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Summary

Host–microbe interactions are highly dynamic in space and time, in par-

ticular in the case of infections. Pathogen population sizes, microbial phe-

notypes and the nature of the host responses often change dramatically

over time. These features pose particular challenges when deciphering the

underlying mechanisms of these interactions experimentally, as traditional

microbiological and immunological methods mostly provide snapshots of

population sizes or sparse time series. Recent approaches – combining

experiments using neutral genetic tags with stochastic population dynamic

models – allow more precise quantification of biologically relevant param-

eters that govern the interaction between microbe and host cell popula-

tions. This is accomplished by exploiting the patterns of change of tag

composition in the microbe or host cell population under study. These

models can be used to predict the effects of immunodeficiencies or thera-

pies (e.g. antibiotic treatment) on populations and thereby generate

hypotheses and refine experimental designs. In this review, we present

tools to study population dynamics in vivo using genetic tags, explain

examples for their implementation and briefly discuss future applications.
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SPATIOTEMPORAL DYNAMICS OF HOST–
MICROBE INTERACTIONS

Our bodies are exposed to billions of microbes every day.

Most of them are harmless and some even beneficial. A

few pathogenic microbes however can invade multicellu-

lar organisms and cause life-threatening infections. To

block systemic proliferation of harmless, commensal

microbes after accidental entry (and thereby enable a

long-lasting symbiotic relationship with commensals),

and to fend off pathogenic microbes, multicellular organ-

isms have evolved sophisticated systems of immune

defences.1

The interaction of the immune system with microbes is

highly complex. Innate immune responses are triggered

by tissue damage and the recognition of conserved molec-

ular patterns associated with beneficial and pathogenic

microbes.2 Host responses to microbe exposure must

therefore be highly context-dependent and have evolved

to minimize immune reactions to commensals while pro-

viding efficient defence against invading pathogens. Local-

ization, duration and intensity of the microbial stimulus

influence the outcome of the host response.3–5 Adaptive

immune responses can further modify these pathogen–
host interactions at later phases of the infection or after a

second encounter with the pathogen. The immune

response affects the microbial population, which, in turn,

feeds back onto the immune response. The final state of

this dynamic system, in which the microbial population

and immune responses mutually affect each other, is diffi-

cult to predict and can range from microbial clearance to

persistent infection (Figure 1A).

Deciphering these complex interactions is one of the

major challenges in the field of host–microbe studies.6 In

systems with two or more interacting populations, the

spatiotemporal dynamics make it challenging to dissect
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the underlying reciprocal interactions and to identify and

quantify contributions of different components (Table 1).

The traditional approach of knocking out single host

genes to assess their contribution to microbial defence

often neglects the complexity of host–microbial interac-

tions. Many powerful immune effectors show surprisingly

small effects when knocked out in models of pathogenic

infection of a host.7 We hypothesize that the redundancy

of response pathways, their time-dependent functions

during pathogen defence and the pathogen’s ability to

adapt its phenotype (i.e. in case of surviving pathogen

subpopulations) in response to the environment (i.e. the

type of immune defence mechanism faced by a particular

pathogen cell at a particular time-point) contribute to the

difficulty to connect phenotypes to single immune effec-

tors. Additional challenges arise from pathogens express-

ing inhibitors of or resistance against particular immune

effectors. Given the importance of constant immune

surveillance, backup mechanisms that maintain functions

even in the absence of a particular immune effector are

crucial. Therefore, if the absence of a single immune

effector in an infection set-up does not produce a pheno-

type, it does not necessarily mean that this effector is

irrelevant. Instead, it could also point to a specific rele-

vance of the context of this effector for the analysed sys-

tem, which favoured the evolution of redundant

mechanisms. Nevertheless, the lack of single immune

effector mechanisms can shift the dynamics of the

microbe–host interaction. These can be detected by

advanced methods as discussed below.

We thus postulate that, while traditional tools can help

to dissect fundamental relations in defined conditions,

more holistic approaches are needed to decipher the com-

plex dynamics underlying host–microbe interactions and

other complex disease scenarios. Omics and single-cell

analysis methods are certainly important tools to achieve

this task, and together with increasing integration of dif-

ferent omic approaches, will continue to play a central

role.8–12 In this context, phenomenological mathematical

models are used extensively to dissect patterns from big

Figure 1. (A) Intensity of a microbial trigger (blue line) and the induced host response(s) (dashed green line(s)) vary over time. Examples for acci-

dental spillover of a commensal into the host body (upper panel) and for prolonged colonization of a host by a pathogenic bacterium (lower panel).

