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a b s t r a c t

Various antiretroviral therapies (ART) are administered to symptomatic human immu-
nodeficiency virus (HIV) infected individuals to improve their health. The treatment
effectiveness may depend on suppressing development of drug resistance, reduce evolu-
tion of new viral strains, minimize serious side effects and the costs of drugs. This paper
deals with some results concerning optimal drug administration scheme successful in
improving patients' health especially in poorly resourced settings. The model under
consideration describes the interaction between the uninfected cells, the latently infected
cells, the productively infected cells, and the free viruses. Generally, in viral infection, the
drug strategy aspects either the virus infectivity or reduce the virion production. The
mathematical model proposed here, deals with both situations with the objective function
based on a combination of maximizing benefit relied on T cells count (the white cells that
coordinate activities of the immune system) and minimizing the systemic cost. The exis-
tence of the optimal control pair is established and the Pontryagin's minimum principle is
used to characterize these two optimal controls. The optimality system is derived and
solved numerically using the forward and backward sweep method (FBSM). Our results
indicate that early initiation of treatment makes a profound impact in both improving the
quality of life and reducing the economic costs of therapy.
© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications

Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Human immunodeficiency virus (HIV) continues to be one of the biggest burdens in human health with about 38 million
people living with the virus around the world, 1.8 million people becoming newly infected with HIV and neatly 1 million
deaths due to AIDS related illness (WHO, 2018). The HIV replicates within a host by infecting activated CD4þT cells or T cells,
which then produce additional copies of the virus. Many studies (Chun et al., 1997; NOE et al., 2005) have determined that
upon infection and transcription of viral RNA into cell DNA, a fraction of CD4þTcells fail to actively produce virus until they are
activated, possibly years after their initial infection. Such cells may possess amuch longer lifespan than their counterparts and
are termed latently infected cells. Upon activation, latently infected cells do become actively productive, and hence begin to
increase the viral load through viral replication despite immune surveillance or antiretroviral therapy (ART). The clinical data
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shows that latent T cell infection is established during early HIV infection (Chun et al., 1998). A study (Archin et al., 2012) on
HIV patients treated early in infection showed that latently infected cells are mainly generated during primary infection from
initiation of infection up to the time of ART, and once ART is initiated, there are many fewer infections generating fewer
latently infected cells. This encouraging result suggests that the initiation of ART very early during infection can limit or
possibly eradicate the virus. However, an experiment (Whitney et al., 2014) with simian immunodeficiency virus (SIV)
infected monkeys showed that even the monkeys that were treated on day 3 post infection suffer from virus rebound after
discontinuation of ART following 24 weeks of fully suppressive therapy. Many mathematical models have provided great
insights into the dynamics of latently infected cells (Kim & Perelson, 2006; Perelson et al., 1993; Rong & Perelson, 2009). Kim
and Perelson (Kim & Perelson, 2006) studied viral persistence during therapy with the effect of latent reservoir, Rong and
Perelson (Rong & Perelson, 2009) modeled viral blips and showed that a latent reservoir could produce viral transients when
activated by infection, while Perelson et al. (Perelson et al., 1993) employed the latent reservoir to show that its stability was
unlikely to depend on a critical value. In each of these studies, the mathematical analysis was performed and the parameter
was used for the chronic stage (infection after years) of HIV, some nonlinear behavior of the associated model was also fully
elucidated.

Optimal treatment strategies can decrease the possibility of virus mutation, pharmaceutical side effects, and expensive
medication burden. Since too large dosage may not be desirable for patients while too small dosage may be ineffective as
therapy for the recommended therapeutic agents. Hence, mathematical modelling of optimal control theory has been
considered important in a long-standing application in HIV treatment strategies (Adams et al., 2005; Ahmed et al., 2018;
Butler et al., 1997; Hattaf & Yousfi, 2012; Joshi, 2002; Kirschner et al., 1997; Ogunlaran & Oukouomi Noutchie, 2016; Zhou
et al., 2014). The basic viral infection model consists of three dynamical components including the uninfected cells, the
infected cells, and the free viruses was first studied in (Nowak &May 2000). In a recent work, the model describing HIV viral
dynamics incorporating the latent infected cells is formulated and studied in (Pankavich, 2016). The authors study the global
stability of the endemic states and illustrate the numerical simulations in order to show the numerical stability for each
problem steady state. This paper will be focused on studying optimal control for the HIV infection model given in (Pankavich,
2016). For this purpose, we will consider the following nonlinear differential equations:8>>>>>>>>>>>><>>>>>>>>>>>>:

dTðtÞ
dt

¼ l� ð1� u1ÞkTðtÞVðtÞ � dTTðtÞ;

dIðtÞ
dt

¼ ð1� u1Þð1� f ÞkTðtÞVðtÞ � dIIðtÞ þ aLðtÞ;

dLðtÞ
dt

¼ ð1� u1ÞfkTðtÞVðtÞ � dLLðtÞ � aLðtÞ;

dVðtÞ
dt

¼ ð1� u2ÞNdIIðtÞ � dVVðtÞ:

(1)

with initial conditions T(0) ¼ T0, I(0) ¼ I0, L(0) ¼ L0, and V(0) ¼ V0 and 0 � u1, u2 � 1. The values, ui ¼ 0 and ui ¼ 1 (i ¼ 1, 2),
reflect completely ineffective and perfectly effective treatment respectively. In the model (1), T(t) is the concentration of
uninfected T cells, L(t) denotes the concentration of latently infected T cells, I(t) is the concentration of productively infected
cells, and V(t) represents the concentration of virions in plasma at t. The parameter l is the generate rate of uninfected T cells,
dT is the per capita death rate of uninfected cells, and k is the infection rate of the target cell by a virus. A small fraction f of
infected cells are assumed to result in latency and the remaining become productively infected cells. Latently infected cells die
at a rate constant dL per cell and productively infected cells die at a rate constant dI per cell. N is the viral burst size, which is
the total number of virions released by one infected cell in its lifespan, and dV is the viral clearance rate. Latently infected cells
can be activated by their relevant antigens to become productively infected cells at a rate constant a. The two constants u1 and
u2 stand for the efficiency of treatment in blocking new infection and in inhibiting viral production, respectively. So far, there
is no individual effective treatment that eradicates the HIV virus; However, there are some combined therapies known as
“cocktail drug therapy” that reduce HIV infection (Orellana, 2011). Two classes of antiretroviral drugs are mostly used to
reduce the viral load and limit the infected T cell population. One class u1, is known as Reverse Transcriptase Inhibitors (RTIs),
which can block new HIV infections by disrupting the conversion of viral RNA into DNA. The other category u2 is Protease
Inhibitors (PIs), which prevents the assembly of key viral proteins after they have been mistakenly produced by infected host
cells. We note that 62% of infected adults and 52% of infected children are receiving lifelong antiretroviral therapy (ART)
(World Health Organization). Our work is dedicated to the question of optimizing treatment scheduling, i.e. when and how
the treatment should be initiated assuming that treatment can be used only for a finite period of time due to both the adverse
effects induced by the medications and the resistance developed by the virus at the prescribed drugs. We note that the effects
of viral mutation, which may continuously change model and parameter values, and the possible spatial dependence of
parameters can be ignored during primary stage of the disease.

The paper is structured as follows: The next section is dedicated to the qualitative analysis of the model, followed in
section 3 by the optimal control problem with an objective functional that maximizes CD4þT cells and minimizes systemic
costs. In section 4, we construct an appropriate numerical algorithm and give some numerical simulations. Some concluding
remarks are drawn in the last section.
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2. Qualitative study of the model

In order to retain the biological validity of the model (1), we must prove that solutions to the system of differential
equations exist and they are positive and bounded for all values of time.

Theorem 2.1. (Existence of Solution). Let T0; I0; L0;V02R be given. There exists t0 > 0 and continuously differentiable functions
fT ; I; L;V : ½0; t0Þ/Rg such that the ordered quadruple (T, I, L, V) satisfies (1) and (T, I, L, V)(0) ¼ (T0, I0, L0, V0).

Proof. To prove the result, first we use the classical Cauchy-Lipschitz Theorem (Kelley & Peterson, 2010). Since the system
of ODEs is autonomous, it suffices to show that the function f : R4/R4 defined by

fðyÞ ¼

0BB@
l� ð1� u1ÞkTV � dTT

ð1� u1Þð1� f ÞkTV � dII þ aL
ð1� u1ÞfkTV � dLL� aL
ð1� u2ÞNdII � dVV

1CCA
is locally Lipschitz in its y argument. Note that the Jacobian matrix

VfðyÞ ¼

0BB@
�ð1� u1ÞkV � dT 0 0 �ð1� u1ÞkT
ð1� u1Þð1� f ÞkV �dI a ð1� u1Þð1� f ÞkT

ð1� u1ÞfkV 0 �ðdL þ aÞ ð1� u1ÞfkT
0 ð1� u2ÞNdI 0 �dV

1CCA
is linear in y2R4. Thus, Vf(y) is continuous on a closed interval and differentiable on an open interval I2R4. By the Mean
Value Theorem, we know

jf ðy1Þ � f ðy2Þj
jy1 � y2j

� jVf ðy*Þj

for some y* 2 I. By letting |Vf(y*)| ¼ K, we obtain |f(y1) � f(y2)| � K|y1 � y2| for all y1,y2 2 I and therefore f(y) is locally
bounded for every y2R4. Hence, f has a continuous, bounded derivative on any compact subset of R4 and so f is locally
Lipschitz in y. By the Picard-Lindel€of Theorem (Kelley & Peterson, 2010), there exists a unique solution, y(t), to the ordinary
differential equation y0(t) ¼ f(y(t)) with initial value y(0) ¼ y0 on [0, t0] for some time t0 > 0.

Theorem 2.2. (Positivity and Boundedness). Assume the initial conditions of (1) satisfy T0 > 0, I0 > 0, L0 > 0 and V0 > 0. If the
unique solution provided by Theorem 2.1 exists on the interval [0, t0] for some t0> 0, then the functions T(t), I(t), L(t) and V(t)will be
bounded and remain positive for all t 2 [0, t0].

