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Electroanatomic mapping is the gold standard for the assessment of ventricular

tachycardia. Acquiring high resolution electroanatomic maps is technically challenging

and may require interpolation methods to obtain dense measurements. These methods,

however, cannot recover activation times in the entire biventricular domain. This work

investigates the use of graph convolutional neural networks to estimate biventricular

activation times from sparse measurements. Our method is trained on more than

15,000 synthetic examples of realistic ventricular depolarization patterns generated by

a computational electrophysiology model. Using geometries sampled from a statistical

shape model of biventricular anatomy, diverse wave dynamics are induced by randomly

sampling scar and border zone distributions, locations of initial activation, and tissue

conduction velocities. Once trained, the method accurately reconstructs biventricular

activation times in left-out synthetic simulations with a mean absolute error of 3.9ms ±

4.2ms at a sampling density of one measurement sample per cm2. The total activation

time is matched with a mean error of 1.4ms ± 1.4ms. A significant decrease in

errors is observed in all heart zones with an increased number of samples. Without

re-training, the network is further evaluated on two datasets: (1) an in-house dataset

comprising four ischemic porcine hearts with dense endocardial activation maps; (2)

the CRT-EPIGGY19 challenge data comprising endo- and epicardial measurements of

5 infarcted and 6 non-infarcted swines. In both setups the neural network recovers

biventricular activation times with a mean absolute error of less than 10ms even when

providing only a subset of endocardial measurements as input. Furthermore, we present

a simple approach to suggest new measurement locations in real-time based on the

estimated uncertainty of the graph network predictions. The model-guided selection

of measurement locations allows to reduce by 40% the number of measurements

required in a random sampling strategy, while achieving the same prediction error. In

all the tested scenarios, the proposed approach estimates biventricular activation times

with comparable or better performance than a personalized computational model and

significant runtime advantages.

Keywords: deep learning, graph convolutional networks, cardiac computational modeling, electroanatomic

mapping, sparse measurements
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1. INTRODUCTION

Ventricular tachycardia (VT) is a serious cardiac condition
that may lead to hemodynamic collapse and sudden cardiac
death (John et al., 2012). It is commonly observed in
patients after myocardial infarction, which exhibit heterogeneous
scar distributions. In particular, channels of surviving slow-
conductive tissue, so-called “border zone” (BZ), promote
electrical wave re-entry (Al-Khatib et al., 2018).

Catheter-based radiofrequency ablation is an established
treatment for VT, which aims at eliminating re-entrant circuits
responsible for sustaining VTs. This procedure is, however, only
successful in about 50% of infarct-related VT cases (John et al.,
2012). The efficacy of this procedure is directly linked to the
precise delineation of the arrhythmogenic substrate and the
identification of re-entry origin (John et al., 2012; Al-Khatib et al.,
2018).

Imaging modalities such as late gadolinium enhanced
magnetic resonance imaging (LGE-MRI) or computed
tomography can provide information about the extent
of the arrhythmogenic substrate. However, assessing the
electrophysiological behavior and origin of wave re-entry may
not be possible solely from images due to the inability to
relate image intensity to precise voltage and activation time
distributions. Electroanatomical mapping (EAM) is therefore
conventionally used to inspect the arrhythmogenic substrate and
to identify the origin of wave re-entry (John et al., 2012). Despite
being the gold standard, it poses practical challenges (Josephson
and Anter, 2015). For instance, persistent episodes of scar-
related VT could lead to hemodynamic collapse, which prohibits
the acquisition of high-resolution maps that are necessary to
determine the origin of wave re-entry and abnormal wave fronts
related to scar and slow-conductive channels (John et al., 2012;
Al-Khatib et al., 2018). In addition, EAM yields measurements
on the tissue surface only, thus preventing the determination
of electrical activity within the myocardium (Ashikaga et al.,
2007).

Methods to obtain high-resolution maps from sparse
measurements commonly rely on interpolation with linear
or radial basis functions. The accuracy and quality of the
interpolation method is hereby dependent on the given
EAM, as has been investigated by Sanromán-Junquera et al.
for approaches like thin plate splines and support vector
machines (Sanromán-Junquera et al., 2015). Since these methods
neglect the underlying surface geometry and uncertainties in
electrode recordings, Coveney et al. proposed a probabilistic
interpolation of atrial EAMs based on Gaussian Markov
random fields (Coveney et al., 2020). Aiming at incorporating
physical priors into the interpolation method, Costabal et
al. investigated the use of physics-informed neural networks,
which significantly outperformed linear and Gaussian process
interpolation (Sahli Costabal et al., 2020). This work was further
extended to account for the tissue anisotropy and to obtain
information of prevalent fiber directions (Grandits et al., 2021).

While these methods may provide accurate high-resolution
maps from sparse measurements, their accuracy on capturing
intramural activation times, specifically for slow conductive

border zone, has not been investigated. Hence, they focus mainly
on atrial EAM reconstruction since the measurements provide
only surface information and modeling the atrium as a triangular
mesh is a viable modeling option due to the low thickness to
diameter ratio (Sahli Costabal et al., 2020).

To obtain coarse estimates of intramural abnormalities in
VT cases, a recent study suggests simultaneous mapping of
both endocardium and epicardium (Tung et al., 2020), which
comes at the price of longer and riskier mapping procedures.
An alternative solution may be realized by computational models
of cardiac electrophysiology. By combining imaging information
and (non-)invasive measurements, such mathematical models of
the electrical wave propagation already proved to be promising
approaches to reduce uncertainties in tissue conductivity
estimates from EAMs (Wallman et al., 2014), to study VT
mechanisms (Martinez-Navarro et al., 2019), and to predict VT
ablation outcome (Cedilnik et al., 2018; Prakosa et al., 2018;
Corral-Acero et al., 2020). Critical for accurate predictions is
the selection of modeling assumptions such as the choice of
the cell model or the fiber model. In addition, the model
requires a robust and accurate personalization scheme to
estimate local tissue properties frommeasurements. For instance,
Pheiffer et al. proposed a personalization scheme of local tissue
conductivities from a left-ventricular endocardial EAM using
backpropagation of errors along the wave propagation paths and
gradient descent to tune the tissue properties (Pheiffer et al.,
2017). Even though standard personalization methods are able
to match the measured data, their accuracy is dependent on a
careful selection of the modeling parameters and the boundary
conditions, e.g., the choice of electrical propagation origin.

This work investigates a deep learning based reconstruction
of left endocardial activation maps from a set of sparse
measurements as well as the extrapolation of approximate
activation times in the biventricular myocardium. To this end,
we propose the use of a graph convolutional neural network on
a tetrahedral discretization of cardiac anatomy derived from MR
images. Graph convolutional layers leverage feature information
of vertices within local neighborhoods defined on a graph.
By stacking these convolutional layers, the network is able
to propagate information over a large receptive field. Since
no ground truth information of intramural activation times is
available, a computational model of cardiac electrophysiology
with varying physical parameters and boundary conditions is
used to provide synthetic ground truth information.

This research directly builds on our previous work (Meister
et al., 2021) with the following new contributions:

• To train the neural network, the previous work uses a synthetic
dataset with simplified and homogeneously distributed scar
and border zone. In particular, per simulation one of the 17
left ventricular AHA regions is set to be either non-conductive
or weakly conductive, which limits the generalization to the
complex distributions observed in vivo. In this work, more
complex scar and border zone geometries as well as variations
in the initial activation locations are used to better reflect
the real world. Increasing the local variations within the
ground truth activation maps helps guide the network to
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make localized predictions, thus improving the quality of
reconstructed activation times in the pre-clinical datasets.

• Evaluation of the proposed method’s ability to reconstruct
high-resolution endocardial activation maps from sparse
measurements on four porcine cases with high-resolution
electroanatomical maps.

