insulin biosynthesis-induced ER-stress (115, 116). After
potassium channel defects, coding mutations in the insulin
gene are the second most common cause of neonatal diabetes
due to beta cell dysfunction. These missense mutations cause
defects in proinsulin translation, folding, or processing, and may
induce high levels of ER-stress that leads to dysfunction of the
beta cell. Some INS coding mutations can also cause MODY (69)
and genetic variants in the INS/IGF2 locus have been associated
with T2D increased risk (11). The fine-tuning of ER-stress levels
in beta cells is crucial for the proper functioning of these busy
insulin factories. Coding mutations in components of the UPR
pathway can cause neonatal diabetes or increased risk for T2D
Frontiers in Endocrinology | www.frontiersin.org 5
(e.g. WFS1, CDKAL, THADA, MANF, YIPF5) (11, 75–80).
Processed proinsulin molecules are tightly packaged as Zn2+

complexed crystals in dense core exocytotic granules. Genetic
variants in the Zn2+ transporter SLC30A8 (ZNT8), present in the
membrane of insulin granules, have been associated with T2D
susceptibility (70, 71). A rare loss of function mutation in ZNT8
protects against T2D, making this Zn2+ transporter a potentially
interesting therapeutic target (72).

While coding and non-coding genetic variants linked to
diabetes often impact mechanisms regulating insulin secretion
from beta cells, some of them perturb the development of the
pancreas, islets, and beta cells themselves (23, 48). The expression
levels of insulin secretion machinery components is controlled by
transcription factors that conform gene regulatory networks
governing the beta cell transcriptional program (117). However,
many of these transcription factors are also involved in regulating
beta cell development (e.g. FOXA2, PDX1, MNX1, NEUROD1,
PTF1A, HNF1A, RFX6) and genetic defects in their loci might
lead to a wide variety of diabetes phenotypes (20). While highly
damaging transcription factor mutations can cause developmental
defects leading to pancreatic agenesis and neonatal diabetes, other
genetic variants with milder effects might lead to MODY with
different clinical features and penetrance (17, 81, 118), increased
T2D risk (91, 98), or even congenital hyperinsulinism (54, 94).
Epigenetic profiling of human islets has enabled the
characterization of their regulatory landscape, showing that
dense enhancer areas are enriched in genetic variants associated
with T2D risk (13). Furthermore, a recent study characterizing
human islet chromatin architecture resulted in the identification of
3D higher-order hubs of enhancers and promoters (23). These
regions are enriched for genetic variants that impact on the
heritability of islet-cell traits. We summarize in Table 1 a list of
genes that harbor genetic variants specifically linked to
dysregulated insulin secretion. The impact of a given genetic
variant will depend on how deleterious it is for a particular
mechanism controlling insulin secretion, thus determining the
diabetes phenotype and the possible therapeutic interventions.
Given the wide spectrum in the functional consequences of coding
and non-coding genetic variants, we need suitable research models
that enable precise dissection of the detailed mechanisms by which
these genetic variants impair human islet physiology.
MODELING INSULIN SECRETION DEFECTS
USING STEMCELL DERIVED ISLET CELLS

The generation of hPSC-derived beta cells typically relies on
differentiation protocols recapitulating the inductive signaling
cues that instruct pancreatic development in vivo. These
protocols have been devised based on knowledge gained from
developmental biology, mostly using mouse models, that
deciphered the dynamic signaling environment required for
pancreas specification, endocrinogenesis, and beta cell
formation (119, 120). With this information, different research
teams have empirically determined the recipe of recombinant
March 2021 | Volume 12 | Article 642152
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proteins and small molecules that reproduce developmental
signals in a stepwise manner. These efforts have crystallized in
differentiation protocols that make possible the efficient
derivation of beta cells from hPSCs (Figure 2).

The first report demonstrating the feasibility of generating
insulin-producing cells from human embryonic stem cells in
vitro relied on an spontaneous differentiation approach (122).
The first directed differentiation protocol was reported by
D’Amour and colleagues from the company CyThera (now
Viacyte Inc.). They devised a multistage, adherent culture
differentiation protocol, that relied on a first step of efficient
definitive endoderm induction (123), followed by four additional
steps to induce primitive gut tube, posterior foregut, pancreatic
progenitors, and hormone expressing cells (124). While this
pioneer protocol generated relatively few insulin producing
cells (about 7%), these cells became functionally mature after
implantation into mice. Furthermore, the implanted cells were
able to protect against streptozotocin induced diabetes (125).

These results sparked intense effort to develop improved
protocols leading to more efficient and robust ways to obtain
hPSC-derived beta cells over the next decade. Modulation of
additional signaling pathways (e.g. FGF, TGF-beta, EGF, PKC)
in a time-wise manner enhanced the differentiation efficiency of
pancreatic progenitors and endocrine cells (126–132). However,
detailed characterization of the hPSC-derived beta cells showed
that these insulin expressing cells were frequently co-expressing
other hormones, like glucagon or somatostatin, (usually termed
as “polyhormonal” cells) (133–135). Polyhormonal cells had
impaired glucose stimulated insulin secretion (134), aberrant
epigenetic profiles (136), inappropriate glucose transporter
GLUT1 expression, imbalanced K+ATP channel subunit
expression (137), and resembled human fetal beta cells at the
transcriptomic level (138).