(B) Compartmental model describing a bacterial population P growing in an Erlenmeyer flask, defined by the parameters replication rate (r) and

death rate (d). (C) Compartmental model describing the migration (m) of a bacterium from the caecum (PC) to the mLN (PLN) (similar to ref. 39).

(D) Bottlenecks represent constraints (arrows) on a population leading to a reduction in population size. Loss of genetic diversity during bottleneck

passage remains imprinted on the population even after re-expansion. (E) Schematic drawing of two hypothetical population dynamic trajectories of

one starting population. In both panels (upper and lower), the population undergoes two expansion events (doubling population size) and one con-

traction event (reducing population size by 50%). The final population size is equal, while the population structure (genetic diversity, different col-

ours) differs. (F) Tracing of genetic diversity by neutral genetic tags can be used to differentiate stochastic from fitness-related effects on populations.

CI experiments allow the fitness assessment of bacterial mutants in comparison with wild-type bacteria during a co-infection. The CI of a mutant is

calculated by dividing the number of mutant bacteria by the number of wild-type bacteria after correcting for the abundance of both strains in the

inoculum (CI > 1: mutant has a fitness advantage; CI < 1: mutant has a fitness disadvantage; CI = 1: no fitness difference). Using a pool of geneti-

cally tagged wild-type and mutant bacteria allows the assessment of the nature of genetic tag loss: if the genetic tag loss is fitness related, the genetic

diversity within one bacterial population (wild type or mutant, respectively) should remain similar (high evenness). Stochastic genetic tag loss, by

contrast, leads to substantial variation in genetic diversity within one bacterial population (wild type or mutant, respectively; low evenness).

Table 1. Examples for experimental systems in the context of host–microbe interaction. Please note that the listed options are examples and rep-

resent incomplete lists

System

Components

(examples)

Environments

(examples) Interactions (examples) Parameters (examples)

In vitro bacterial

growth assay

Strain a, strain b Culture medium Competition, inhibition,

cooperation

Replication rate, death rate (strain a, b)

In vitro T-cell

proliferation

assay

T cells, Dendritic cells

(DCs)

Culture medium Activation, inhibition Replication rate, death rate, activation

(T cells, DCs)

Mouse associated

with SPF

microbiota

Microbiota, various

immune cells

Intestinal lumen,

mucosa, distant

body sites

Tolerance, killing, symbiosis,

activation, silencing

Replication rate, death rate, activation,

migration (microbiota, immune cells)

Oral S.

Typhimurium

infection

Microbiota, S.

Typhimurium,

various immune cells

Intestinal lumen,

mucosa, distant

body sites

Competition, inhibition,

cooperation, tolerance, killing,

activation, silencing

Replication rate, death rate, activation,

migration (microbiota, S.

Typhimurium, immune cells)
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data sets. These models however do not explicitly account

for molecular and cellular mechanisms.13

Complementary to this, mechanistic mathematical

models (MMMs) are powerful tools to dissect the func-

tions of essential components within complex systems.

These models capture the changing population sizes of

microbes and host cells during an infection. Despite being

often highly simplified, in a given system, MMMs can

identify and quantify the relative contributions of its

components to the dynamics of the system (Table 1).

This facilitates mechanistic insights, reveals interaction

networks, challenges assumptions or identifies gaps in our

understanding.10,13–15 For a detailed, easy-to-read over-

view on mathematical modelling of immune responses,

we direct the reader to Handel et al., (2020).13 MMM

approaches have been successfully applied to quantify the

dynamics of viral infections,16,17 the population dynamics

of T cells17,18 and to understand the generation and

maintenance of immune memory.19,20

More recently, MMMs have been extended to describe

experiments in which pathogens or host cells have been

tagged genetically.14,21,22 By accounting for the stochastic

dynamics of tagged subpopulations, such mathematical

models allow dissection of the intricate relations underly-

ing host–microbe interactions, and therefore represent a

promising extension of traditional methods (further

described below). A major obstacle is the requirement of

detailed knowledge of the analysed system to set up

MMMs. Especially in complex systems, it can be challeng-

ing to identify relevant processes and parameters to

include into the MMM. To verify hypotheses based on

mathematical models, experimentation is required.10,13–15

The crosstalk between modellers and wet laboratory sci-

entists is therefore of critical importance. With this

review, we aim to make approaches combining MMMs

with tag-based population dynamics for analysis of host–
microbe relationships easily accessible to wet laboratory

scientists.