Proof. The state variables we consider here represent supersolutions for given problems (1). From the given equations we
have

ðT þ I þ LÞ0ðtÞ ¼ l� dTT � dII � dLL:
Now, using X(t) ¼ T(t) þ I(t) þ L(t) and d �max{dT, dI, dL}, we get

X0ðtÞ ¼ l� dTT � dII � dLL � l� dX;

which implies that
lim
t/∞

sup XðtÞ � l

d
2Rþ; for all t2½0; t0�:
where Rþ, is the set of non-negative real numbers. The upper bound for X is also the upper bound for T, I, and L. Lastly

V
0 ðtÞ ¼ ð1� u2ÞNdIIðtÞ � dVVðtÞ � NdIIðtÞ � dVVðtÞ �

NdIl
d

� dVVðtÞ;

which also leads to
lim
t/∞

sup VðtÞ � NdIl
ddV

2Rþ
Since all of the parameters used in the system are positive, we can place lower bounds on the following equations such as
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X
0 ðtÞ ¼ l� dTT � dII � dLL � �dX;

V
0 ðtÞ ¼ ð1� u2ÞNdII � dVV � �dVV :
Using Gronwall's inequality (Gronwall,1919)method for basic differential equations, we can resolve above inequalities and
produce:

XðtÞ � Xð0Þe�dt >0;
VðtÞ � Vð0Þe�dV t >0:
Since 0 � u1, u2 � 1, then, T(t), I(t), L(t) and V(t) are bounded above with values elements of Rþ. Via a maximum principle
(Protter & Weinberger, 1999) theory for first-order nonlinear differential equations, we obtain the solutions to the problems
(1) bounded for all t 2 [0, t0] and lies in the compact set

D ¼
�
ðT ; I; L;VÞ2R4

þ : T; I; L � l

d
;V � NdIl

ddV

�
;

where the quadruple set R4
þ defines as R4

þ ¼ fðT ; I;L;VÞ : T � 0; I� 0;L� 0;V � 0g.
2.1. Steady states

The model (1) admits two steady states which are biologically meaningful.

1. The non-infective (viral extinction) steady states as

E0 ¼
�
T0; I0; L0;V0

�
¼
�

l

dT
; 0;0;0

�

2. The infective (viral persistence) steady states as

E* ¼ ðT*; I*; L*;V*Þ ¼
�
q;

dTdV
ð1� u1Þð1� u2ÞkNdI

�
l

dTq
� 1

�
;

f l
dL þ a

�
1� dTq

l

�
;

dT
ð1� u1Þk

�
l

dTq
� 1

��
:

where
q ¼ dV ðaþ dLÞ
ð1� u1Þð1� u2ÞkNðaþ ð1� f ÞdLÞ
2.2. Basic reproduction number

Using the next-generation method (Diekmann et al., 1990; Heffernan et al., 2005), the infection and viral production term
in the model (1) defined by matrices F and V as follows

F ¼

0BBBBBB@
0 0 ð1� u1Þð1� f Þk l

dT

0 0 ð1� u1Þfk
l

dT
0 0 0

1CCCCCCA; V ¼
0@ dI �a 0

0 aþ dL 0
�ð1� u2ÞNdI 0 dV

1A

the basic reproductive number R , can be defined as the spectral radius of the next generation operator FV�1, straightforward
L

calculation yields

RL ¼ r
h
FV�1

i
¼ ð1� u1Þð1� u2ÞklNðaþ ð1� f ÞdLÞ

dTdV ðaþ dLÞ
(2)
The basic reproduction number RL is the average number of secondary infections produced when one single virus cell is
introduced into a host where every T cell is susceptible.

Remark 1. Using basic reproduction number RL the infected equilibrium point E* ¼ (T*, I*, L*, V*) becomes
1205
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E* ¼
�

l

dTRL
;

dTdV
ð1� u1Þð1� u2ÞkNdI

ðRL �1Þ; f l
RLðdL þ aÞ ðRL �1Þ; dT

ð1� u1Þk
ðRL �1Þ

�
:

From the components of E*, it is clear that when RL > 1 this endemic point exists. The following theorem summarizes the
important properties of the model (1), it's Proof is given in (Ahmed et al.2020).

Theorem 2.3.
1. If RL < 1, then the non-infective equilibrium is locally asymptotically stable. If RL > 1 then the non-infective equilibrium is an

unstable saddle point, and the endemic equilibrium is locally asymptotically stable.
2. If RL � 1, then the non-infective equilibrium (E0) is globally asymptotically stable and the disease dies out. If RL > 1, then the

endemic equilibrium (E*) is globally asymptotically stable and the disease persists.
2.3. Critical drug efficacy

In the system (1), the efficacies of two drugs RTIs and PIs are combined to obtain a new term to reflects the overall efficacy
for this combination treatment and is given by 1� q¼ (1� u1)(1 � u2). Motivated by the stability criterion (see Theorem 2.3)
for E0 and E*, there is a transcritical point given by RL ¼ 1, that is

ð1� qcÞklNðaþ ð1� f ÞdLÞ
dTdV ðaþ dLÞ

¼ 1

thus,
qc ¼ 1� ðaþ dLÞdTdV
klNðaþ ð1� f ÞdLÞ

:

In order to achieve a successful treatment by way of elimination of virus persistence, we need q > qc. On the other hand,
whenever q < qc, the infected steady state E* remains stable and the infection persists.

3. The optimal control problem

Let u1(t) represent the normalized RTIs dosage as a function of time, then k in the model (1) will be modified to become
(1 � u1(t))k and also let u2(t) be the normalized PIs dosage as a function of time, then the parameter N will be modified to
become (1 � u2(t))N. Hence the state system (1) becomes8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

dTðtÞ
dt

¼ l� ð1� u1ðtÞ ÞkTðtÞVðtÞ � dTTðtÞ;

dIðtÞ
dt

¼ ð1� u1ðtÞ Þð1� f ÞkTðtÞVðtÞ � dIIðtÞ þ aLðtÞ;

dLðtÞ
dt

¼ ð1� u1ðtÞ ÞfkTðtÞVðtÞ � dLLðtÞ � aLðtÞ;

dVðtÞ
dt

¼ ð1� u2ðtÞ ÞNdIIðtÞ � dVVðtÞ:
(3)