• Evaluation of the proposed method’s ability to reconstruct
epicardial activation times on the CRT-EPIGGY19 challenge
data comprising 11 porcine cases (6 non-infarcted, 5 infarcted)
with both endocardial and epicardial measurements.

• Evaluation of the proposed method’s ability to support the
mapping procedure by suggesting new sampling locations.

The manuscript is structured as follows: Section 2 introduces the
details of our proposed pipeline, as well as the Eikonal model of
cardiac electrophysiology which was used to generate the training
and testing data. Since the computational model further acts
as a baseline method when personalized to the sparse data, a
personalization strategy is introduced in the same section. In
section 3, results on both synthetic and real-world datasets are
presented. The accuracy under various subsampling ratios is
quantified and compared against the personalized computational
model. Section 4 discusses the results and section 5 concludes
the manuscript.

2. MATERIALS AND METHODS

2.1. Graph Convolutional Estimation of
Biventricular Local Activation Times
2.1.1. Overview of Graph Convolutional Processing

Pipeline
To estimate the biventricular local activation times, this
work proposes a deep learning based pipeline (see Figure 1),
which uses as input MR images, a routinely acquired 12-lead
electrocardiogram (ECG), and a sparse measurement cloud of
left endocardial activation times. First, the biventricular cardiac
anatomy is segmented from the MR images. In this work, we
use a manual approach to capture the specific features of the
swine cardiac anatomies used for validation. Furthermore, scar
and border zone are manually annotated from the same images.
In a second step, a tetrahedral anatomical model is constructed
by adding a rule-based fiber model and by tagging different tissue
classes (Mansi et al., 2019). In addition, a set of four standard
initial activation points is added: basal and apical on the left and
right septal wall, respectively (see Figure 1).

Next, the sparse measurement point cloud is manually
registered by an electrophysiologist since the recorded catheter
locations and the anatomical model do not share a common
coordinate system. Voltage measurements are used to guide
the alignment process, because low voltage areas correlate with
scar masks derived from MR images (Nakahara et al., 2011).
Outliers in the activation timemeasurements are removed using a
threshold of 1.5 standard deviations away from the mean of local
activation times. Geometric and electrophysiological features
are extracted from the cardiac geometry and the ECG traces
(see section 2.1.3), respectively. A graph convolutional neural
network trained on synthetic data is processing the input features

to estimate the local activation times in the biventricular domain
(see section 2.1.4).

2.1.2. Definition of Graph Convolution
Graph convolutional neural networks are chosen in this work
since they are able to learn from graph structured data, i.e.,
the tetrahedral computational domain. Their usage naturally
adapts to the problem of learning the electrophysiology since
the wave propagation is heavily influenced by the structure of
the cardiac conduction system. In this work, the biventricular
heart geometry is represented by a mesh with linear tetrahedral
elements (Kayvanpour et al., 2015). More generically, the mesh
is expressed as an undirected graph G = (V , E ,X). The graph is
composed of a set of N vertices V = {v0, . . . , vN}, vertex-wise
D-dimensional feature vectors summarized in a feature matrix
X ∈ RN×D, and a set of edges E ⊆ V × V corresponding to the
edges of the tetrahedral mesh. In this work, only undirected edges
are considered. We define a vertex vi’s neighborhood N (vi) =
{vj | iff eij ∈ E} as all 1-hop connected vertices.

The proposed network uses the so-called GraphSAGE
layers, a generalized formulation of message passing graph
convolutions (Hamilton et al., 2017). Each layer l acts on
the local neighborhoods of all vertices independently, while
sharing learnable feature transformations between them. Given
the representation hli of a vertex vi at layer l, with h0i ∈ X

being the initial vertex feature, GraphSAGE first computes a
neighborhood aggregate.

h
(l+1)
N (vi)

= aggr(hlj, j ∈ N (vi)) (1)

with “aggr” denoting any permutation-invariant aggregation
function such as mean, max, and sum. In this work mean
aggregation is used. Each vertex representation is then updated
according to

h
(l+1)
i = σ (W · (hli ‖ h

(l+1)
N (vi)

)) (2)

where σ is a non-linear activation function, W a learnable
weight matrix, which is shared across all vertices, and ‖ denotes
the concatenation of vi’s features hli and the neighborhood

aggregate h(l+1)
N (vi)

.

2.1.3. Feature Description
The feature matrix X comprises per vertex a total of 24
geometric and electrophysiological features (see Table 1). A
primary geometric feature is a descriptor of the vertex position
within the mesh. If 3D cartesian coordinates are used, the
training dataset will require significant augmentation to cover
the space of all possible affine transformations and make the
network generalize to arbitrarily oriented hearts. Therefore, the
vertex position is described in a local coordinate system that is
consistent between different heart geometries, i.e., a cylindrical
coordinate system defined with respect to the left ventricular
axis (see Figure 2A). In addition to angle, radius, and height
features, [0, 1]-normalized fields describing the relative position
between apex and base, left and right ventricle, and endocardium
and epicardium are added (see Figure 2B). Furthermore, three

Frontiers in Physiology | www.frontiersin.org 3 October 2021 | Volume 12 | Article 694869

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Meister et al. GCN Extrapolation of Ventricular Activation

FIGURE 1 | Illustration of the proposed deep learning based pipeline to estimate biventricular local activation times. In a first step the cardiac anatomy including scar

(red area) and border zone distribution (blue area) is segmented from MR images and discretized by a tetrahedral mesh. The sparse measurement cloud of

endocardial activation times (colored spheres) is manually registered and mapped to the mesh. A graph convolutional neural network is using the mesh and

vertex-wise features to estimate the local activation times in the entire biventricular domain.

TABLE 1 | An overview of all 24 geometric and electrophysiological features.

Feature ID Feature name

Geometric features

1 Angle

2 Radius

3 Height

4 Relative position: apex to base

5 Relative position: left to right

6 Relative position: endocardium to epicardium

7 Tissue health: 1 = healthy tissue, 0 = border zone

8 Categorical feature: 1 = Left endocardium, 0 =

otherwise

9 Categorical feature: 1 = Right endocardium, 0 =

otherwise

Electrophysiological features

10 EAM measurement

11 QRS duration

12 Electrical axis

13-24 Vertical positivities: Relative amplitude for each lead

of the 12-lead ECG

categorical features are added, which prescribe a value of 1 to
vertices belonging to a specific tissue class and 0 otherwise. Two
categorical features capture vertices belonging to the left or right
endocardium, respectively (see Figure 2C). The third feature
takes the value 1 if the vertex is part of healthy tissue and 0 if it is
part of border zone. Vertices belonging to scar tissue are removed
as we consider them as not depolarizing.

The main electrophysiological features are the sparse
endocardial measurements. A default value of –1 is prescribed
for all vertices that do not have any measurements available
(see Figure 2D). Additionally, features are extracted from the
12-lead ECG traces. These features are stored per vertex since
the network is making individual predictions for all vertices,
while sharing the network parameters for all predictions. This
work uses the QRS duration, the electrical axis, and 12 features
describing the positiveness of the QRS complex amplitude per
ECG lead in percent (see Figure 2E). All features except the
endocardial measurements are normalized to the [0, 1]-interval

using the bounds of the training data. To consistently normalize
the ground truth and endocardial measurements, we normalize
the sparse measurements using the training data bounds of the
target activation times. At test time, the training bounds are used
to normalize the input features.