A critical realization was the importance of beta cell
programming transcription NKX6-1 for beta cell development
and functionality (139). NKX6-1 expression at the pancreatic
progenitor stage of the differentiation was shown to be crucial for
the generation of “monohormonal” beta cells, expressing insulin
together with NKX6-1 (INS+NKX6-1+ beta cells) (140). Delaying
NEUROG3 induction to later stages, when PDX1+NKX6-1+
progenitors are more abundant, increased the fraction of insulin+

glucagon− beta cells (140, 141). Protocols generating functional beta
Frontiers in Endocrinology | www.frontiersin.org 6
cells in vitro from hPSCs were reported in 2014 (121, 142). Both
differentiation protocols have similarities in the length, stages, and
signaling cues used, resulting in abundant INS+NKX6-1+ beta cells.
Endocrine cell differentiation was induced by a combination of
ALK5 (a TGF-beta receptor) and NOTCH signal inhibitors.
Thyroid hormone triiodothyronine (T3) was used to induce the
expression of MAFA, a beta cell maturation marker (143, 144). The
stem cell-derived beta cells secreted insulin in response to high
glucose under static conditions, however, a more detailed analysis of
dynamic insulin secretion and calcium influx showed the response
was minimal compared to human islets (121). In both studies, the
implantation of these functional hPSC-derived beta cells rescued
diabetes in mice and had increasing levels of human insulin
produced by the grafts over time.

These landmark reports demonstrated a viable path towards
the generation of glucose-responsive hPSC-derived beta cells in
vitro, despite the cells not matching the fine-tuned responses of
human islets. It is important to recognize that human islets
isolated from cadaveric donors, while presently used as the gold-
standard control, have the limitation of considerable variability
across islet preparations from different donors in terms of purity,
cell-type composition, functionality, and expression of important
beta cell markers (30, 121, 145).

Subsequent studies have built on these protocols and further
refined them to achieve a higher percentage of hPSC-derived beta
cells with better functional responses. For example, different
studies have demonstrated how NKX6-1 expression can be
increased by aggregating the pancreatic progenitors (146, 147)
or by adding EGF and Nicotinamide (148). Also, Rho-associated
kinase (ROCK) inhibitors were shown to boost the expression
levels of NKX6-1 (149) and the numbers and maturation of hPSC-
derived beta cells (150). ROCK inhibitor Y-27632 together with
TGF-beta ligand Activin A was reported to induce the formation
of endocrine cell enriched protrusions in a 3D-aggregate
differentiation setup (151). Performing the differentiation in 3D
suspension conditions, in an attempt to recapitulate the
developing pancreas cytoarchitecture, has improved the
generation of pancreatic progenitors and endocrine cells, as well
as the reproducibility and scalability of the differentiation (141,
142, 146, 152).

Induction of endocrine cell formation in these differentiation
protocols has relied on the modulation of NOTCH (using gamma
FIGURE 2 | Multistage differentiation protocol to generate functional islet cells from human pluripotent stem cells. Current islet cell differentiation protocols mimic
pancreatic developmental stages. Here we represent the commonly used stages [based on (121)], with their usual duration in days, together with cell markers used
for the characterization of the differentiated cells (black text) and the cocktails of signaling molecules utilized to induce differentiation (gray text; FGF7, fibroblast
growth factor 7; VitC, vitamin C, ascorbic acid; RA, retinoic acid; SANT, SANT-1, a sonic hedgehog signaling inhibitor; LDN, LDN-193189, a BMP inhibitor; EGF,
epidermal growth factor; Nic, nicotinamide; ALK5i, a TGF-beta inhibitor; GSiXX, gamma secretase inhibitor used to inhibit Notch signaling; BTC, betacellulin; T3,
triiodothyronine; NAC, N-Acetylcysteine).
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secretase inhibitors), TGF-beta (ALK5 receptor inhibitors), and
EGF (EGF and betacellulin ligands) signaling to triggerNEUROG3
expression. Interestingly, a newly developed 2D planar
differentiation protocol generated cells with improved function
using latrunculin A to depolymerize the cytoskeleton during
endocrine induction, demonstrating that the cytoskeletal state of
cells during differentiation can also modulate NEUROG3
expression. These cells were also able to reverse diabetes in STZ
treated mice faster than cells generated with a 3D suspension
protocol (153). Appropriate timing of NEUROG3 expression is
important for beta cell lineage commitment. Its induction in
pancreatic progenitor cells expressing PDX1+NKX6-1+ favors
the generation of beta cells, while inducing at earlier stages will
result in polyhormonal cells that appear to largely resolve into alpha
cells (129, 140, 141, 148). Regulatory genomics analyses of
embryonic and stem cell derived pancreatic progenitors identified
TEAD and YAP as important regulators critical for pancreatic
progenitors outgrowth (154). These effectors of theHippo signaling
pathway form part of the gene regulatory network that recruits
pancreatic progenitor enhancers and controls their proliferation.
Disruption of the TEAD-YAP complex with verteporfin results in
reduced proliferation of mouse, zebrafish, and hPSC-derived
pancreatic progenitors (154). Additional studies on the role of
TEAD-YAP in pancreatic progenitors have shown that cell
confinement prevents YAP nuclear accumulation and is a
prerequisite for NEUROG3 upregulation (155). In this model,
endocrinogenesis is triggered by the disruption of extracellular
matrix signaling via integrin alpha 5, which maintains the
expression of NEUROG3 repressor complex YAP1-TEAD4-
HES1. Consistent with this, the use of verteporfin in stem cell-
derived pancreatic progenitors resulted in reduced progenitor
proliferation, increased NEUROG3 expression, and more C-
peptide+ cells (155, 156).