With initial conditions
Tð0Þ ¼ T0; Ið0Þ ¼ I0; Lð0Þ ¼ L0; Vð0Þ ¼ V0; and TðtÞ; IðtÞ; LðtÞ; VðtÞ are free at final time Tf : (4)
Our main objective is to maximize the benefit based on the CD4þT cell count (increase in quality of life) and the systemic
cost based on the percentage effect of the chemotherapy given (RTIs and PIs) is being minimized (toxic side effects being
avoided as much as possible and not causing patient death). The objective functional is defined as,
1206
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Jðu1;u2Þ ¼
ZTf
0

�
TðtÞ �

�
A1

2
u21ðtÞ þ

A2

2
u22ðtÞ

�	
dt; (5)
where T(t) is the benefit based on T cells count during treatment and the other terms are systemic costs of the drug treat-
ments. The positive constants A1 and A2 represent desired weight on the benefit and cost, and u21, u

2
2 reflect the severity of the

side effects of the drugs (Joshi, 2002). The cost function is assumed to be nonlinear, basing on the fact that there is no linear
relationship between the effects of treatment on T cells or viral load, hence the choice of a quadratic cost function (Kirschner
et al., 1997). We impose a condition for treatment time, t 2 [0, Tf], limited treatment window (Butler et al., 1997), that
monitors global effects of these phenomena; treatment lasts for a given period of time because HIV can mutate and develop
resistance to treatment after some finite time frame and in addition treatment has potentially harmful side effects, and these
side effects increase with duration of treatment. The time t ¼ 0 is the time when treatment is initiated and time t ¼ Tf is the
time when treatment is stopped. The control set U is defined as

U ¼
n
u1;u2 are Lebesgue measurable; 0 � u1ðtÞ;u2ðtÞ � 1; t2

h
0; Tf

io
:

So we seek an optimal control pair, u*1, u
*
2 such that

J


u*1; u

*
2
� ¼ max

u1;u22U
Jðu1;u2Þ; (6)
subject to state constraints (3e4). The basic framework of this problem is to prove the existence of the optimal control,
characterize the optimal control and establish uniqueness of the optimality system.

3.1. Existence of an optimal control pair

Using the fact that the solution to each state equation is bounded (see Theorem 2.2). Now, the existence of an optimal
control for the state system is analyzed using the theory developed by Fleming and Rishel in (Fleming & Rishel, 1975).

Theorem 3.1. Given the objective functional

Jðu1;u2Þ ¼
ZTf
0

�
TðtÞ �

�
A1

2
u21ðtÞ þ

A2

2
u22ðtÞ

�	
dt;

where U ¼ ðu2ðtÞ;u2ðtÞÞ, piecewise continuous such that 0 � u1ðtÞ;u2ðtÞ � 1 for all t e [0, Tf] subject to equations of system (3e4)
with T(0) ¼ T0, I(0) ¼ I0, L(0) ¼ L0 and V(0) ¼ V0, then there exists an optimal control pair u*1 and u*2, such that

J


u*1; u

*
2
� ¼ maxfJðu1;u2Þjðu1;u2Þ2Ug:

Proof. To prove this theorem, we follow the requirements from Theorem 4.1 and Corollary 4.1 developed by Fleming and
Rishel in (Fleming& Rishel, 1975) and verify them. Let f(t, X, u) be the right-hand side of (3-4) for 0� t � Tf, where X ¼ ðT;I;L;
VÞ2R4, and u ¼ ðu1; u2Þ2R2. According to (Fleming & Rishel, 1975), the following conditions are need to satisfy for the
existence:

1. The class of all initial conditions with an optimal control pair u1, u2 in the admissible control set along with each state
equation being satisfied is not empty and is of class C1. That is

jfðt;0;0Þj � C; jfXðt;X;uÞj � Cð1þ jujÞ and jfuðt;X;uÞj � C:

2. The admissible control set U is closed and convex.
3. Each right hand side of equations of system (3e4) is continuous, is bounded above by a sum of the bounded control and

the state, and can be written as a linear function of an optimal control pair u1, u2 with coefficients depending on time and the
state variables. That is
1207
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fðt;X;uÞ ¼ aðt;XÞ þ gðt;XÞu and jfðt;X;uÞj � C1ð1þ jXj þ jujÞ:

4. The integrand of the functional J(u1, u2) is concave on the admissible control set and is bounded above by C2 � C1|u|b,
where C1, C2 are positive constants and b > 1.

In order to verify the theorem, we write the right hand side of equations of system (3e4) as

fðt;X;uÞ ¼

0BB@
l� ð1� u1ÞkTV � dTT

ð1� u1Þð1� f ÞkTV � dII þ aL
ð1� u1ÞfkTV � dLL� aL
ð1� u2ÞNdII � dVV

1CCA

It is easy to see that f(t, X, u) is of class C1 (continuously differentiable functions) and |f(t, 0, 0)| ¼ l and we have

jfXðt;X;uÞj ¼

0BB@
a11 0 0 a14
a21 �dI a a24
a31 0 �ðdL þ aÞ a34
0 NdIð1� u2Þ 0 �dV

1CCA
where
a11 ¼ � ð1 � u1ÞkV � dT; a14 ¼ � ð1 � u1ÞkT; a21 ¼ ð1 � u1Þð1 � fÞkV; a24 ¼ ð1 � u1Þð1 � fÞkT; a31 ¼
ð1 � u1ÞfkV; a34 ¼ ð1 � u1ÞfkT and

jfuðt;X;uÞj ¼

��������
0BB@

kTV 0
�ð1� f ÞkTV 0

�fkTV 0
0 �NdII

1CCA
��������

Since T, I, L and V are bounded, then there exits a constant C such that

jfðt;0;0Þj � C; jfXðt;X;uÞj � Cð1þ jujÞ and jfuðt;X;uÞj � C:

By definition, U is closed. Take any controls u1, u2 2 U and q 2 [0, 1]. Then

qu1 þ ð1� qÞu2 � 0;

with qu1 � q and (1 � q)u2 � (1 � q). Then

qu1 þ ð1� qÞu2 � qþ ð1� qÞ ¼ 1;

i.e 0� qu1 þ (1 � q)u2 � 1, for all u1, u2 2 U and q2 [0, 1]. Therefore, U is convex and condition (ii) is satisfied. The right hand
side of system (3e4) is continuous, bilinear in the control and it can be written as:

fðt;X;uÞ ¼ aðt;XÞ þ gðt;XÞ:u:

Where

aðt;XÞ ¼

0BBBBB@
l� kTV � dTT

ð1� f ÞkTV � dIIðtÞ þ aL

fkTV � dLL� aL

NdII � dVV

1CCCCCA; gðt;XÞ ¼

0BB@
kTV 0

�ð1� f ÞkTV 0
�fkTV 0

0 �NdII

1CCA; and u ¼
�
u1
u2

�
;

are vector-valued functions of X. and the boundedness of solutions gives

jfðt;X;uÞj � C1ð1þ jXj þ jujÞ;

where C1 depends on the coefficients of the system. Hence, satisfies condition (iii). In order to verify the convexity of the
integrand of our objective functional J, we show that
1208
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ð1� εÞJðt;X;uÞ þ εJðt;X; vÞ � Jðt;X; ð1� εÞuþ εvÞ

for 0 < ε < 1 and Jðt;X;uÞ ¼ T �
�
A1
2 u

2
1 þ A2

2 u
2
2

�
.

Now

ð1� εÞJðt;X;uÞ þ εJðt;X; vÞ � Jðt;X; ð1� εÞuþ εv Þ
¼ ð1� εÞ

�
T �

�
A1

2
u21 þ

A2

2
u22

�	
þ ε

�
T �

�
A1

2
v21 þ

A2

2
v22

�	
� T � A1

2
ðð1� εÞu1 þ εv1 Þ2 �

A2

2
ðð1� εÞu2 þ εv2 Þ2

¼ �A1

2

h
ð1� εÞu21 þ εv21 � ðð1� εÞu1 þ εv1 Þ2

i
� A2

2

h
ð1� εÞu22 þ εv22 � ðð1� εÞu2 þ εv2 Þ2

i
¼ �A1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εð1� εÞ

p
u1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εð1� εÞ

p
v1

�
2 � A2

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εð1� εÞ

p
u2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εð1� εÞ

p
v2

�
2

¼ �A1

2
εð1� εÞðu1 � v1Þ2 �

A2

2
εð1� εÞðu2 � v2Þ2 � 0:

Since A1, A2 > 0, J(t,X, u) is concave in U. Finally we need to show that J(t,X, u)� C2� C1|u|b, where C1 > 0 and b > 1. For our
case

Jðt;X;uÞ ¼ T �
�
A1

2
u21 þ

A2

2
u22

�
� C2 � C1juj2;

where C2 depends on the upper bound on CD4þTcells, b¼ 2, and C1 > 0 since C1 ¼min{A1, A2} with A1, A2 > 0. So we conclude
that there exists an optimal control pair.
3.2. The optimality conditions

The Pontryagin's Maximum Principle (Pontryagin et al., 1962) provides necessary conditions for an optimal control
problem. This principle converted the problem of finding a control which maximizes the objective function J defined in (5)
subject to the state system (3e4) to the problem of maximizing the Hamiltonian H, point-wisely with respect to u1 and u2. So
it is sufficient to derive the Hamiltonian H instead of deriving the objective function J in order to characterize the optimal
controls u*1 and u*2. The Hamiltonian is defined from the formulation of the objective function as follows:

H ¼ TðtÞ �
�
A1

2
u21ðtÞ þ

A2

2
u22ðtÞ

�
þ
X4

i¼1
liðtÞFi;

where F is the right hand side of the differential equation of i-th state variable. By applying Pontryagin's Maximum Principle
i
(Pontryagin et al., 1962), we obtain the following theorem.

Theorem 3.2. There exists an optimal control u* ¼ ðu*1;u*2Þ and corresponding solution T(t), I(t), L(t) and V(t), that maximizes J(u1,
u2) over U. Furthermore, there exists adjoint functions l1(t), l2(t), l3(t) and l4(t) satisfying the equations

8>>>>>>>>><>>>>>>>>>:

l
0
1ðtÞ ¼ �1þ ð1� u1ðtÞ ÞkVðtÞðl1ðtÞ � ð1� f Þl2ðtÞ � f l3ðtÞ Þ þ l1ðtÞdT ;
l
0
2ðtÞ ¼ l2ðtÞdI � l4ðtÞð1� u2ðtÞ ÞNdI ;
l
0
3ðtÞ ¼ �l2ðtÞaþ l3ðtÞðdL þ aÞ;
l
0
4ðtÞ ¼ ð1� u1ðtÞ ÞkTðtÞðl1ðtÞ � ð1� f Þl2ðtÞ � f l3ðtÞ Þ þ l4ðtÞdV ;