COMPARTMENTAL MODELS TO DESCRIBE HOST–
MICROBE INTERACTIONS

A large fraction of models applied to the field of host–
microbe interaction are compartmental models. In these

models, a group of individuals is classified into compart-

ments that subdivide the population according to traits of

interest, such as spatial location or differentiation state.13

This can be as simple as one bacterial strain growing in

liquid culture (Figure 1B). The replication rate r of this

population and its death rate d define the population size

at any given time, as described by the differential equa-

tion in Figure 1B. Figure 1C displays a compartmental

model of a more complex situation, describing bacterial

growth (r) in the caecal lumen (PC), migration (m) from

that compartment to the mesenteric lymph nodes (mLN)

and microbial growth (r) at that site (PLN).

MMMs are based on a priori information on the bio-

logical system. For example, the model in Figure 1C is

built on knowing that the bacteria first colonize the intes-

tine and from there spread to the mLN. The model

parameters quantitatively characterize processes that

shape the dynamics of the respective compartment (here:

a population within a specific anatomical site), for exam-

ple replication, death and migration. Computer simula-

tions can be run with different values for these

parameters. Comparing the output of simulations to

empirical data then allows the estimation of parameter

values that are most consistent with observations. In sim-

ulations, the validity of different experimental or mecha-

nistic scenarios can be tested against experimental data.

Once set up, MMMs enable the prediction of the beha-

viour of a system under altered conditions, for example

the effect of antibiotic treatment on a bacterial popula-

tion during infection. Thus, besides the quantification of

biologically relevant parameters, modelling can provide a

formal, quantitative, cost-efficient and fast way of hypoth-

esis generation and the design of optimal follow-up

experiments. Iterative improvement is achieved by feed-

back between wet laboratory experimentation and mod-

ellers to fully exploit the potential of MMMs.13

POPULATION DYNAMICS OF NEUTRAL GENETIC
TAGS AS A TOOL TO DECIPHER
SPATIOTEMPORAL KINETICS OF HOST–MICROBE
INTERACTION

Population dynamics describe the kinetics of changes in

the structure of a population, for example regarding age,

developmental stage, disease state, phenotypic manifesta-

tion or localization. In the following, we will focus on

approaches analysing the distribution of neutral genetic

tags within a population (‘population structure’). When

using the term ‘population dynamics’, we refer to the

dynamics of the distribution of a set of genetic neutral

tags within a population. This serves as a readout for

changes within that population.

To characterize a host–microbe interaction, compart-

mental MMMs allow quantification of parameters

describing a population, for example its replication rate,

death rate and pheno- or genotypic subpopulations of the

microbe and/or the affected host cells.14,22 This approach

is especially fruitful for well-characterized experimental

models. Here, the analysis of population structures by

genetic tagging enables precise descriptions of the under-

lying population dynamics by MMMs. These approaches

can be applied to host cell and microbial populations.

Below, we review the tools available in the different fields

and give examples for their application.
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STUDYING BACTERIAL POPULATION DYNAMICS
IN VIVO

In studies of host–bacterial interactions, the success of

microbial colonization is traditionally assessed by selective

plating of homogenized organs on agars, which are per-

missive for the growth of the bacterium of interest. In

some cases, qPCR or 16S-sequencing have also been

employed. However, all these methods share an important

shortcoming: they only provide a snapshot of the current

size of the microbial population, but lack information

about its past changes.

A widely applied approach in population dynamics of

host–bacterial interactions is the analysis of bottlenecks. A

bottleneck describes internal and external factors (con-

straints, e.g. intraspecies competition, effects of immune

responses) that restrict the capacity (e.g. population size)

of a component (e.g. a pathogen population in a host

organ) (Figure 1D, Table 1).14 The total population size

can ‘easily’ be measured. For bacterial infections, enumer-

ation of colony-forming units provides information about

the size of a population at a given time in a certain

organ. For immune cells, for example, flow cytometric

methods yield cell numbers. These measures integrate

events of migration, replication and cell death. Disentan-

gling those parameters can help to identify immune

defences or intervention strategies, even if these fail to

completely control the infection. This is however highly

challenging, especially in complex in vivo settings where

pathogen populations can shrink and grow and host

defences respond in a dynamic fashion (Figure 1A, bot-

tom panel). Here, continuous sampling is often not possi-

ble, which renders the experimental analysis of

population sizes a snapshot analysis integrating all events

that affected the population until then. In multistep pro-

cesses like infections, it becomes especially difficult to

assign bottlenecks to certain events. By contrast, analysing

changes in the diversity of neutral genetic tags in a popu-

lation provides information about the population struc-

ture at earlier time-points. Thereby, bottleneck-inflicted

changes in a population can be traced with the help of

genetic tags.