Other approaches to improve the function of stem cell derived
beta cells have relied on enrichment steps at various stages and
controlling 3D cluster size. For example, enrichment of GP2+
pancreatic progenitors led to the generation of increased numbers
of beta cells (157, 158), while enrichment of later differentiation
stages using an INS-GFP reporter cell line or magnetic-based
enrichment for ITGA1 improved the functionality of the stem-
cell derived islet-like aggregates (159, 160). Optimal cluster
diameter is important in order to avoid necrosis in the cell cluster
core due to hypoxia, maintain a good surface to volume
relationship, and is critical for glucose sensing and insulin release
dynamics. Acrossmammalian species with different pancreas sizes,
the diameter of islets averages 100–200 µm. The fact that
mammalian islets do not scale with the weight of the animal
suggests there is an optimal size for the function of these
endocrine miniorgans (161, 162). Recapitulating the size of
human islets by spontaneous reaggregation (159, 163) or
controlled forced aggregation using micropatterned culture plates
improves the functionality of stem cell-derived beta cells (160).

The signaling cues required in the later stages of the
differentiation protocols to induce maturation are not completely
identified. Recent studies have shown that better functioning hPSC-
derived beta cells are generated when serum-free media with no
Frontiers in Endocrinology | www.frontiersin.org 7
added factors is used in the later stages (159, 163).Velazco-Cruzand
colleagues reported remarkable acquisition of dynamic glucose
stimulated insulin secretion, including robust first and second
phases, following the omission of TGF-beta inhibition together
with cluster resizing and use of serum-free media during the last
stage of the differentiation process. Letting the stem cell-derived
islet-like cells establish their own niche and paracrine/autocrine
signaling might be a better alternative to achieve more functional
cell types (44, 164).

A common problem in the field of hPSC differentiation is the
robustness of a given protocol applied to different hPSC lines. In
most instances, protocols are optimized specifically for one or
few cell lines, and they tend to yield variable differentiation
efficiencies when other cell lines are used. In the case of
pancreatic differentiation, reports have shown how a particular
differentiation protocol results in different percentages of
pancreatic progenitors and insulin expressing cell numbers
depending on the hPSC line used (148, 165). This is an
important obstacle to the wide application of published
differentiation protocols, affecting reproducibility. It also
complicates the generation of beta cells from diverse patient-
derived hiPSCs for disease modeling purposes.

The variability in the efficiency of a particular differentiation
protocol has been attributed to the hPSC line genetic
background, which can condition its response to inductive cues
(166, 167). Recent studies suggest that specific genetic variants in
hiPSC lines may alter the differentiation efficiency towards
definitive endoderm (168). By using pools of 125 different
iPSCs and single-cell RNA sequencing, the authors mapped the
population variation during definitive endoderm differentiation
stages. They identified several molecular markers predictive of
differentiation efficiency, demonstrating that it can be altered by
germline genetic variants. Despite intense efforts to improve in
vitro differentiation protocols, currently they only partially
recapitulate the optimal in vivo signaling environment. Missing
signaling cues are probably better tolerated in some cell lines
than in others, explaining this apparent genetic background-
determined fitness to respond efficiently to a given protocol. A
partial solution to the problem of variability in differentiation
efficiency across cell lines is the generation of genome edited cell
lines. Genome editing technologies have made possible the
introduction and correction of point mutations in hPSCs (169–
171). In particular, CRISPR-Cas9 technology has proven
particularly useful to efficiently generate isogenic cell line pairs.
These can be obtained either by correcting the genetic variant of
interest in patient-derived iPSC, or by introducing mutations in a
hPSC line that differentiates robustly to the cell type of interest
(172, 173). CRISPR can also be used to elucidate which signaling
pathways and mechanisms are important to achieve a particular
differentiation stage. A recent report illustrates this approach by
using a genome-wide CRISPR screening to identify JNK-JUN
signaling as a barrier for pluripotency exit and endoderm
differentiation (174).

Generation of patient-derived hiPSCs and their differentiations
towards the pancreatic lineage has facilitated the generation of
cellular models to study diabetes. In combination with genome
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editing technologies, these approaches make it now feasible to
study how a particular genetic variant impacts pancreas
development and beta cell physiology. The first diabetes disease
modeling studies assessed the ability of patient-derived hiPSCs
and healthy donor controls to efficiently differentiate into beta
cells (175, 176). CRISPR-Cas9 genome editing has been exploited
to correct point mutations associated with diabetes in patient-
derived hiPSCs or to generate knockouts (KOs) of critical
pancreatic and beta cell genes (177–181). Maxwell and
colleagues showed that they were able to generate functional
beta cells using a CRISPR-Cas9 edited iPSC line obtained from
a patient with WFS1 mutation. The corrected cells exhibited
robust first- and second-phase insulin secretion in response to
glucose challenge and restored euglycemia when implanted into
diabetic mice, while the unedited controls did not (182).