(7)

with transversality conditions
li

�
Tf
�
¼ 0; i ¼ 1;2;…;4: (8)
Moreover, the optimal control is given by

u*1ðtÞ ¼ min
�
max

�
0;

1
A1

ðl1ðtÞ � ð1� f Þl2ðtÞ � f l3ðtÞÞkTðtÞVðtÞ
�
;1
�

(9)

and
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u*2ðtÞ ¼ min
�
max

�
0;

�1
A2

l4ðtÞNdII
�
;1
�
: (10)
Proof. The adjoint equations and transversality conditions can be obtained by using Pontryagin's Maximum Principle, such
that

l
0
1ðtÞ ¼ �vH

vT
; l1

�
Tf
�
¼ 0;

l
0
2ðtÞ ¼ �vH

vI
; l2

�
Tf
�
¼ 0;

l
0
3ðtÞ ¼ �vH

vL
; l3

�
Tf
�
¼ 0;

l
0
4ðtÞ ¼ �vH

vV
; l4

�
Tf
�
¼ 0:
Since T(t), I(t), L(t) and V(t) do not have fixed values at the final time Tf, the values of the associated adjoints l1(t), l2(t),
l3(t) and l4(t) at the final time are zero. The optimal control u*1 and u*2 on the interior of the control set can be solved from the
optimality conditions,

vH
vu1u1¼u*

1

¼ 0; and
vH
vu2u2¼u*

2

¼ 0;

That is
vH
vu1

¼ �A1u1 þ ðl1ðtÞ � ð1� f Þl2ðtÞ � f l3ðtÞÞkTðtÞVðtÞ ¼ 0;

and
vH
vu2

¼ �A2u2 � l4ðtÞNdII ¼ 0;
By using the bounds on the controls, we get

u*1 ¼

8>>>>>>>>><>>>>>>>>>:

0; if
vH

vu*1
<0

1
A1

ðl1ðtÞ � ð1� f Þl2ðtÞ � f l3ðtÞÞkTðtÞVðtÞ; if
vH

vu*1
¼ 0

1 if
vH

vu*1
>0:
In compact notation

u*1ðtÞ ¼ min
�
max

�
0;

1
A1

ðl1ðtÞ � ð1� f Þl2ðtÞ � f l3ðtÞÞkTðtÞVðtÞ
�
;1
�
:

Again, we get

u*2 ¼

8>>>>>>>>><>>>>>>>>>:

0 if
vH

vu*2
<0;

�1
A2

l4ðtÞNdII; if
vH

vu*2
¼ 0

1 if
vH

vu*2
>0:
In compact notation
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u*2ðtÞ ¼ min
�
max

�
0;

�1
A2

l4ðtÞNdII
�
;1
�
:

In addition, the second derivative of the Hamiltonian H with respect to u1(t) and u2(t) are negative, indicating a maximum
at u* ¼ ðu*1;u*2Þ. That is flushleft

v2H
vu2i

¼ �Ai � 0; i ¼ 1;2 since Ai � 0
We point out that the optimality system consists of the state system (3) with the initial conditions (4), adjoint system (7)
with transversality conditions (8), and optimality condition (9e10). Thus, we have the following optimality system at u*ðtÞ ¼
ðu*1ðtÞ;u*2ðtÞÞ:8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

dTðtÞ
dt

¼ l� 
1� u*1ðtÞ
�
kTðtÞVðtÞ � dTTðtÞ

dIðtÞ
dt

¼ 
1� u*1ðtÞ
�ð1� f ÞkTðtÞVðtÞ � dIIðtÞ þ aLðtÞ

dLðtÞ
dt

¼ 
1� u*1ðtÞ
�
fkTðtÞVðtÞ � dLLðtÞ � aLðtÞ

dVðtÞ
dt

¼ 
1� u*2ðtÞ
�
NdIIðtÞ � dVVðtÞ;

l
0
1ðtÞ ¼ �1þ 
1� u*1ðtÞ

�
kVðtÞðl1ðtÞ � ð1� f Þl2ðtÞ � f l3ðtÞ Þ þ l1ðtÞdT ;

l
0
2ðtÞ ¼ l2ðtÞdI � l4ðtÞ



1� u*2ðtÞ

�
NdI;

l
0
3ðtÞ ¼ �l2ðtÞaþ l3ðtÞðdL þ aÞ;
l
0
4ðtÞ ¼



1� u*1ðtÞ

�
kTðtÞðl1ðtÞ � ð1� f Þl2ðtÞ � f l3ðtÞ Þ þ l4ðtÞdV ;

Tð0Þ; Ið0Þ; Lð0Þ;Vð0Þ � 0;

li

�
Tf
�
¼ 0; i ¼ 1;2;…;4;

(11)

where the controls u*1ðtÞ and u*2ðtÞ are given by (9) and (10) respectively.

3.3. Uniqueness of the optimality system

To prove uniqueness of solutions of the optimality system for the small time interval, we use the following theorems (Joshi,
2002).

Theorem 3.3. The function u*(c) ¼ min(max(c, a), b) is Lipschitz continuous in c, where a < b are some fixed positive constants.
Proof. Consider c1, c2 real numbers and a, b as fixed positive constants. We will show that the Lipschitz continuity holds in

all possible cases for max(c, a). Similar arguments hold for min(max(c, a), b) as well.