2.1.4. Graph Convolutional Network Architecture
The proposed neural network builds upon a well-established
architecture for deep learning based point cloud processing,
called PointNet (Qi et al., 2017). The neural network is processing
all points of the input mesh independently while sharing the
learnable parameters. The PointNet architecture comprises a
local feature extractor, a global feature extractor, and a point-
wise prediction network. The structural transformer layers in the
local feature extractor are replaced by a series of GraphSAGE
layers (see section 2.1.2) to allow the exchange of information
over neighborhoods of increasing size via message passing. Each
vertex of the mesh may require information from different
receptive fields, e.g., a vertex on the endocardium may have a
measurement point in the direct neighborhood while a vertex on
the epicardium requires information from multiple hops away.
To enable the network to learn from different receptive fields,
the output of each layer of the local feature extractor as well as
all input features are concatenated per vertex to form a large
local feature matrix. Each row equals the local feature vector of
a specific vertex in the mesh. A series of fully connected layers
with leaky rectified linear activation function and global max
pooling is applied to extract a global feature vector per mesh.
The global features are appended to the local feature matrix and
further processed by fully connected layers to estimate the local
activation time for each vertex. An illustration of our adapted
architecture can be seen in Figure 3.

2.1.5. Implementation
The proposed architecture is implemented using PyTorch
(version 1.8) and PyTorch Geometric (version 1.6.3) (Fey and
Lenssen, 2019; Paszke et al., 2019). The number of layers as well as
their sizes are chosen empirically using a small subset of training
examples and using the PointNet architecture details as guidance
(Qi et al., 2017). For the local feature extractor we choose 20
GraphSAGE layers, each with 32 units and leaky rectified linear
activation. No improvement in performance has been observed
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FIGURE 2 | Illustration of the incorporated vertex-wise features: (A) Positional encoding of vertex positions in a cylindrical coordinate system. (B) Additional relative

positional encodings. (C) Categorical features denoting vertices belonging to the left or right endocardium (pink, orange), scar (red), or border zone (blue). (D) The

projected electroanatomical measurements. (E) Fourteen features extracted from the 12-lead ECG traces.

FIGURE 3 | Illustration of the proposed graph convolutional network architecture. Input is a tetrahedral mesh representing the biventricular anatomy. Per vertex, 24

geometric and electrophysiological features are extracted. First, a series of 20 GraphSAGE convolutional layers with 32 units and leaky rectified linear activation are

applied to extract local features over an increasing receptive field. The output of each layer as well the input features are concatenated. The concatenated feature

vector is further processed by a global feature extractor, which applies three fully connected layers of increasing size and a final global max pooling. The pooled feature

vector is appended to the concatenated feature vector. Local activation times in the entire biventricular geometry are estimated by processing the combined feature

vectors with three non-linear fully connected layers and a final linear transformation.
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when using more than 20 graph convolutional layers. For the
global feature extractor we select three fully connected layers with
256, 512, and 1,024 units and leaky rectified linear activation.
The final prediction network comprises three fully connected
layers (512, 256, and 128 units, respectively) with leaky rectified
linear activation and a final fully connected layer with one linear
unit. The network is trained in a multi-gpu setup comprising 8
NVIDIA Tesla V100 graphics cards for 2,000 epochs. The Adam
optimizer (Kingma and Ba, 2014) with default parameters and an
initial learning rate of 5×10−4 is chosen to optimize the network
parameters. To stabilize the training, the learning rate is reduced
by 20% every 25 epochs. For the loss function we choose

L = LLAT + LTAT (3)

where LLAT is the weighted mean squared error loss

LLAT =
1

N

∑

i

αi(yi − ŷi)
2 (4)

with N denoting the number of vertices with ground truth local
activation time yi, and ŷi the predicted activation time. αi is a
weighting factor, which we set to two for vertices belonging to
the left endocardium to put more emphasis on making accurate
predictions in this region. A weighting of αi=1 is used for
all other vertices. To guide the network to match the total
activation time (TAT), we apply an additional regularization LTAT
defined by

LTAT = ((max Ŷ −min Ŷ)− (maxY −minY))2 (5)

with Y the set of ground truth activation times and Ŷ the
set of predicted activation times. Since the network parameters
are shared between the predictions for all vertices, one cannot
guarantee that the trained graph convolutional network is
able to match the local activation times in the vertices with
measurements. To emphasize a correct fit in the measurements,
a rescaling is applied to the trained network as a postprocessing
step.We aim tomatch the range of activation timemeasurements
on the left endocardium. Given the set of measurements A

and the predictions Â in these vertices we scale the prediction
according to,

Ŷ∗ = (Ŷ − (min Â−minA)) ·
(maxA−minA)

(max Â−min Â)
(6)

2.2. Personalized Graph-Based
Computational Model of Cardiac
Electrophysiology
Since ground truth intramural activation times are commonly
not available from in-vivo interventions, this work relies
on a synthetic dataset generated by a fast graph-based
electrophysiological model (Pheiffer et al., 2017). The
physiological priors of the cardiac anatomy are expected to
be known. For instance, an anatomical model with a rule-based
fiber model and a pre-defined set of initial activation locations is
assumed to be available (see section 2.1.1 for comparison). The

local activation time yi for every vertex vi of the tetrahedral mesh
representing the cardiac anatomy is estimated by computing
the shortest path to a set of activation points via the Dijkstra
algorithm. To incorporate tissue anisotropy, generalized edge
weights considering the fiber direction are computed. For an
edge between vertices vi and vj, the generalized edge weight wij is
calculated as

wij = lij/cij (7)

with the edge conduction velocity cij in mm/s that is computed
by a linear interpolation of the conduction velocities at vertex vi
and vj. The effective edge length lij is computed as

lij =
√

(EeTijDEeij) (8)

where Eeij is the edge vector between the two vertices. The

anisotropy tensorD is computed from the fiber direction Efij along
the edge and anisotropy ratio r according to

D = (1− r)EfijEf
T
ij + rI (9)

where I is the identity matrix. In this work, an anisotropy ratio r
of 0.3 is used and fibers are modeled by a rule-based fiber model
(Kayvanpour et al., 2015; Mansi et al., 2019).

For a specific path connecting an initial activation point vinit
to a vertex vi with measurements, the activation time at vi can be
expressed by

ŷi = tinit +
∑

k

wk (10)

where tinit denotes the time when the depolarization starts at
vinit and the set {w1,...,K} represents the generalized edge weights
along this path. In a second step, intracellular transmembrane
potentials are approximated using a rule-based approach
(Zettinig et al., 2014). For a given time t, the intracellular
potential φi of a vertex vi is computed from its local activation
time ŷi according to

φi(ŷi, t) =

{

−70mV, if ŷi > t.

+30mV, if ŷi ≤ t.
(11)

Following the description in Zettinig et al. (2014) and Mansi
et al. (2019), vertex-wise extracellular transmembrane potentials
are computed, which are then mapped to a triangulation of the
torso with ECG electrode positions annotated (see Figure 4 for
reference). From the mapped body surface potentials a 12-lead
ECG is calculated.

2.2.1. Model Personalization Description
The electrophysiological model is also used as a baseline in this
study. To this end, we require a personalization scheme that finds
the best set of edge weights that explains the data, i.e., the sparse
electroanatomical map as well as the routinely acquired 12-lead
ECG. This work leverages the approach proposed by Pheiffer
et al. (2017). The first step comprises a global optimization of
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FIGURE 4 | Visualization of the swine torso template with ECG lead placement (green markers), which were used for the computation of synthetic ECGs.

homogeneous tissue conduction velocities. The cardiac anatomy
is hereby divided into five tissue classes: the myocardium, the
left endocardial Purkinje system, the right endocardial Purkinje
system, border zone, and scar. The left and right endocardial
Purkinje system comprises all vertices within a 3 mm thick
layer below the respective surface. Vertices representing scar and
border zone are annotated from theMR image segmentations. All
other vertices are considered to belong to the myocardium. Scar
is chosen to be non-conductive (0mm/s). A conduction velocity
for each of the other four tissue classes is optimized to match
the ECG traces, specifically the QRS duration and electrical axis,
by using the BOBYQA algorithm (Powell, 2009). To reduce the
number of parameters to be estimated, we constrain the border
zone conductivity to be 50% of the myocardial conductivity.