Diabetes disease modeling studies based on hPSCs have been
mostly focused on genes that cause neonatal diabetes, since the
expected severe phenotype due to the developmental defect is
assumed to be easier to detect. Together with patient-derived
hiPSCs, several KO hPSC lines have been genome engineered to
study neonatal diabetes disease phenotypes. Several reports have
studied the outcomes of disrupting critical pancreatic
developmental genes like NEUROG3 (177), PDX1 (183), GLIS3
(184), RFX6, PTF1A, MNX1, HES1, ARX (178, 185), GATA4,
GATA6 (180, 181), or SIX2 (186). Similar approaches have been
exploited to dissect the disease mechanisms behind mutations in
HNF1B (176) and HNF4A (187) that cause MODY or a rare
mutation in STAT3 gene causing neonatal diabetes (179). Genes
that harbor genetic variants associated with increased risk of
T2D have also been knocked out with CRISPR in hPSCs to study
their role in beta cell development and function (e.g. CDKAL1,
KCNQ1, KCNJ11) (188, 189).

Beyond genetic defects impairing pancreatic and beta cell
development, those directly affecting beta cell insulin secretion
are more challenging to study due to the current limitations of
the hPSC-based models, in particular the functional immaturity
of the derived beta cells. Genetic defects in K+

ATP channel genes
(64, 188, 190), the insulin gene (191, 192), or the ER-stress
related genes WFS1, YIPF5 and MANF (79, 80, 175) that cause
neonatal diabetes and congenital hyperinsulinism have been
modeled with hPSCs using diverse strategies. These include
detailed characterization of the in vitro obtained pancreatic cell
populations, their expression of relevant beta cell markers, their
tolerance to different stresses, and their functionality in response
to glucose and other secretagogues. Additional characterization
with in vivo studies allows the assessment of how defective cells
respond to systemic environment cues in terms of further
differentiation, maturation, and acquisition of regulated insulin
secretion. Phenotyping of the implanted cell populations may be
particularly useful when the disease mechanisms do not clearly
manifest in vitro. This is of particular importance when
considering the modeling of strict insulin secretion defects,
where the functionality of the beta cells generated in vitro may
be too immature to correctly ascertain a particular phenotype.

In order to model insulin secretion defects reliably, we will need
completely functional hPSC-derived beta cells that are as
Frontiers in Endocrinology | www.frontiersin.org 8
comparable as possible to the ones found in native human islets.
Major obstacles in this quest are: i) the lack of differentiation
protocols that robustly generate functional beta cells and are
widely applicable to any hPSC line; ii) the high variability of
human islet preparations, which makes them a problematic gold-
standard control to rely upon; iii) the absence of standardized
phenotyping methods for hPSC-derived beta cells and human islets
which hinders faithful comparison of results across laboratories.
CHARACTERIZATION OF STEM CELL
DERIVED BETA CELLS: HOW DO THEY
COMPARE TO HUMAN ADULT
BETA CELLS?

Beta cell differentiation protocols are technically complex: they
have multiple stages, last over a month, and utilize combinations
of recombinant proteins and small molecules at different
dosages. During the course of any differentiation, many aspects
can deviate from the optimal parameters, leading to poor
reproducibility and consistency across experiments. In order to
minimize experimental variation and minimize costs,
laboratories differentiating hPSC usually implement standard
operating procedures to prepare culture reagents and execute
the differentiation experiments. Current approaches to
characterize the outcomes of the hPSC differentiations towards
beta cells rely on a battery of methods applied at select stages of
the differentiation process. These methods commonly include,
but are not limited to, flow cytometry, immunohistochemistry,
and RT-qPCR. It is not uncommon for differentiation
experiments to fail due to poor definitive endoderm induction,
limited expression of pancreatic progenitor markers, or reduced
number of INS+ cells. Since the differentiation of one cell type
into the next is not 100% efficient, it is critical to address the
identity of the cells in the population at given time points.
The percentage of cells reaching definitive endoderm stage, the
abundance of PDX1+NKX6-1+ pancreatic progenitors, and the
fraction of INS+NKX6-1+ cells are examples of common flow
cytometry quantifications. They are proxies for the efficiency and
quality of the differentiation in terms of achieving bona-fide beta
cells. The ultrastructure of hPSC-derived beta cells and human
islets has been compared using electron microscopy, using
insulin granule morphology as another indicator of beta cell
maturity (121, 142, 153, 160).