1. c1 � a, c2 � a: |max(c1, a) � max(c2, a)| ¼ |c1 � c2|.
2. c1 � a, c2 � a: |max(c1, a) � max(c2, a)| ¼ |c1 � a| � |c1 � c2|.
3. c1 � a, c2 � a: |max(c1, a) � max(c2, a)| ¼ |a � c2| � |c1 � c2|.
4. c1 � a, c2 � a: |max(c1, a) � max(c2, a)| ¼ |a � a| ¼ 0 � |c1 � c2|.

Hence |max(c1, a) � max(c2, a)| � |c1 � c2| and we have Lipschitz continuity of u* in c.

Theorem 3.4. For sufficiently small final time (Tf), bounded solutions to the optimality system (11), are unique.
Proof. Suppose (T, I, L, V, l1, l2, l3, l4) and (T ;I;L;V ;l1;l2;l3;l4) are two non-identical solutions of our optimality system (11).

To show that the two solutions are equivalent, it is convenient to make a change of variables. Let

T ¼ emtx1; I ¼ emtx2; L ¼ emtx3;V ¼ emtx4; l1 ¼ e�mty1; l2 ¼ e�mty2; l3 ¼ e�mty3; l4 ¼ e�mty4;

T ¼ emtx1; I ¼ emtx2; L ¼ emtx3;V ¼ emtx4; l1 ¼ e�mty1; l2 ¼ e�mty2; l3 ¼ e�mty3; l4 ¼ e�mty4:

where m > 0 is a positive constant to be chosen later. With the new variables the optimality conditions become
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u*1 ¼ min
�
max

�
0;

ðy1 � ð1� f Þy2 � f y3Þkx1x4emt

A1

�
;1
�
;

u*2 ¼ min
�
max

�
0;

�NdIy4x2
A2

�
;1
�
;

u*1 ¼ min
�
max

�
0;

ðy1 � ð1� f Þy2 � f y3Þkx1 x4e
mt

A1

�
;1
�
;

u*2 ¼ min
�
max

�
0;

�NdIy4 x2
A2

�
;1
�
:

For the first equation of system (11) we substitute T ¼ emtx1 and get

_x1 þmx1 ¼ le�mt � 
1�u*1
�
kx1x4e

mt � dTx1

and for T ¼ emtx1 we have

_x1 þmx1 ¼ le�mt � 
1�u*1
�
kx1 x4e

mt � dTx1:

Subtracting the expression for T from the expression for T we have

_x1 � _x1 þmðx1 � x1Þ ¼ �kemt�
1�u*1
�
x1x4 �



1�u*1

�
x1 x4

�� dT ðx1 � x1Þ:

Multiplying by ðx1 �x1Þ and integrating from t ¼ 0 to t ¼ Tf we have

1
2
ðx1 � x1Þ2

�
Tf
�
þm

ZTf
0

ðx1 � x1Þ2dt ¼ �k
ZTf
0

emt�
1� u*1
�
x1x4 �



1� u*1

�
x1 x4

�ðx1 � x1Þdt � dT

ZTf
0

ðx1 � x1Þ2dt: (12)

In order to simplify the right-hand expressions of (12), we need some elementary inequalities.
By the elementary inequality (a þ b)2 � 2(a2 þ b2), we have

ðx1y1 � x1 y1Þ2 ¼ ðx1y1 � x1y1 þ x1y1 � x1 y1Þ2 ¼ ½x1ðy1 � y1Þ þ y1ðx1 � x1Þ �2

� max
n
2x21;2y1

2
o
½ðx1 � x1Þ þ ðy1 � y1Þ �2 � C½ðx1 � x1Þ þ ðy1 � y1Þ �2;

where C depends on bounds for x1;y1. Another common expression can be used repeatedly,

ðxy� x yÞðw�wÞ ¼ ðxy� xyþ xy� x yÞðw�wÞ ¼ yðx� xÞðw�wÞ þ xðy� yÞðw�wÞ
� y2ðx� xÞ2 þ x2ðy� yÞ2 þ 2ðw�wÞ2 � C

h
ðx� xÞ2 þ ðy� yÞ2 þ ðw�wÞ2

i
;

where C depends on bounds for x;y.
Based on the above arguments and Theorem 3.3, we find

ZTf
0



u*1 � u*1

�2 dt ¼ k2

A2
1

ZTf
0

�
emtfx1x4ðy1 � ð1� f Þy2 � fy3 Þ � x1 x4ðy1 � ð1� f Þy2 � f y3 Þ g

�2dt
� C2

k2e2mTf

A2
1

ZTf
0

h
ðy1 � y1Þ2 þ ðy2 � y2Þ2 þ ðy3 � y3Þ2

i
dt:

Also,
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k
ZTf
0

emt�
1� u*1
�
x1x4 �



1� u*1

�
x1 x4

�ðx1 � x1Þdt � C3e
mTf
ZTf
0

h
ðx1 � x1Þ2 þ ðx4 � x4Þ2

þ 
u*1 � u*1
�2 idt � C

0
2e

3mTf
ZTf
0

h
ðx1 � x1Þ2 þ ðx4 � x4Þ2 þ ðy1 � y1Þ2þðy2 � y2Þ2 þ ðy3 � y3Þ2

i
dt:

Substituting above relations in Eqn (12), it becomes

1
2
ðx1 � x1Þ2

�
Tf
�
þm

ZTf
0

ðx1 � x1Þ2dt � C
0
1

ZTf
0

ðx1 � x1Þ2dt þ C
0
2e

3mTf
ZTf
0

h
ðx1 � x1Þ2 þ ðx4 � x4Þ2 þ ðy1 � y1Þ2

þ ðy2 � y2Þ2 þ ðy3 � y3Þ2
i
dt

where the constant C2;C
0
1 and C0

2 obtained above are dependent on the system coefficients as well as the bounds on the state
and adjoint variables.