A second step refines the edge weights to match the sparse
measurements (Pheiffer et al., 2017). The objective function in
this case is the mean squared error loss over the M vertices
with measurements

LMSE =
1

M

∑

i

(yi − ŷi)
2 (12)

where yi denotes the activation time measurement for vertex
vi. Similarly, ŷi corresponds to the simulated activation time at
vertex vi. The estimated activation time for any vertex in the
tetrahedral mesh is dependent on the edge weights along the
shortest path to the associated activation point and the initial
activation time (see Equation 10). This setting is similar to neural
networks where the output is dependent on the parameters of
the hidden layers and the input to it. Backpropagation and
gradient descent is therefore used to fine-tune the edge weights
of paths connecting the vertices with measurements with their
shortest-path-connected activation points.

The gradient descent update rule of an edge weight writes

wt+1
k

= wt
k − γ g (13)

where t denotes the current iteration number, γ the step size,
and g the gradient. We seek gradients g = ∂L

∂wk
that minimize

Equation 12. The backpropagation algorithm yields gradients
along the entire path by recursively applying the chain rule from
the end to the start of the path. This can be formulated as

∂L

∂wk
=

∂L

∂ ŷi

∂ ŷi

∂wk
(14)

The gradient at the path end can be derived from the
Equation (12) by

∂L

∂ ŷi
= −

2

M
(yi − ŷi) (15)

and the gradient of the activation time with respect to any edge
weight from Equation (10) by

∂ ŷi

∂wk
= 1 (16)

Since there is an optimization path associated with each
measurement point, an edge might be traversed several times.
We accumulate gradients before updating the weights with
Equation (13).

3. RESULTS

3.1. Data Generation
The first cohort comprises 15 swine datasets. Each dataset
consists of MR images, 12-lead ECG traces (CardioLab, GE
Healthcare) and a left endocardial contact map (Ensite Velocity
System, St. Jude Medical). The EAM was recorded with a
standard irrigated radiofrequency ablation catheter (FlexAbility,
Abbott) and captured the intrinsic cardiac activation after left
bundle branch block (LBBB) induction. Due to the limited
amount of data and the absence of ground truth information of
intramural local activation times, the computational model from
section 2.2 was incorporated to build a synthetic training set.

First, 11 of the 15 swine datasets with the fewest EAM
measurements were selected. Segmentations of the cardiac
biventricular anatomy were extracted from theMR images. These
segmentations were then used to construct a statistical shape
model. To this end, the triangular segmentations were rigidly
aligned using point correspondences. The principal component
analysis was applied to extract a mean model and the modes
of variation. In total, 200 geometries were sampled from the
statistical shape model using only the five most informative
eigenvectors explaining more than 80% of the variance. Twenty
models were discarded due to implausible geometries. The
“Computational Geometric Algorithms Library” (CGAL) was
used to create tetrahedral meshes with a mean edge length of
approximately 2.5mm (The CGAL Project, 2021). To simulate
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synthetic ECGs, a generic swine torso with standard ECG
placement (see Figure 4 for reference) was first manually aligned
to match the MR images in one case and then automatically
registered to the other anatomical models using rigid registration.

For each of the 180 synthetic geometries, a total of 100
simulations were computed by varying the initial activation,
the tissue conduction velocities, and the scar and border
zone distribution. The first 50 simulations per geometry were
computed using a set of four activation points located on
the septum: left and right, basal and apical (see Figure 1 for
reference). The other 50 simulations were generated using
three randomly placed activation points on the left ventricular
endocardium. To model the arrhythmogenic substrate, we
randomly select for each simulation the number of scars (up to
three). A random point on the left ventricle is then iteratively
selected. Per point we randomly select two distance thresholds.
The first threshold, ranging between 5 and 12.5 mm, will be
used to denote all vertices within the given radius to be scar. The
second threshold, a 3–10 mmmargin around the scar, will define
the border zone. To model more complex scar distributions with
channels between them, the second or third scar will be placed
within a 25 mm margin around the current scar distribution.
Furthermore, vertices that were already assigned to border zone
or scar will not be overwritten.

The conduction velocities were varied under the assumption
of homogeneous conduction within five tissue classes. Scar was
modeled with 0mm/s. The general myocardium was modeled
with a conduction velocity of cMyo ∈ [250mm/s, 750mm/s]. The
conduction velocity in the border zone was randomly varied to be
cBZ ∈[100mm/s, cMyo]. Furthermore, the left and right Purkinje
systems (cLV & cRV), each modeled by a 3mm thick endocardial
layer, have had conduction velocities that varied between 1,000
and 2,500 mm/s.

From the 18,000 simulations, we discarded all simulations
with a simulated QRS duration greater than 200ms, amounting
to approximately 10% of all simulations, to stay within
physiologically plausible ranges. The remaining simulations were
randomly split by geometry into a training set (90%), a validation
set (5%), and a test set (5%). In addition, the training dataset
was augmented in each epoch by randomly subsampling the
left endocardial ground truth using a random subsampling ratio
between 10 and 100%.

3.2. Reconstruction of Biventricular
Activation Times
After fitting the network to the training set, we first evaluated
whether our proposed method can reconstruct the local
biventricular activation times under unseen conditions. To this
end, the network was applied to the 5% left out simulations from
the synthetic database, which comprises 9 unseen geometries
yielding a total of 870 unseen depolarization patterns. In
particular, we subsampled the endocardial ground truth at
various ratios (1, 2, 5, 10, 15, 20, and 25%) and had the network
reconstruct the local activation times in the entire biventricular
domain.We chose the mean absolute error (L1-error) to quantify
the difference in local activation times for different tissue classes:

the biventricular heart, the left endocardium, the left epicardium,
and the border zone. In addition, we quantified the total
activation time error, approximated by the range of the predicted
or ground truth activation times.

The results as seen in Table 2 suggest that the network is
able to leverage the endocardial information since the errors are
decreasing for all tissue types when increasing the number of
provided samples. Furthermore, the network is able to accurately
reconstruct endocardial activation maps. Even in a setting of
only 0.4 samples per cm2 (equal to a subsampling ratio of 2%
and less than observed during training) the network reconstructs
the complete endocardial ground truth with a mean absolute
error of less than 5ms. The mean absolute error rapidly drops
to approximately 1ms when increasing the number of samples
beyond 2.1 samples/cm2. Similarly, we observe that the network
is able to match the QRS duration effectively. Moreover, a
significant decrease of the mean absolute errors for the border
zone tissue is observed with an increased number of provided
endocardial samples. This suggests that the network is able
to infer to some extent the conductive property of the slow-
conductive tissue, which may help in reducing ambiguities in the
depolarization pattern.

3.3. Reconstruction of High-Resolution
Endocardial Maps From Sparse
Measurements
In a second experiment the same network trained on the
synthetic dataset is applied to the four swine datasets that were
not used to construct the statistical shape model. For each of
the four cases, scar and border zone were segmented from the
MR images. The associated high-resolution electroanatomical
map was manually registered by an electrophysiologist since the
recorded catheter positions and the anatomical model do not
share a common coordinate system. The resulting measurements
were then mapped to all vertices on the endocardial surface
of the tetrahedral meshes using nearest neighbor projection.
The projected measurements were then randomly subsampled
with the following ratios: 0.2, 0.4, 1.0, 2.1, 3.3, 4.3, 5.5, and
6.5 samples/cm2. The same samples were provided as input to
three different methods for reconstructing the full endocardial
measurement map: the graph convolutional neural network, the
computational model, and a naive nearest neighbor projection.
In the latter case, the raw EAM was first filtered to contain only
the data points that would be projected to the subsampled points.
Then, the reduced point cloud was again mapped to all vertices
of the endocardial surface. The three methods were compared
in terms of their mean absolute errors to reconstruct the ground
truth high-resolution activation map.