Current differentiation protocols yield 40–75% INS+ cells in
their later stages, although only 20–52% usually represent bona-
fide beta cells expressing INS+NKX6-1+ (see an example of
differentiation protocol presented in Figure 2). Furthermore, the
proportions of cell populations can widely vary between
experiments and different cell lines (148, 165). One of the
important aspects of human pancreatic development that is
still poorly understood is the fate allocation of the different
endocrine cell types. The timing of NEUROG3 upregulation
seems to influence the fate selection of the endocrine precursors
(193), which have been shown to be unipotent (194). Endocrine
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cell fate selection is likely determined by heterogeneous
spatiotemporal signals present in the niche of the trunk
domain endocrine progenitors. For example, different ligands
of the EGF family can modulate the cell-fate selection:
betacellulin was reported to promote differentiation into the
beta cell lineage when added to mouse embryonic explant
cultures (195). This effect was later shown be mediated via
EGFR-PI3K/AKT-RAC1 signaling resulting in apical polarity
inhibition, NOTCH signaling reduction, and induction of
NEUROG3 expression (196).

In comparison with the stem cell differentiation outcomes, in
vivo pancreatic development is also a highly heterogeneous
process. Human islet endocrine cell composition varies
depending on the islet size and location (161). It is also highly
variable across individuals (30) and ages (197). This heterogeneity
probably reflects the complexity of endocrine cell fate allocation
during development and the plasticity of the pancreas to adapt
during the life of the individual to the different metabolic needs.

At the transcriptomic level, gene expression profiling of stem
cell-derived islet cells is determinedbybulkRT-qPCRorRNAseqat
different stages. Sorting of antibody-stained or INS-GFP reporter
lines have been used to study beta cell transcriptomes. Several
reports have compared the transcriptome of stem cell-derived islet
and beta cells with human islets (121, 141, 142, 153, 160, 163, 198).
Hrvatin and colleagues compared the transcriptome of stem cell-
derived beta cells to both fetal and adult human beta cells (138).
RNAseq analyses showed that the INS+ cells generated with that
differentiation protocol were transcriptionally closer to fetal beta
cells than to adult ones. Theyhad reduced expression levels of genes
associatedwith the functionality andmaturation of the beta cell like
PDX1, NKX6-1, MAFA, GLI3, and MNX1. Recent reports
describing the generation of hPSC-derived beta cells with
dynamic glucose stimulated insulin secretion (GSIS) have
curiously shown that some important mature beta cell markers
associated with functionality are expressed at much lower levels
compared to adult beta cells (i.e. MAFA, UCN3, SIX3) (159, 163,
186, 198, 199). It is therefore unclear what should be considered a
reliable marker of functional maturity for hPSC-derived beta cells,
especially when the expression levels of some of these markers are
age-dependent, being low in functional juvenile islets and taking
years to increase (200).

Arising single cell technologies are generating a new important
source of knowledge that can be utilized in the quest of generating
better beta cells. Single cell transcriptomics,mass spectrometry, and
epigenomics are providing new insights on the development and
physiology of pancreas, islets, and beta cells (30, 201–208). Single
cell transcriptomics has proven particularly useful to investigate the
differentiation of hPSCs into beta cells by providing novel
information about the heterogeneity of the stage-specific
populations, their differentiation trajectories, the role of putative
regulators of fate decisions, as well as amean to assess the impact of
diabetes-associated genetic variants. Using single-cell RT-qPCR,
Petersenandcolleaguesexplored the trajectories of stemcellderived
pancreatic progenitors differentiating towards beta cells (209). They
identified two pancreatic progenitor populations that give rise to
“monohormonal” beta cells. This suggests the existence of
Frontiers in Endocrinology | www.frontiersin.org 9
alternative differentiation routes toward beta cells, via a
progenitor stage that expresses NKX6-1 before or after
NEUROG3 upregulation. Single-cell RNA sequencing approaches
enable the transcriptional profiling of thousands of cells
simultaneously. Krentz and colleagues used this approach to
characterize mouse and hPSC-derived endocrine progenitors
(210). Exploiting fluorescent reporter mouse strains and hPSC
lines labeling Neurog3 lineages, they described and compared the
heterogeneity of the mouse and human endocrine progenitor
populations and the gene markers they express. scRNA-seq can
also aid in the interrogation of the molecular mechanisms behind
mutations causing neonatal diabetes (182, 192). Veres et al. used
scRNA-seq to chart the differentiation trajectories of stem cell-
derived populations, showing the presence of different endocrine
and non-endocrine cell populations (159). Single cell
transcriptomic technologies have been exploited to identify
surface markers like ITGA1, which can be used to enrich for beta
cells (159), or CD9 which can be used as a negative marker of
functional beta cells (211). Similarly, single cell RNA sequencing
analysis led to the observation that WNT signaling is reduced in
endocrine cells compared to pancreatic progenitors. Chemical
inhibition of WNT signaling in hPSC-derived progenitors
induced differentiation to endocrine cells (212). By performing
scRNA-seq on in vitro and grafted stem cell derived islets,
Augsornworawat and colleagues were able to show that 6-month
grafted cells undergo important transcriptomic changes, acquiring
a gene expression profile more similar to human adult islets (199).
scRNA-seq technologies thus offer a new window into the
understanding of how transcriptomic regulation determines cell
state. Part of its potential for the development of stem cell
differentiation approaches relies on the direct comparison of the
invitro cellswith their invivo “real” counterpart.Enterprises like the
human cell atlas are yielding body-wide datasets of single cell
transcriptomic that are being used to benchmark in vitro stem
cell differentiated cells (213).