Approaches employing neutral genetic tags for the

studies of population dynamics assume that the manifes-

tation of genetic diversity (i.e. the genetic tags) is fitness

neutral in the studied condition. Given this, changes in

the diversity of a population are typically a direct conse-

quence of a reduction in population size.14 This altered

diversity will remain imprinted on the pathogen popula-

tion, no matter how much it expands after passing a par-

ticular bottleneck (Figure 1E). In principle, this approach

employs the evolutionary concept of genetic drift, which

is particularly pronounced in events of dramatic popula-

tion reduction or the founding of a new, spatially sepa-

rated population by a low number of founder

organisms.23 Importantly, these changes reflect stochastic

sampling events and are fitness independent (as the anal-

ysed organisms are isogenic and equally fit, see above).

By contrast, an expansion of population size in this con-

text usually stably maintains diversity.14 Figure 1E illus-

trates a scenario in which the same starting population of

cells with equal fitness in a given system undergoes one

contraction and two expansion events in a different

order, and how this affects population structure. Notably,

the number of cells at the start as well as at the end of

the experiment is equal in both scenarios. This example

illustrates how two scenarios, indistinguishable by con-

ventional methods of cell counting, derive from two dif-

ferent population dynamics and result in a very different

population (genetic tag) structure. This principle can also

be employed as a quality control for experiments analys-

ing the competitive index (CI) of bacterial mutants, in

which the number of mutant bacteria in an organ of

interest is divided by the number of wild-type bacteria to

assess fitness differences. Using a batch of tagged isogenic

mutant strains, and a batch of tagged wild-type strains

allows the detection of stochastic loss in the infection

model and thereby enables the differentiation between fit-

ness-related and stochastic effects (Figure 1F).24,25

POPULATION DYNAMICS APPROACHES TO
STUDY HOST–PATHOGEN INTERACTIONS

Population dynamics approaches successfully defined and

quantified parameters of bacterial infection in in vivo

experimental set-ups. Illustrative published examples

using genetic tagging approaches are summarized in

Table 2.

As described above, changes in genetic diversity help to

deduce changes in population dynamics retrospectively.

In an experimental set-up, diversity – as a readout for

population structure – should ideally be traceable. Tradi-

tional tools for tracing of genetic diversity are different

antibiotic resistances,30,33 serotypes34 or the tagging with

fluorescent proteins.35 As these markers potentially inter-

fere with infection kinetics and might skew population

dynamics by introducing different fitness costs, new

approaches were developed to label bacteria genetically

with phenotypically neutral sequence tags

(‘barcodes’).14,21 Strains resulting from this approach are

often referred to as wild-type isogenic tagged strains

(WITS) 21 (Figure 2A) and are phenotypically identical.

Besides being fitness neutral, a large variety of these bar-

codes can be introduced into the population. This results

in a higher number of distinguishable markers (i.e.

genetic variation) and thereby increases the sensitivity for

detecting large bottlenecks in the history of a given

pathogen population (see refs. 26 and 27 for a detailed

analysis of the relation between number of barcodes and

bottleneck sensitivity). qPCR or sequence counting
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techniques by next-generation sequencing allow precise

and fast quantification of the relative distribution of these

barcodes within the population. Absolute numbers of

each barcoded bacterium are deduced by combining the

relative barcode distributions with bacterial numbers

obtained by conventional methods. These data serve as

input for the MMMs. More recently, the usage of hun-

dreds of barcodes in combination with high-throughput

DNA sequencing methods has helped to further increase

the sensitivity of this approach.14,25

Salmonella Typhimurium (S. Typhimurium) infections

in mice have served as an important model for developing

MMMs in the context of genetic tag dynamics, that is for

describing the infection dynamics and identifying critical

host barriers during infection. Here, we focus on an MMM

describing S. Typhimurium migration from the intestinal

lumen to the mLN during oral infection (quantified as

migration events per day) (Box 1, Figure 2B, wild-type

mouse, ~300 bacterial cells/day migrate to the mLN39). By

combining population dynamics approaches with mouse

knockout lines, S. Typhimurium migration was shown to

heavily depend on CCR7-mediated migration of immune

cells from the lamina propria to the mLN (Figure 2C, sce-

nario i: CCR7-/- mouse). The application of this model to

infections with mutant S. Typhimurium also revealed a role

for inflammation in the restriction of bacterial replication

in the mLN (Figure 2C, scenario ii).39 Recently, we have

extended the application of the above-described model to

identify the cell type responsible for NAIP/NLRC4-medi-

ated restriction of S. Typhimurium infection of the mLN.