As can be seen in Figure 5, both the graph convolutional
network and the personalized computational model are
producing significantly lower mean absolute errors for very
low sampling ratios (<2.1 samples/cm2) compared to the
projection method. All three methods improve substantially
with increased sampling ratios. For larger sampling ratios it is
expected that the projection method is outperforming the other
two methods since the nearest neighbor projection may assign
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TABLE 2 | Mean absolute errors (± the standard deviation) in ms between the prediction and the synthetic ground truth activation time for different tissue types as well as

the total activation time (TAT) at different subsampling ratios.

Subsampling ratio 1% 2% 5% 10% 15% 20% 25%

∅ Samples / cm2 0.2 0.4 1.0 2.1 3.3 4.3 5.5

TAT in ms 3.3 ± 3.7 2.1 ± 2.2 1.4 ± 1.4 1.2 ± 1.1 1.1 ± 1.2 1.1 ± 1.2 1.0 ± 1.1

Whole heart in ms 7.6 ± 7.4 5.7 ± 5.9 3.9 ± 4.2 3.3 ± 3.7 3.2 ± 3.7 3.1 ± 3.6 3.1 ± 3.6

LV Endo. in ms 7.3 ± 7.4 4.7 ± 5.4 2.4 ± 2.9 1.5 ± 1.9 1.3 ± 1.7 1.1 ± 1.4 1.0 ± 1.2

LV Epi. in ms 8.8 ± 8.2 6.7 ± 6.5 4.5 ± 4.5 3.9 ± 3.9 3.7 ± 3.8 3.7 ± 3.7 3.6 ± 3.6

Border zone in ms 9.4 ± 8.8 7.4 ± 7.3 5.3 ± 5.6 4.3 ± 4.6 4.0 ± 4.3 3.9 ± 4.2 3.7 ± 4.1

FIGURE 5 | Mean absolute error for different subsampling ratios on our in-house cohort comprising four swine datasets with high-resolution endocardial EAMs.

Comparison of the graph convolutional network (GCN), the personalized computational model (DEP), and a naive nearest neighbor projection (NN). The red bar

denotes the mean, the black bar denotes the 15–95 percentiles.

the same raw measurement point to multiple vertices on the
endocardial surface, thus increasing the chances that a majority
of the raw measurement points are used. When qualitatively
comparing the results (see Figure 6), it can be observed that
the computational model is producing a smooth activation map
adherent to the modeling priors and moderately affected by the
sampling points. The nearest neighbor projection is producing
very patchy patterns at low sampling ratios and quickly recovers
the ground truth with increased number of samples. In contrast,
our proposed method is delivering a good compromise between
fine-grained details and coarse-grained interpolation. It is worth
noting that when providing very few endocardial samples
(0.2 samples/cm2) the network is predicting activation times
similar to the computational modeling result, suggesting that the
proposed method was able to learn a set of modeling priors from
the synthetic training set. However, the method is not forced to
adhere to the modeling priors of the computational model, thus
it is able to deviate from the position of earliest activation. For
instance, in Figure 6 one can see that the earliest activation when
providing 0.2 samples/cm2 is located more anterior compared
to the personalized computational model. An additional early
activation zone can be recovered in the mid of the anterior wall
when providing more samples.

In addition to the comparison to the measured data,
synthetic 12-lead ECGs were computed from the graph

convolutional network predictions by calculating intra- and
extracellular potentials as described in section 2.2. The
resulting traces were compared against the ground truth ECGs.
Overall, the signal positivity was matched in the majority
of the limb leads. We did, however, observe inconsistencies
when comparing relative amplitudes (see Figure 7 for an
example). The highest discrepancies were always found in
the precordial leads. In particular, inconsistent R/S ratios
were observed.

3.4. Reconstruction of Epicardial Activation
Times From Endocardial Measurements
To evaluate the network performance for predictions of
activation times beyond the left endocardium, we applied the
network without retraining to the CRT-EPIGGY19 challenge
data (Camara, 2019). The dataset comprised eleven swine
datasets (four training cases and seven testing cases), for which
both endocardial and epicardial electroanatomical mapping has
been performed with intrinsic activation after LBBB induction
as well as after cardiac resynchronization therapy (CRT).
Furthermore, information of the scar extent based on the 17
segment LV model as well as its transmurality was provided.
Additional details of the data have been described in Soto Iglesias
et al. (2017). For this experiment, we used the endocardial
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FIGURE 6 | Illustration of the prediction results for the graph convolutional neural network (GCN), the personalized computational model (DEP), and the nearest

neighbor projection method (NN) for different sampling ratios. Provided samples are highlighted by pink spheres.

map with intrinsic activation at different subsampling rates.
We considered the full endocardial activation map and the
epicardial one as the ground truth. To be consistent with the
mesh resolution of the training geometries, all tetrahedral meshes
provided by the challenge organizers were resampled for an
average edge length of 2.5mm using the CGAL library (The
CGAL Project, 2021). Since no ECG traces were provided as
part of the challenge, we generated synthetic ECG traces using
the following approach. First, the previously used porcine torso
(see Figure 4) was rigidly aligned to the tetrahedral meshes by
establishing point correspondences. Next, intra- and extracellular
potentials were computed from the ground truth activation times
as described in section 2.2. This corresponds to the estimated
electrical activity during the QRS interval. Synthetic 12-lead
ECG traces were then computed from the potentials using
the boundary element method as described in Zettinig et al.
(2014).

We compare the network to the electrophysiological model
personalized to the same subsampled data as done in the previous
section, ranging from 1 to 100% of the endocardial samples
(equal to 0.2–21.8 samples/cm2). As illustrated in Figure 8A,
both the neural network and the personalized computational
model are able to reconstruct the entire endocardial map

reliably. The neural network is improving more with increased
number of endocardial samples and is able to achieve lower
errors at sampling ratios of 16.3 samples/cm2 and more.
When evaluating the performance on the left epicardium (see
Figure 8B), both methods produced significantly larger errors
with the neural network outperforming the computational
model. We observed no significant improvement with increased
number of endocardial samples. To measure the overall fit of the
prediction to the ground truth measurements (endocardial and
epicardial), we follow the approach by Cedilnik and Sermesant
(2019) and compute the average over case-wise root median
squared errors (RMSE) on the training and test set, respectively.
Errors between 5.6 and 7.8 ms weremeasured for the network for
different sampling ratios, with 6.6–9.3 ms for the personalized
computational model (see Table 3). Cedilnik et al. reported
on the training set a mean RMSE between 9 and 17 ms
depending on the personalization scheme of an Eikonal model
to both endocardial and epicardial measurements (Cedilnik and
Sermesant, 2019). Furthermore, when comparing qualitatively
the epicardial ground truth to the solutions provided by the
two methods (see Figure 9), the two methods provided very
similar wave propagations. They were, however, only coarsely
approximating the measured data.
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FIGURE 7 | Visual comparison of the ground truth 12-lead ECG (black) taken

from one case of the in-house dataset and the synthetic ECG (blue) simulated

from the graph convolutional neural network prediction given the full

electroanatomical map. Please note that lead I is missing because of a

hardware failure.