The assessment of hPSC-derived beta cell functionality relies on
methods established to characterize human islets. The most
conventional method is the evaluation of insulin secretion in
response to high glucose, either in a static setup or in a dynamic
fashion using a perifusion setup. Additionally, different
secretagogues can be used to probe the different insulin secretion
mechanisms in place: K+

ATP channel blockers (Tolbutamide),
cAMP level modulators (Forskolin, IBMX), GLP1R ligands
(Exendin-4, liraglutide), voltage dependent calcium channel
agonists (Bay K 8644), non-glucose metabolic substrates
(pyruvate, glutamine, leucine), and forced membrane
depolarization (arginine, KCl).

The stimulation index (fold increase in insulin secretion from
low to high glucose) of hPSC-derived islet cells in static GSIS
reported by most studies ranges from 2 to 3, while human islet
indexes have a median of about 7 (32). While static glucose
stimulated insulin secretion is seemingly a straight-forward
assay, there is a wide range of protocols used in the field for
both hPSC-derived cells and human islets. They diverge in
important critical points: the concentrations of low and high
glucose used, the length of the stimulation, the number of cells/
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aggregates/islets used for the test, the composition of the
stimulation buffer, the washing steps, the length of the
equilibration period, and the glucose concentration used
during that time. Also, the selection of the samples for this
assay is not always clearly reported: it is a common practice to
hand-pick human islets of homogeneous aspect and size to
perform GSIS, which might yield better results than randomly
sampled islets. Many of these parameters and details may seem
trivial but can introduce important systematic biases that make
comparison of results across labs difficult. These comparisons
could greatly benefit from the adoption of standardized practices
in the functional assessment and phenotyping of both hPSC-
derived cells and human islets. Furthermore, a stable positive
control could be used in each GSIS test to have a reference point
between experiments, but this is usually not possible due to the
scarcity and high variability of human islets.

An important characteristic of human islets is their fine-tuned
secretion of insulin in response to glucose. This can be clearly
observed in dynamic GSIS assays using perifusion systems, where
a robust first insulin secretion phase is followed by sustained
second phase of insulin secretion with lower output (145). The
acquisition of this biphasic insulin secretion pattern does not
occur in human islets until birth (214). The levels of basal insulin
secretion are also a good indicator of beta cell function. Immature
beta cells have reduced glucose threshold for insulin secretion
which leads to higher basal insulin secretion levels and a relatively
low stimulation index (138, 215). Robust dynamic glucose
stimulated insulin secretion of hPSC-derived beta cells has been
only recently reported (160, 163). It seems to depend on a
combination of abundant insulin positive cells in the aggregates,
achieved either by high differentiation efficiencies involving late
stage reaggregation in media containing no additional signaling
cues and the expression of beta cell maturation marker SIX2 (163,
186), enrichment using fluorescent reporter lines (160) or surface
marker antigens (159), followed by forced or spontaneous
reaggregation, respectively. Interesting, Hogrebe et al. also
showed that dynamic glucose stimulated insulin was achieved in
beta cells generated using their planar differentiation protocol
(153). A remaining challenge faced with hPSC-derived beta cell
GSIS is the lower magnitude of insulin secretion in comparison to
human islets. Davis and colleagues demonstrated that the disparity
may be due to a metabolic bottleneck in the glycolytic pathway
that can be ameliorated when glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) and phosphoglycerate kinase (PGK1)
activities are bypassed (216).

Additional functional characterization has relied on surrogate
indicators of insulin secretion, like the measurements of Ca2+

influx into the cytoplasm in response to different stimuli.
Calcium imaging can be performed on dispersed individual
cells or on whole aggregates/islets. It has been used to assess
the function of hPSC-derived beta cells in some studies, showing
that although calcium dynamics might be similar in a small
fraction of cells, they are not as robust as in primary human islet
cells (121, 142, 160). Electrophysiological studies of human beta
cells using patch-clamp technique have demonstrated the
electrical properties of their membranes in response to
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different stimuli (105, 217). In a recent study, Camunas-Soler
and colleagues exploited Patch-seq technology to generate
healthy and diseased human islet single cell transcriptomic
profiles linked with their electrophysiological characteristics.
This valuable dataset enabled them to generate predictive sets
of genes that reliably linked gene expression to beta cell function
and identify transcriptional programs that contribute to beta cell
dysfunction in type 1 and type 2 diabetes (218). Basford and
colleagues examined the electrophysiological properties of beta
cells derived from an INS-GFP+ reporter stem cell. Compared to
human adult beta cells, stem cell-derived beta cells presented
heterogeneous KATP (45% of the cells) and Ca2+ (42% of the
cells) channel currents and no Na+ channel currents (134). To
the best of our knowledge, there are presently no reports of stem
cell derived beta cells demonstrating electrophysiological
properties identical to those of primary human adult beta cells.