While epithelial NAIP/NLRC4 is highly relevant for the

control of S. Typhimurium loads within the epithe-

lium,43,44 immune cell NAIP/NLRC4 can also be involved

in bacterial restriction.45–47 It remained unclear, whether S.

Typhimurium loads in the mLN of NAIP/NLRC4-deficient

mice were increased due to an impaired antibacterial

response at the epithelial level, or due to the inability of

immune cells to restrict intracellular S. Typhimurium repli-

cation via NAIP/NLRC4. Assessing migration to the mLN

and replication rates of S. Typhimurium within the mLN,

we could exclude NAIP/NLRC4 mediated restriction of

bacterial replication within immune cells in the mLN.

Much rather, we identified NAIP/NLRC4 as a critical

migration barrier for S. Typhimurium on their way to the

mLN, protecting from the increased systemic spread. The

combination of this modelling approach with cell type-

specific knockout mice revealed that NAIP/NLRC4 within

the gut epithelium controls S. Typhimurium migration to

systemic compartments (Figure 2C, scenario iii: Naip1-

6DIEC mouse), while immune cell NAIP/NLRC4 is dispens-

able for controlling bacterial loads during early infection.40

Similarly, the elegant combination of genetic barcodes

with mouse and bacterial knockout strains deciphered

transmission routes of Listeria monocytogenes (L. monocy-

togenes) within and between hosts.27 The comparison ofT
ab
le
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the genetic (barcode) relatedness of bacterial subpopula-

tions in spleen and liver revealed distinct initial founding

events of organ subpopulations during early infection,

and bacterial exchange between these organs via the

bloodstream during later stages of the infection. Surpris-

ingly, and in contrast to previous assumptions, this analy-

sis revealed the gall bladder as the main reservoir for

faecal host-to-host transmission.27

Taken together, the above-described examples illustrate

the great potential of population dynamics and mathe-

matical modelling in the identification of critical host

barriers and prediction of intervention strategies during

bacterial infections. This approach is especially powerful

in combination with experimentation on host and bacte-

rial knockout strains to pinpoint critical interactions for

pathogen restriction during different disease stages and/or

transmission at the molecular and cellular level.

POPULATION DYNAMICS APPROACHES TO
STUDY HOST–MICROBIOTA INTERACTIONS

Similar to host–pathogen relationships, host–microbiota

interactions are highly complex and dynamic. Decipher-

ing the kinetics of microbiota colonization, response to

perturbations and behaviour in disease conditions holds

the key to the assessment of the role of microbiota mem-

bers in these scenarios and to manipulation of microbiota

contributions to disease development. Quantitative and

causal microbiota analysis is facing three major chal-

lenges: i) the difficulty to set up a precise, overarching

definition of ‘the’ microbiota; ii) the difficulty to culture

and therefore manipulate a large fraction of typical

microbiota members; and iii) the complexity of interac-

tions within the microbiota community and with its host.

In the past years, approaches were developed to tackle

these challenges. Defined murine microbiota consortia

enable studies of community interactions and contribu-

tions of specific strains to phenotypes.48–50 Studies on

culturable microbiota members such as Escherichia coli

(E. coli) and Bacteroides thetaiotaomicron,51,52 as well as

longitudinal studies on microbiota composition,53,54 have

shed light on general concepts of intestinal colonization

and interspecies competition. Despite these efforts, to

date most studies modelling microbial community

dynamics are based on in vitro or in silico systems,55,56

general patterns extracted from sequencing data57,58 or

analysis of the microbiota as a metaorganism (see Table 3

for a summary of selected in vivo studies).59

These studies are fundamental in gaining a basic under-

standing of the formation of community structures and

can potentially be extended to perturbation scenarios and

disease settings. Precise quantification and identification

of causalities in vivo on a species/strain level and in speci-

fic intestinal niches however remains difficult. In the

future, it will therefore be extremely valuable to imple-

ment precise quantitative set-ups offered by population

dynamics using genetic barcodes in the field of host–mi-

crobiota interactions. Experimental models of defined

microbiota, in which the community members are

known,48,49 will be an essential tool in this context.

Specifically, combining defined microbiota models with

neutral genetic barcoding tools as described above for

host–pathogen interaction analysis will be a powerful

approach to decipher those intricate interactions.

STUDYING HOST RESPONSE DYNAMICS IN VIVO

During infection, both pathogen and host cell numbers

vary over time, in parallel with changes in the infection

environment that the respective components are exposed

to. This, in turn, affects phenotypes of the interaction

partners, which again affects the infection environment.