3.5. Ablation Study on ECG Features
The preceding experiments leverage ECG information in
addition to the measured activation times to estimate
biventricular activation maps. In particular, 14 surrogate
metrics derived from 12-lead ECG traces (see Table 1) are used
as input features to the graph convolutional neural network.
This work relies on surrogate metrics since ECG traces may not
be present as a digital recording, which would allow automatic
feature extraction. Furthermore, ECG traces often exhibit
high frequency noise, which could pollute ECG-based features
provided as input to the network. The metrics proposed in
this work are expected to be less affected by this kind of noise.
Nonetheless, it is important that the model learns the relative
importance of all provided input features, not relying solely
on ECG information. To study the impact of the ECG features
on the prediction accuracy, we performed an ablation study.
To this end, we trained four additional graph convolutional
networks on the same data split as described in section 3.1
and without changes to the hyperparameters (see section 2.1.5).
While all networks used the same endocardial measurements and
geometry features as input, the ECG information was provided
in four different ways: no ECG information, QRS duration
only, QRS duration with electrical axis, and QRS duration with
vertical positivities.

All networks were evaluated on the in-house dataset as
described in section 3.3 and compared against the graph network
using the original input features. The largest errors were observed
when no ECG information was provided, suggesting that ECG
information contributes significantly to the reconstruction of
the activation map (see Figure 10). The results further show
that the QRS duration is the most important ECG feature since
its addition leads to comparable performance to the original
model. Further addition of electrical axis or vertical positivity
leads to improvement in the prediction accuracy only in some
of the experiments. This seems to suggest that those features
have the potential to contribute to more accurate estimation of
the activation times, but their correlation to the ground truth is
comparatively less strong than that of other features.

3.6. Active Suggestion of New Sampling
Locations
The previous experiment demonstrates that ECG information
is important for the estimation of activation times. Compared
to the steep error reduction with an increase in provided
measurements, the small differences between the networks with
different ECG features confirm that the method prioritizes
information from the measurements. We hypothesize that
targeted selection of the measurement locations could boost the
performance compared to randomized sampling. To this end, we
run an experiment in which new sampling locations are suggested
based on the intrinsic uncertainty, measured by the disagreement
between the predictions of an ensemble of neural networks, as
successfully demonstrated by Sahli Costabal et al. (2020). While
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FIGURE 8 | Mean absolute error distributions (mean: red; 15–95 percentile: black) on the left ventricular endocardium (A) and the epicardium (B) of the graph

convolutional predictions on cohort #2 comprising eleven swine datasets with high-resolution endocardial EAMs.

TABLE 3 | Comparison of the proposed neural network (GCN) and personalized

computational model (DEP) on the training and the test cases of the

CRT-EPIGGY19 challenge.

Data split Training (4 pigs) Testing (7 pigs)

∅ Samples / cm2 6.5 16.3 21.8 6.5 16.3 21.8

GCN (Mean RMSE in ms) 6.7 6.2 5.6 7.8 7.3 6.7

DEP (Mean RMSE in ms) 6.8 6.6 6.6 9.3 8.7 8.7

The mean over per-case root median squared errors (RMSE) is presented for different
sampling ratios. RMSE is computed over the vertices with endocardial or epicardial
measurements.

Costabal et al. trained multiple networks with different initial
conditions and had to repeatedly fine-tune the models with
each new sample collection, this work relies on an ensemble of
pre-trained networks comprising the four graph convolutional
networks from the previous section. Since these models are able
to incorporate the given measurements without a re-training
step, new samples can be suggested in real-time.

To sequentially propose new sampling locations, the following
approach was performed. Starting off with a set of randomly
sampled positions, the feature matrices for each network were
assembled. Next, each network estimated local activation times.
The mean activation map of the four networks as well as vertex-
wise standard deviations were computed. Since the standard
deviation represents the disagreement between the predictions,
the proposal of a new sampling location was chosen to be the
vertex location with highest standard deviation. A constraint was
added such that each vertex can only be selected once.

To demonstrate that such relatively simple uncertainty
estimation is of value, the following scenario was considered.
First, the endocardia of the test datasets from the second
experiment (see section 3.3) were split into septal regions and
free wall regions by applying a vertex-wise threshold of ±90
degree to the angular feature of the local coordinate system. Next,
10% of the free wall vertices were randomly chosen as an initial
mapping. The active sampling strategy was then applied only
to the septal region. This setup was chosen to study whether
new sampling locations will correlate with the presence of scar
and border zone, which is located on the septum in all cases of
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the in-house dataset. For each new sample, the mean activation
map was computed from the model ensemble, and the mean
absolute error with respect to the ground truth was evaluated.

FIGURE 9 | Illustration of the prediction results for the pig “Neus” from the

CRT-EPIGGY19 challenge when providing 100% of the endocardial

measurements to the graph convolutional neural network (GCN) and the

personalized computational model (DEP). The neural network is able to retain

the information on the endocardium and provide a coarse approximation of the

left epicardial activation time. The computational model fails to accurately

match the endocardial information and over-estimates the late activation on

the left epicardium.

For comparison, a random sampling strategy was applied to three
alternative approaches: the graph convolutional network with all
features, the personalized computational model, and the nearest
neighbor projection.

The results as presented in Table 4 show that the active
sampling strategy is producing the lowest error for all
subsampling ratios. In particular for very low sampling
densities, high differences between the active ensemble and the
personalized model as well as the nearest neighbor projection
were found. For instance, at 1% the GCN with active sampling
agreed with the ground truth with a mean absolute error of
8.5ms ± 7.9ms. The personalized computational model and the
nearest neighbor projection recovered the ground truth with 9.5
± 8.9ms and 14.9 ± 11.4ms, respectively. Using the random
sampling strategy, all methods achieved the lowest errors at a
sampling density of 10%. In contrast, the ensemble-based active
sampling strategy can achieve the same error with significantly
less measurements. For the GCN a reduction by 40% of septal
samples was observed, while the reduction for the nearest
neighbor method measured 20%. At 10% of septal samples,
the estimated activation maps of the active sampling strategy
shows a qualitatively better agreement with the ground truth
compared to the random sampling result (see Figure 11). For
instance, the mid-septal location of earliest activation area found
in the ground truth is fully recovered by the active sampling,
while the random sampling leads to multiple areas of earliest
activation. Moreover, deceleration zones within fast conductive
early activated areas, potentially associated with presence of
border zone, are fully recovered with the proposed sampling
strategy. A visual comparison of the sampling locations and of the
segmented border zone indeed shows higher sampling densities
in this area. The results are therefore particularly encouraging
since the proposed sampling strategy samples in areas that are
known for their uncertain tissue characteristics.

FIGURE 10 | Illustration of the results of the ablation study applied to the in-house dataset. Mean absolute endocardial reconstruction errors are compared for

different graph convolutional networks trained on subsets of all features (ALL): no ECG features (NoECG), only QRS duration (QRS), QRS duration with vertical

positivities (QRS + Vert), and QRS duration with electrical axis (QRS + EA). The results suggest that ECG information, particularly the QRS duration, is necessary for

the accurate estimation of activation maps. The small differences between the networks with ECG features suggest that the networks do not rely solely on ECG

features to estimate the endocardial activation maps.
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TABLE 4 | Mean absolute errors (± the standard deviation) in ms between predicted and ground truth activation times at different subsampling ratios of the septal ground

truth.