Glycolysis coupled with efficient mitochondrial respiration is
required for normal insulin secretion (219). During beta cell
maturation, active DNA methylation silences the expression of
disallowed genes (e.g.HK1, LDHA) that interfere with the glucose-
secretion coupling (220). Neonatal acquisition of aerobic oxidative
metabolism is a crucial step for the maturing beta cell, a process
shown to be induced by non-canonical WNT4 signaling and
estrogen related receptor gamma (ESRRG) (221, 222). Rates of O2

consumption and CO2 production can be used to evaluate the
respiratory capacity of islets and hPSC-derived cells (223, 224), and
serveas botha functionality andmaturationsurrogatemarker in the
efforts of making better beta cells (160, 221). Enrichment and
reaggregation of hPSC-derived beta cells induced mitochondrial
metabolic maturation, and the ultrastructure of mitochondria
showed increased folding and stacking of cristae (160).

All hPSC-derived beta cell characterization approaches are
ultimately benchmarked against human islets. Unfortunately,
human islets typically demonstrate wide phenotypic variability
across batches (30, 121). This particular point is frequently not
suitably acknowledged, and it is particularly problematic when
batches of poorly performing islets are used for the comparison
to hPSC-derived beta cell preparations. Systematic evaluation of
human islets batches at different levels (cell composition,
functionality, transcriptomics, etc.) is a step in the right
direction to highlight this variability and define a canonical
human islet response (Table 2). This is illustrated by the
Alberta Diabetes Institute IsletCore database collaborative
initiative spearheaded by the MacDonald laboratory (32),
where traceable phenotypes of over 300 human islets batches
demonstrate the remarkable variation in functionality.
MODELING DIABETES WITH IMPLANTED
STEM CELL DERIVED ISLET CELLS

An alternative approach to derive functionally mature hPSC-
derived beta cells is to implant their precursors into
immunocompromised host rodents. The first report describing
this approach showed that a few months after implantation the
grafts secreted human insulin in response to systemic glucose
March 2021 | Volume 12 | Article 642152

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Balboa et al. Modeling Diabetes With Stem Cells
administration (125). Since then, multiple implantation sites
(subcutaneous, intramuscular, renal subcapsular space,
epididymal fat pad, pancreas) (121, 125, 225, 226) and several
animal models (SCID-beige, NSG, NOG, NRG-Akita mice; nude
rats) (125, 142, 227) have been employed with variable success.

Implantation in the renal subcapsular space is one of the
preferred approaches since it is relatively easy to implant and
retrieve the cells months later via survival nephrectomy. Upon
implantation, cells become vascularized and interestingly their
cytoarchitecture can undergo rearrangement (131), concomitantly
with an increase in the functional maturation (121, 227).
Endogenous pancreatic beta cells in recipient animals can be
largely eliminated by administration of a beta cell toxin (e.g.
alloxan or streptozotocin) either before or after implantation of
hPSC-derived cells. The doses used are typically relatively
harmless to the hPSC-derived cells owing to species differences
in toxin sensitivity (228, 229). Graft function is monitored by
measuring circulating human C-peptide levels (using assays that
can distinguish the graft derived human versus recipient’s
endogenous C-peptide owing to sequence differences), and the
response to glucose can be determined with intraperitoneal,
intravenous, or oral glucose tolerance tests. Also, hPSC-derived
pancreatic progenitors or endocrine cells can be transplanted
within macro- or micro-encapsulation devices (132, 230–232).

An interesting phenomenon is the functional maturation of
implanted beta cells with time. Rezania and colleagues described
the progressive increase in circulating C-peptide levels for several
weeks after implanting pancreatic progenitor cells or more
matured cells (121, 131), a phenomenon which has also been
observed by others (160, 192, 199). Furthermore, Rezania et al.
observed faster diabetes recovery and achieved higher circulating
C-peptide levels sooner when the implanted cells were further
Frontiers in Endocrinology | www.frontiersin.org 11
along in their differentiation prior to implant (121). It remains
unclear what factors promote the apparently successful
maturation of differentiated hPSCs post implant. One
possibility is that immature hPSC-derived beta cells require a
critical niche and systemic factors including vascularization and
proper oxygenation to acquire full functionality (233).
Interestingly, maturation of hPSC-derived pancreatic
progenitors is accelerated in rats compared with mice (228),
something that the authors correlated with increased levels of
thyroid hormone in the rats, in line with the fact that thyroid
hormone promotes beta cell maturation in rats (143) and in
differentiating hPSCs (121). Sex hormones may also influence in
vivo maturation of pancreatic progenitors since following
implant, glucose-stimulated insulin secretion was observed in
female mice before males (234). The systemic environment also
provides periodic signals, which might entrain the circadian
clock of the implanted stem cell-derived islet cells, leading to
their functional maturation (235–238).

Several studies reporting the generation of hPSC-based
diabetes disease models have relied on implanting mice with
hPSC-derived beta cells. This constitutes a practical solution to
study the function of the beta cells in a systemic environment,
especially when the disease phenotype is not apparent in vitro
(80, 175, 188, 191, 192). It is also useful to investigate the
impairment of development caused by mutations perturbing
critical regulators of islet cell development (177, 179, 180).
Once grafts have matured, these models offer the possibility to
dissect the effect of particular mutations on insulin secretion by
carefully examining their responses to different stimuli.