Given the complexity of these systems, studying host

response dynamics to pathogen infection in vivo is a chal-

lenging task. As outlined above, mathematical modelling

can help to decipher these complex interactions. A set of

well-established tools exists to study host cell population

dynamics in this context.

In the field of host cell biology, population dynamics

approaches based on genetic tags have been applied espe-

cially to lineage tracing. Lineage tracing is used to study

cell proliferation and differentiation during

Figure 2. (A) Genetic tagging approach to obtain S. Typhimurium WITS.21 A 40-bp DNA sequence tag (coloured barcode) coupled to an antibi-

otic resistance cassette (abxR) is introduced into a neutral locus in the S. Typhimurium genome between malX and malY. (B) Schematic of S.

Typhimurium migration from the caecal lumen to the mLN during oral infection (left panel). ~300 S. Typhimurium cells per day migrate from

the caecal lumen to the mLN during oral infection (wild-type mouse, right panel), contributing to the bacterial mLN population PLN as described

by the compartmental model shown in Figure 1C.39 Compared to the population in the caecum (~109 S. Typhimurium cells/g content) this num-

ber is small. The migration to the mLN thus represents a bottleneck, which only a small number of bacteria can pass. In conclusion, genetic

diversity (different colours, see also graphs ‘structure PLN’) of the mLN population (PLN) is reduced in comparison to the caecal population (PC)

(middle panel). Using the size and structure of PLN as input for the MMM enables calculation of m and r of PLN. (C) Migration of S. Typhimur-

ium to the mLN (m) is reduced in the absence of CCR7 (scenario i, CCR7-/- mouse).39 Replication of S. Typhimurium within the mLN (rPLN) is

controlled by S. Typhimurium-induced inflammation (scenario ii, infection with an S. Typhimurium mutant that is unable to trigger early

inflammation).39 Migration of S. Typhimurium to the mLN (m) is increased in the absence of NAIP/NLRC4-mediated expulsion of infected

epithelial cells (scenario iii, Naip1-6DIEC mouse).40
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development20,61–64 and in the adult,65 under homeostatic

and disease conditions.19,66,67 Lineage tracing tools

include microscopy-based techniques such as the Brain-

bow/Confetti construct, in which stochastic Cre-mediated

recombination results in cells tagged with different fluo-

rescent markers.63,65 This tool is well suited to study clon-

ality, proliferation and migration dynamics within a

specific tissue(Figure 3A).63,65–67 A higher variety in

possible unique markers to increase sensitivity was a

rationale for the development of neutral genetic barcod-

ing strategies similarly to the WITS approach in bacteria.

These barcodes are classically introduced via retroviral

vectors ex vivo,62,68,69 and the manipulated cells are subse-

quently transferred into hosts (Figure 3B). This approach

is well suited for studies of circulating immune cells such

as T cells.69,70 To allow instead tracing of tissue-resident

cecumcecum

mLN mLN

migrationmigration

replication replication
net net

=

≠

PCPC

PLN PLN

Box 1 In the model described in Figure 1C, the size of the bacterial population in the mLN (PLN) depends on bacterial migration to the mLN

(m), and bacterial replication (r) and death rate (d) within the mLN. For simplicity, we have here summarized replication and death rate as net

replication rate (replicationnet = replication – death), as described previously.39 PC (pink box) represents the bacterial population within the

caecum, and PLN (purple box) the bacterial population within the mLN. The differentially coloured bacteria represent differentially genetically

tagged bacteria (WITS).The migration event in this model represents a bottleneck. As all bacteria are phenotypically identical and therefore have

the same likelihood of migrating to the mLN (which depends on the size of the migration bottleneck), this bottleneck represents a random

sampling event. A certain number of bacteria, carrying random tags, pass through this migration bottleneck and arrive in the mLN to found PLN.

Consequently, information on this bottleneck remains imprinted on PLN. Stochastic loss of tags in PLN compared to PC enables the estimation of

the size of the migration bottleneck and with this, the migration rate.Under the premise that all bacteria are phenotypically identical, the same

replicationnet rate is assumed for all bacteria in the mLN. Thus, the replicationnet rate does not affect the frequency of the tags, but their absolute

abundance. In consequence, the number of bacteria per tag provides information on bacterial replicationnet in the mLN.To illustrate the utility of

disentangling the effect of migration to and replicationnet in the mLN on PLN, we present two extreme scenarios here: Left side: high bacterial

migration to the mLN, low replicationnet in the mLN. Right side: low bacterial migration to the mLN, high replicationnet within the mLN. These