Subsampling ratio (%) GCN-active GCN-random DEP-random NN-random

1 8.5 ± 7.9 8.7 ± 8.1 9.5 ± 8.9 14.9 ± 11.4

2 8.3 ± 8.0 8.4 ± 8.2 9.1 ± 8.6 13.7 ± 11.5

3 8.0 ± 7.9 8.3 ± 8.3 9.3 ± 8.4 9.7 ± 10.1

4 7.8 ± 7.9 8.0 ± 8.0 9.0 ± 8.3 9.3 ± 9.5

5 7.5 ± 7.7 7.9 ± 8.0 8.7 ± 8.1 9.3 ± 9.6

6 7.4 ± 7.6 7.7 ± 7.7 8.6 ± 8.1 8.7 ± 9.3

7 7.2 ± 7.5 7.6 ± 7.7 8.5 ± 8.1 8.1 ± 9.4

8 7.1 ± 7.4 7.7 ± 7.7 8.4 ± 8.0 7.4 ± 9.4

9 7.0 ± 7.4 7.5 ± 7.6 8.3 ± 7.9 7.2 ± 9.4

10 7.0 ± 7.4 7.4 ± 7.5 8.2 ± 7.8 7.1 ± 9.4

Active sampling based on an ensemble of four GCNs (GCN-active) is compared against three methods with random sampling: the graph convolutional network (GCN-random), the
personalized computational model (DEP-random), and the nearest neighbor projection (NN-random).

FIGURE 11 | Illustration of the prediction results for the graph convolutional

neural network using the proposed active sampling strategy and the random

sampling strategy after selecting 10% of septal vertices. Provided samples are

highlighted by black dots. The segmented border zone mask is overlayed in

pink and located antero-septal in this swine model of myocardial infarction.

Compared to the random sampling strategy, the active sampling approach

better captures important details of the ground truth, such as the location of

earliest activation and deceleration zones associated with the slow conductive

border zone.

4. DISCUSSION

This study investigates the data-driven interpolation and
extrapolation of sparsely measured left endocardial activation
times. A system, capable of estimating the electrical activity
from sparse measurements, ECG information, and imaging data,
could impact computational cardiology in numerous ways. For
instance, the procedural time of the mapping procedure could
be significantly reduced since less samples would need to be
acquired. Other applications include the suggestion of valuable
sampling locations. Paving the way toward this goal, this work
relies on a graph convolutional neural network that enables

learning to encode topological structure and local features as
well as the propagation of information on graph-structured
data. Its usage naturally adapts to cardiac electrophysiology,
where the electrical wave propagation is directly linked to the
structure of the cardiac conduction system, for which graph-
based representations are suitable. A synthetic dataset to train
the network has been generated by a computational model
to overcome the absence of ground truth activation times in
the entire biventricular geometry. A statistical shape model as
well as randomized scar and border zone distributions, varying
conduction velocities, and different initial activation locations
have been used to induce variability in the simulations.

Without re-training, the proposed approach was evaluated
on unseen synthetic simulations and two real world datasets.
In all setups, the graph convolutional neural network was able
to accurately reconstruct the endocardial activation maps even
when sparse data points were provided. Moreover, decreasing
errors were observed with an increase in the number of
provided measurement samples, suggesting that the network
can incorporate the measured information. Compared to the
qualitative results from our previous work (Meister et al.,
2021), we observed significantly better agreement with the
ground truth activation maps, which we attributed to a better
training dataset. In particular, the interpolation of the data
appeared to be physically plausible, while the previous work
incorporated the measured data as local discontinuities in the
predicted activation map. The resulting activation maps were
patchy and high accuracy was only achieved in vertices with
provided measurements.

Since measuring intramural activation times is commonly
infeasible in patients, the method was evaluated only on the left
out synthetic data. Here, a good agreement between the ground
truth and the prediction was observed. The errors decreased the
more endocardial samples were provided to the network. Since
the border zone conduction velocity was independently varied
and was always connected to the endocardial surface in this
cohort, the result suggests that the network was able to account
for the presence of intramural border zone based on the provided
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measured activation times. For the epicardial activation times,
the method was evaluated on the CRT-EPIGGY19 challenge.
While observed errors were in general significantly higher
compared to the other benchmarks, macroscopic features of the
epicardial activation map could be reproduced by the network.
For instance, the area of latest activation in both measured and
estimated activation map was basal with a small shift toward
the anterior side (see Figure 9 for comparison). It is important
to notice that the measurement of epicardial activation times
could be affected by significant sources of noise such as far
field effects, motion, and thin epicardial layers of fat, or due
to errors in the alignment (van Huls van Taxis et al., 2013;
Josephson and Anter, 2015). This could explain at least in
part the higher estimation errors on the epicardium. Similar
differences were observed by the challenge participants Cedilnik
et al., who personalized an Eikonal model to both endocardial
and epicardial measurements (Cedilnik and Sermesant, 2019).
The authors reported a mean RMSE between 9 and 17 ms
depending on the used personalization strategy. In comparison,
our graph network achieved a mean RMSE between 5.6 and 7.8
ms depending on the subsampling ratio. The results suggest that
the proposed method provides more accurate results compared
to Cedilnik et al. even at low subsampling ratios. This holds
true despite one intrinsic limitation of our approach, since our
model assumed that early activation starts either septal or in
the left ventricular endocardium. The challenge data had cases
with early activation in the right ventricle. For those cases, the
RMSE reported above will be inflated by higher errors in the
estimation of the activation times in the right ventricle. We
hypothesize that training the network on additional synthetic
examples with early right ventricular activation would further
improve the results.

We further performed an ablation study to investigate
the impact of the ECG features on the prediction accuracy.
The results highlight that the inclusion of ECG information,
particularly the QRS duration, is important to reconstruct the
activation times. Additional features, such as the electrical
axis and vertical positivities, only improved the results in
some experiments. We hypothesize that these features have the
potential to improve predictive accuracy, but the trained model
did not rely on them as much as on the other input features.
This could be due to the fact that the relationship between
these specific metrics (electrical axis and vertical positivity) and
the pattern of activation times are intrinsically complex, with
potentially different activation maps being associated to ECG
signals with analogous surrogate metrics. Usage of more complex
features derived from the ECG signals could help the model
discriminate better their predictive role. In our animal datasets
we observed that the ECG signals were affected by noise in
some of the leads, which could make the extraction of the ECG
features more challenging. Even though the surrogate metrics
are by design less impacted by noise in the measurements, the
networks were trained on simulated and thus noise-free data.
Investigating data augmentation strategies that add realistic noise
to the training data is an interesting area of future research,
which may improve the generalization between synthetic and
measured data.

In addition, the method was compared against two other
methods. When comparing the graph network against a
nearest neighbor projection on the task of reconstructing high
resolution endocardial activationmaps, the data-driven approach
outperformed the projection method for low sampling densities.
The projection method generated coarse and patchy activation
maps, which suggests this method to be sensitive to measurement
noise. In contrast, the graph network produced a smooth and
physically plausible interpolation of the provided measurements.
The qualitative results are comparable to those obtained by the
computational model of cardiac electrophysiology, which was
personalized to the same provided measurements and which
was used as the other comparator. The computational model
was, however, not able to capture the intricate details of the
high-resolution activation maps due to the strong regularizing
effect of the modeling priors. When comparing both methods
on the challenge data, the network produced similar or better
results than the computational model when attempting to
reconstruct the complete endocardial activation map from
a sparsefied version. When targeting the estimation of left
epicardial activation maps from the endocardial measurements,
the network significantly outperformed the computational
model. Visually, both methods provided similar epicardial wave
front estimations on the challenge data, but the network proved
better at capturing the total activation time (see Figure 9).

At last, the feasibility of supporting the mapping procedure
by actively suggesting new sampling locations was investigated.
Using an ensemble of graph neural networks, the disagreement
between predictions was used to determine locations of high
uncertainty, which were then used as new sampling locations.
The in-silico study on the in-house dataset suggests that this
rather simple approach was able to suggest meaningful new
sampling locations that lead to lower errors compared to random
sampling of the same number of points. To match the same
accuracy as when providing 10% randomly selected septal
measurements as input to the graph network, a reduction of up
to 40% sampling points was achieved with the active sampling
strategy, which could result in a significant reduction of the
mapping procedure duration. Compared to a similar synthetic
experiment, which used physics-informed neural networks and
relied on fine-tuning of a network ensemble for each new
sample (Sahli Costabal et al., 2020), our method showed a
significant runtime advantage since it was able to directly
integrate newlymeasured data points. Up to 2 samples per second
could be processed with this approach. In contrast, Costabal
et al. reported that fine-tuning alone took approximately 1
min per sample (Sahli Costabal et al., 2020). Furthermore,
not only the endocardial activation times were estimated,
but local activation times in the entire biventricular domain.
Additional speed gains are expected with further algorithmic and
architectural optimizations.