An important aspect after implantation of hPSC-derived beta
cells, is their capacity to survive the hypoxic environment of the
implantation site until they become vascularized. This is a critical
stress period that may result in the apoptosis of the most
differentiated endocrine cells (239). Faleo and colleagues
reported that this might be partially overcome by acclimatizing
the cells to hypoxic conditions before implantation. In this
regard, the format of the implanted cells likely also plays a
critical role in successful engraftment, with smaller aggregates
probably benefiting from faster vascularization kinetics as shown
for engineered pseudoislets (240).

Another concern with stem cell derived islet cell implants,
especially when using them on diabetic rodents, is the “pellet”
effect, in which the non-regulated basal insulin secretion coming
from immature beta cells might be enough to rescue
hyperglycemia. This brings up the question of how many cells
should be implanted to achieve an optimal working graft, which
obviously will depend on the stage of differentiation and quality of
the cells in terms of functionality (121). The composition and
format (e.g. aggregate size) of the implanted cell population is also
likely critical for a successful outcome. In fact, the formation of
pancreatic progenitor cell aggregates prior to implant was shown
to be essential for the formation endocrine cells (132). In order to
investigate the in vivo maturation process of hPSC-derived beta
cells, novel in vivo imaging technologies could be exploited. Radio
tracer-based imaging of beta cell mass and function could prove to
be particularly useful in this regard (241, 242).
TABLE 2 | Key characteristics of human islets.

Morphology: spheroid
Number of endocrine cells/islet: ~1500
Mean islet size: ~150 µm
Endocrine architecture and composition:
* Beta cells ~50–60% interspersed throughout the islet
* Alpha cells ~40% interspersed throughout the islet
* Delta cells ~10%
* Gamma and PP cells <1%
Stimulated insulin secretion
* High glucose-stimulated insulin challenge (static GSIS) stimulation index: ~7-fold
* High glucose-stimulated insulin challenge (dynamic GSIS): rapid biphasic
response
* Potentiated secretion in response to cAMP modulators (e.g. Forskolin, IBMX)
* Potentiated secretion in response to incretin hormones (e.g. GIP, GLP-1)
* Increased secretion in response to membrane depolarization (e.g. KCl)
* Increased secretion in response to KATP channel activators (e.g. tolbutamide)
* Increased secretion in response to calcium channel agonists (e.g. Bay K 8644)
* Increased secretion in response to non-glucose nutrients (e.g. palmitate, leucine)
Key transcription factors and maturation markers: SIX2, SIX3, UCN3, MAFA,
NKX6.1, INS, PDX1, GLIS3, MNX1
Morphology of mature insulin granules: dense core vesicles
Dithizone staining: brick red color
Respiratory capacity: primarily mitochondrial
Calcium signaling: increased pulsatile signaling in response to high glucose
List of various features of primary isolated human islets that can be taken into
consideration for comparison to stem cell derived islet cells.
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Although intra islet paracrine signaling between the different
endocrine cell types is crucial for fine-tuned insulin secretion (44,
45, 243), different reports have shown that diabetes can be rescued
with nearly pure populations of islet beta cells with different
efficiency (244, 245). Nair and colleagues described the
implantation of 90% enriched hPSC-derived beta cells using an
INS-GFP reporter cell line. While the grafts presented a few
polyhormonal (INS+GCG+) cells 3 days after implantation, 8
weeks later, there was clear presence of GCG+ and SST+
monohormonal cells together with the beta cells, suggesting that
the polyhormonal cells gave rise to monohormonal alpha and delta
cells that likely mediate paracrine signaling contributing to optimal
insulin secretion (160). Theproportionof endocrine cell types in the
implant to achieve the best glycemic control possible is an
interesting question that requires further investigation.

Further understanding of the factors playing an important
role in the functional maturation of implanted hPSC-derived
beta cells will pave the way to the generation of better humanized
mouse models to study insulin secretion. Ultimately, optimal
control of implantation parameters will reduce the associated
variability of these experiments enabling the careful assessment
of the impact of genetic variants on insulin secretion.

CONCLUSION

Derivation of endocrine islet cells from hPSCs has become an
attractive possibility to model diabetes disease and screen for new
treatments (Figure 3). The progress in the last decade has made
it feasible to obtain cells in vitro that closely resemble the native
adult counterpart. Arising technologies like CRISPR-Cas9
genome editing and single cell transcriptomics are aiding in
the generation of more reliable stem cell models, the refinement of
Frontiers in Endocrinology | www.frontiersin.org 12
the differentiation protocols and the characterization of the
resulting differentiated islet cells. There are still important
remaining questions in the quest for more functionally mature
beta cells: how can we determine and increase beta cell
specification? What are reliable mature beta cell markers and the
key triggers of functional maturation? Together with detailed single
cell transcriptomic characterization, improved characterization of
the metabolism, proteomics and functional genomics of the hPSC-
derived islets cells, and their comparison with human islets, will
certainly pave theway forward. In this common effort, consensus in
standardized characterization of the resulting hPSC progeny, the
development of robust and reproducible differentiation protocols,
and open dissemination of results, will enable prompt replication
and speed up the implementation of successful strategies for beta
cell generation and diabetes disease modeling.
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FIGURE 3 | Schematic showing the potential application of stem cell-derived insulin-producing cells for the treatment of diabetes.
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