two scenarios can potentially result in the same number of bacteria within the mLN at the time-point of sampling, but derive from very different

population dynamics (similarly to Figure 1E). This is reflected in the population structure in the two scenarios, which differ significantly with

regard to the distribution of genetic tags (different colours). In the left scenario, many bacteria are able to migrate to the mLN and moderately

replicate there. As the bottleneck of migration to the mLN is large, genetic diversity between PC and PLN is maintained and all tags are equally

represented in PLN. By contrast, in the right scenario, where the migration rate is low, only few bacteria are able to migrate to the mLN, but can

rapidly replicate at this site. This leads to stochastic loss of tags (i.e. genetic diversity) in PLN. Detectable tags are, however, present in high

numbers.In conclusion, the genetic tagging and modelling approach extends beyond the simple information about population size by providing

retrospective information on the dynamics of PLN. In the given example, the above-described approach allows pinpointing, for example, the

effect of a certain treatment (e.g. immune cell activation) to/on bacterial migration or replicationnet and thereby hints towards mechanistic details

affecting PLN.
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cells in their native environment, in vivo barcoding tools

have been developed recently. These approaches use the

CRISPR/Cas9 system for the labelling of embryos,64 or

inducible CRISPR,71 transposase72 and Cre recombinase73

systems for barcoding of cells in the adult organism

in vivo. The latter approaches allow time-, site- and/or

cell-specific inducible introduction of barcodes, which

makes them exceptionally powerful tools to resolve com-

plex dynamic processes in particular target tissues of the

adult host. Illustrative studies applying different genetic

tag-based population dynamic approaches are summa-

rized in Table 4.

The recently developed CARLIN mouse line71 allows

CRISPR-mediated, large-scale, cell type independent,

inducible barcoding. Importantly, transcription of the

CARLIN barcodes allows for a combined read-out of bar-

codes and gene expression at the single-cell level. This

enables an unbiased analysis of cell populations, as well

as correlation of clonality with gene expression. Specifi-

cally, the application of the CARLIN system revealed

skewed proliferative responses of hematopoietic stem cells

(HSCs) under stress conditions. Surprisingly, only a small

fraction of HSCs contributed to hematopoiesis upon

exposure to, for example, irradiation or chemotherapy.

Differential gene expression analysis of inactive versus

active HSCs revealed a potential regulator of HSC stress

responses.

As exemplified above, the abstraction of complex sce-

narios by MMMs will help to gain more refined and

holistic understanding of the processes underlying host

responses to microbe exposure. This approach is espe-

cially valuable as complementation of traditional

approaches including single knockout/transgenic mouse

models. To extend current knowledge, it will be helpful

to extend the application of the available tools to further

cell types and models. The analysis of myeloid popula-

tions, for example, is highly complicated by the vast plas-

ticity of this cell group, overlapping marker expression

and longevity of specific subpopulations.76,77 The above-

described Confetti construct has contributed to decipher-

ing dynamics of regional turnover, contribution of bone

marrow-derived precursors, and response to insults of

brain microglia67 and mucosal dendritic cells (DCs).66

The number of markers required for cell type identifica-

tion however complicates the straightforward characteri-

zation of myeloid cell subsets involved in tissue

homeostasis and immune responses. Recently developed

inducible barcoding tools like the CARLIN mouse,71

which allow read-out of barcodes and high-resolution cell

type identification via single-cell transcriptomics in paral-

lel, have great potential in this context: i) the higher reso-

lution due to a higher variety of barcodes allows more

refined tracing of lineage dynamics during development

and in the adult, and ii) the induction of barcode label-

ling before, during or after pathogen exposure or diseaseT
ab
le
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conditions can reveal contributions of different (myeloid)

cell subsets to immune responses. Thus, in vivo labelling

strategies in combination with MMMs hold promise for

dissecting reciprocal, dynamic relationships underlying

host–microbe interactions.

DISCUSSION AND OUTLOOK

Combining MMMs with experiments using genetic tag-

ging techniques holds great potential for deciphering the

intricate dynamics underlying host–microbe interactions.

A couple of aspects however need to be considered for

the application of this approach. One critical factor is the

number of unique tags used in an experiment. This deter-

mines the sensitivity for bottleneck detection. The detec-

tion of wide bottlenecks requires the use of large tag

libraries,26,27 which can be achieved by genetic barcod-

ing.14 The calculation of population bottlenecks with the

help of genetic barcodes relies on the assumption that the

fitness of each barcoded cell is equal in the given condi-

tions, as they are isogenic. This assumption however is

often an over-simplification, particularly when phenotypic

heterogeneity occurs within bacterial subpopulations.