While the present study demonstrated a new way for joint
interpolation and extrapolation of measured activation times, the
proposed method presents several limitations. First, a noticeable
difference between the observed errors on the synthetic and
measured data was found. The higher errors may be explained
by the high amplitude noise in the measured data, which is
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particularly present in the in-house dataset (see Figure 6 for
an example). Since the noise manifests as seemingly unphysical
local discontinuities, the proposed approach could be regarded
as a physics-inspired denoising procedure. This however would
have to be demonstrated by comparing the model results against
a larger set of measured maps with varying signal-to-noise
ratio. Furthermore, we hypothesize that the proposed method
is highly dependent on the underlying computational model
used to generate the training dataset. This is supported by the
qualitatively similar activation maps that were produced by the
graph network and the computational model, particularly for
very low sampling densities. The training data used in this
work comprised simulations with limited variability in modeling
assumptions. For instance, the use of 180 geometries sampled
from a statistical shape model computed from only 11 swine
datasets could be too limiting to cover the wide range of
anatomical variability. In the experiments conducted in this study
we did not observe a significant variation of the error metrics
across different anatomical models in the testing set. Nonetheless,
the relatively small sample size in our experiments does not
allow to generalize this finding and a richer statistical shape
model could make the trained network more robust to geometry
variations. Furthermore, scar and border zone were modeled by
a relatively simple heuristic that results in primarily transmural
distributions. This modeling assumption is particularly suitable
for severely scarred cases, such as the swine hearts considered in
this work. Applying our approach to more general cases, such
as intricate intramural channels within core scar, may require
further enrichment of the training dataset.

The graph representations adopted in this work were based on
tetrahedral approximations of the biventricular heart geometry,
with a relatively coarse mesh resolution (2.5mm). This implies
that the spatial distribution of activation times in the tissue
(both in the training and in the testing sets) is approximated
and does not include fine spatial details at lower scales. This
could potentially affect the capability of the model to accurately
represent transmural gradients in activation times. This, however,
is expected to be acceptable in the modeling of swine hearts,
in which transmural gradients of activation time are relatively
small due to the transmural Purkinje tree (Garcia-Bustos et al.,
2017). Considering graphs with relatively large edge length has
the advantage that the graph convolutional network architecture
can be more compact, requiring less convolutional layers to
represent the same receptive field. The increased number of
convolutional layers required by graphs with shorter edge lengths
was reported to potentially degenerate the network performance
due to over-squashing and over-smoothing (Alon and Yahav,
2020). Making graph convolutional neural network invariant to
the underlying mesh resolution is still an understudied problem
and an interesting direction for future research.

Our model was based on the assumption that the heart
tissue can be represented as the union of five regions, each
characterized by homogeneous and constant conduction velocity.
In particular, the transmural Purkinje network found in swines
was simply approximated by a 3mm layer for the left and right
endocardium, respectively. In addition, we also assumed that sites
of initiation of the ventricular depolarization are known and the

same for all hearts. The results under thesemodeling assumptions
showed good agreement between estimated and ground truth
activation maps. It is, however, possible that less restrictive or
more complex modeling assumptions would increase the fidelity
of the underlying electrophysiology model. Similarly, this work
employed an Eikonal solver of cardiac electrophysiology. While
the solver proved suitable to represent non-arrhythmic cardiac
activation, it may fail to capture wave re-entrants. Further, our
graph convolutional approach appeared to be influenced by the
fidelity of the underlying training data, which is limited by
the previously mentioned modeling assumptions. An interesting
future research direction hence comprises the application of
more complex cardiac electrophysiology solvers together with
higher fidelity modeling assumptions for the training data
generation, which may in turn improve the accuracy of the
network estimations even in non-sinus rhythm.

The proposed method further integrated information from
14 ECG features comprising the QRS duration, electrical axis,
and the relative amplitude of each lead. The results of our
ablation study suggest that the ECG features, particularly the QRS
duration, are important to estimate activation maps. It is possible
that such surrogate metrics hide details of the ECG signals that
could improve the predictive performance. Also in this case,
access to large quantities of preferably noise-free datasets with
digitalized ECG recordings is required to investigate the role of
full trace information. Similarly, it would be necessary to acquire
precise information about the lead placement and the exact
heart-torso orientation to investigate the observed discrepancies
between the ground truth and synthetically generated ECG traces
as seen in Figure 7.

Another interesting direction to potentially further
improve the proposed method is the investigation of more
elaborate network architectures. For instance, alternative
graph convolutional filter were explored in the literature,
which have the advantage of learning more expressive
feature representations and may allow the incorporation
of edge information (Wu et al., 2020). In the context of
the proposed method, they could be easily integrated as
a replacement for the SAGE layers of the local feature
extractor and may help improve the agreement between
model predictions and ground truth activation time, particularly
in graph nodes in which the measurement is provided as
input feature.

In addition, we strongly believe that acquiring large
amounts of high quality datasets will be critical to further
improve the proposed approach. It would help clarifying
what is the role of each source of noise or uncertainty,
both from the data and the modeling assumptions. For
instance, we hypothesize that more elaborate scar and border
zone models, potentially built from a large set of image
data, as well as inhomogeneous tissue conduction velocities
could lead to higher fidelity in the training dataset. To this
end, measurements with high signal to noise ratio would
help elucidate which modeling assumptions are of particular
relevance. Furthermore, we hypothesize that such information
could strengthen the physics-inspired denoising capabilities of
the proposed method.
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The same improvements of the modeling assumptions
and ECG features as described above may also increase
the performance of the personalized computational model.
While the computational model was able to estimate the
main mode of electrical wave propagation, it did exhibit a
stronger regularizing effect compared to the other two methods.
Possible areas of improvement may comprise the personalization
of initiation sites and constraining the fine-tuning process
with ECG information. Alternatively, personalization strategies
that include full ECG traces instead of surrogate metrics,
such as presented in Gillette et al. (2021) and Pezzuto
et al. (2020), could be employed. Another interesting area of
future research may include the incorporation of uncertainties
related to the ECG generation such as the uncertainty in
lead placement.

5. CONCLUSION

This work proposes a deep learning based approach to
estimate biventricular local activation times given a spatial
discretization of cardiac anatomy, i.e., a tetrahedral mesh,
a routinely acquired 12-lead ECG, and sparse endocardial
activation time measurements. In particular, the use of graph
convolutional layers is explored, which allows the propagation of
information through the mesh structure. In total, 24 geometric
and electrophysiological features are used for the prediction
task. Due to data scarcity and no ground truth information
for the intramural activation times, a synthetic training dataset
is generated using a fast graph-based computational model of
cardiac electrophysiology with depolarization variations induced
by randomized conductivities, randomized scar and border zone
distributions, variable initial activations and variable geometries
from a statistical shape model. The proposed method has
been validated using 870 left out simulations and two clinical
cohorts with a total of 15 swine datasets. Good agreement
between the endocardial ground truth activation times and the
predictions have been observed in all setups. Compared to a
personalized computational model the proposed approach is
producing similar or better results, while not requiring a time-
consuming iterative personalization process. Further research
is required to assess and improve the moderate agreement
between epicardial prediction and the ground truth of the
clinical cohort.
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