Thereby, different cells carrying identical barcodes may

GFP

YFP

GFP

YFP

RFP

CFP

RFP

CFP

inducible Cre 
recombination

Time

trigger

Time

(B)

(A)

Figure 3. (A) Schematic of the Confetti approach for fluorescent labelling of immune cells.63 Inducible Cre-mediated recombination of the Con-

fetti locus leads to differential labelling of cells with GFP, YFP, RFP or CFP (upper panel). This experimental approach can, for example, be used

for analysis of local replication, death and migration rates of immune cells as observed upon exposure to a microbial trigger (lower panel). (B)

Schematic of a neutral genetic barcoding approach of T cells. Genetic barcodes are introduced ex vivo by retroviruses. The barcoded cells can be

transplanted into recipient hosts (upper panel) and employed to study cell survival, death, replication, differentiation and migration (lower

panel).69
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express different virulence factors in a stochastic fashion

and thereby interact differentially with host cells. Thus,

also isogenic bacteria might have fitness differences. In

scenarios with a low variety of barcodes (i.e. a high num-

ber of cells/barcode), population averages might equal

this effect out. In scenarios in which a high variety of

barcodes is used (i.e. a low number of cells/barcode),

phenotypical diversity of isogenic organisms might how-

ever skew genetic barcode distribution. Besides that, espe-

cially when working with large barcode libraries that are

randomly inserted, great care needs to be taken to

exclude fitness effects by the insertion. Finally, while bar-

coding strategies allow a large-scale analysis of popula-

tions, they require dissociation of the tissue. Thus, spatial

resolution in these approaches is lost. This caveat could

be overcome by combining barcoding strategies with fluo-

rescence in situ hybridization of the barcodes. Finally,

detailed a priori knowledge about the experimental sys-

tem is required for setting up MMMs, which makes this

method unsuitable for new and/or understudied experi-

mental set-ups.

Taken together, we see potential in extending the use

of neutral barcodes to further fields, especially for i)

microbiota members in the context of defined microbiota

models and ii) a variety of host cells, for example the

myeloid immune cell compartment to decipher the con-

tribution of certain cell subsets to responses to microbial

triggers. For the analysis of host cells, in vivo labelling

approaches64,71–73 prove especially useful, as they allow

studying population dynamics in the absence of strong

technically induced disturbances. These approaches hold

promise to facilitate deciphering the complexity of host–
microbe interaction and help to reveal contributions of

different immune effectors.

Recent advances in sequencing technology provide a

platform for cost-efficient, high-throughput read-out of

genetic barcodes. The introduction of barcodes that can

be quantified by next-generation sequencing techniques

relieves constraints on the number of tags that can be

used in an experiment, allowing the introduction of large

barcode libraries and high-resolution quantification of

population parameters. By tagging of host cells and bacte-

ria with distinct barcodes, sequencing techniques in com-

bination with MMMs enable analysis of large-scale

population interaction dynamics within one host. Com-

bined with single-cell RNA sequencing,71 this experimen-

tal set-up promises to provide information about host–
pathogen interaction at single-cell level, for example in

the context of intracellular infections.
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GLOSSARY

Phenomenological

mathematical models

Quantitative mathematical models for

extraction of patterns from large data sets

(e.g. regression analysis)

Mechanistic

mathematical models

Quantitative mathematical models to

mechanistically describe the relationship

between different components and

parameters of a system

Population dynamics Kinetics of changes of a population (e.g.

composition, size), including parameters

that describe these changes (e.g.

replication, death). In this review, we

focus on experimental approaches that

use phenotypically neutral genetic tags

to study pathogen and/or host cell

populations

Compartmental models Assigns populations to compartments.

Members of the respective population

can enter the compartment (e.g. by

birth/replication, immigration) and exit

from it (e.g. by death, emigration).

Compartments can, for example,

represent disease states, anatomical

sites or stages in a pathogen’s life

cycle

Bottleneck Describes a reduction in population size

due to environmental constraints. In a

genetically diverse population, this will

decrease its genetic diversity

Genetic diversity Describes the number and frequency of

genetic variants within a population

Genetic drift Describes a selectively neutral change in

allele frequencies in a population after a

bottleneck event

Wild-type isogenic

tagged strains

Are strains that are genetically identical

except for a short genetic tag that does

not affect the phenotype and fitness of

the strain

Metaorganism A community of interdependent

organisms often used in the context of

complex microbial communities (and

their hosts)
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