Similarly, for l1 ¼ e�mty1 and l1 ¼ e�mty1 we have

� _y1 þmy1 ¼ emt � dTy1 � kemt
1�u*1
�
x4½y1 � ð1� f Þy2 � fy3�

and

� _y1 þmy1 ¼ emt � dTy1 � kemt
1�u*1
�
x4½y1 � ð1� f Þy2 � f y3�

respectively. Subtracting the expression for l1 from the expression for l1 and multiplying by ðy1 �y1Þ and integrating from
t ¼ 0 to t ¼ Tf we have

1
2
ðy1�y1Þ2ð0Þþm

ZTf
0

ðy1�y1Þ2dt¼�dT

ZTf
0

ðy1�y1Þ2dt�k
ZTf
0

emt
1�u*1
�
x4ðy1�ð1�f Þy2�fy3Þ�



1�u*1

�
x4ðy1�ð1�f Þy2

�f y3Þðy1�y1Þdt�C
0
3

ZTf
0

ðy1�y1Þ2dtþC
0
4e

3mTf
ZTf
0

h
ðx4�x4Þ2þðy1�y1Þ2þðy2�y2Þ2þðy3�y3Þ2

i
dt

where the constant C0
3 and C0

4 obtained above are dependent on the system coefficients as well as the bounds on the state and
adjoint variables.

Similarly, after appropriate substitutions the equations for I and I, L and L, V and V , l2 and l2, l3 and l3, l4 and l4 are
subtracted, then each expression is multiplied by an appropriate function and integrated from t ¼ 0 to t ¼ Tf. We obtain total
eight integral equations and to show uniqueness, the integral equations are combined. Adding all the eight estimates gives

1
2
ðx1�x1Þ2

�
Tf
�
þ1
2
ðx2�x2Þ2

�
Tf
�
þ1
2
ðx3�x3Þ2

�
Tf
�
þ1
2
ðx4�x4Þ2

�
Tf
�
þ1
2
ðy1�y1Þ2ð0Þþ

1
2
ðy2�y2Þ2ð0Þþ

1
2
ðy3�y3Þ2ð0Þ

þ1
2
ðy4�y4Þ2ð0Þþm

ZTf
0

ðx1�x1Þ2þðx2�x2Þ2þðx3�x3Þ2þðx4�x4Þ2þðy1�y1Þ2þðy2�y2Þ2þðy3�y3Þ2þðy4�y4Þ2dt

�
�
~C1þ ~C2e

3mTf
�ZTf
0

ðx1�x1Þ2þðx2�x2Þ2þðx3�x3Þ2þðx4�x4Þ2þðy1�y1Þ2þðy2�y2Þ2þðy3�y3Þ2þðy4�y4Þ2dt:

Thus from the above expression, using the non-negativity of the variable expressions evaluated at the initial and the final
time and simplifying, the inequality is reduced to
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�
m� ~C1� ~C2e

3mTf
�ZTf
0

ðx1�x1Þ2þðx2�x2Þ2þðx3�x3Þ2þðx4�x4Þ2þðy1�y1Þ2þðy2�y2Þ2þðy3�y3Þ2þðy4�y4Þ2dt�0:

where ~C1 and ~C2 depend on the system coefficients as well as the bounds on state and adjoint variables. If we choose m such

that m� ~C1 � ~C2e3mTf >0, the above inequality holds if the integrand is identically zero. Since the natural logarithm is an

increasing function, then ln

 
m� ~C1

~C2

!
:>3mTf if m> ~C1 þ ~C2. This gives that Tf < 1

3m ln

 
m� ~C1

~C2

!
, then x1 ¼ x1, x2 ¼ x2, x3 ¼ x3,

x4 ¼ x4, y1 ¼ y1, y2 ¼ y2, y3 ¼ y3, y4 ¼ y4. Hence the solution is unique for small time.
4. Numerical results

In this section, we explore the model (3) to study the effects of both RTIs and PIs on the proliferation of the viral and
infected cells within the host. Since HIV symptoms are exposed during symptomatic phase (7e12 days after infection), so
treatment was assumed to be given during this phase. Using various combinations of the two drugs, one at a time and
combined, we investigate and compare the numerical results from simulations. In doing so, the model parameters Q ¼ (k, f,
dI, a, dL, N, dV) are estimated under no treatments (u1 ¼ u2 ¼ 0) at the primary stage of HIV infection, rest of the parameters
such as production rate l, natural death rates dT of T cells can be estimated directly from population data. Using the set of data
gathered from plasma donor samples obtained in (Nowak & May 2000), and using Markov-chain Monte Carlo (MCMC)
method to fit our model (3) under no treatments, our estimated parameters shown in Table A.6 and Fig. 1. The procedure of
the MCMC method is carried out in Appendix A.

Now, we study the influence of efficiency u1 and u2 (RTIs and PIs respectively) on the basic reproduction number RL. Recall
that the infection die out (persists) whenever RL < 1(>1), which is equivalent to q > qc(<qc). By using values form Table A.6,
prior to the initiation of treatment RL ¼ 18.37 > 1, and u1 ¼ 0, u2 ¼ 0. The goal is to keep increasing u1 and u2 such that RL is
driven to a value less than unity. In this case, u1 and u2 must be chosen such that q>qc ¼ 0.95. We illustrate this by a surface
plot and a contour plot in Fig. 2. One can easily observe that for u1¼0 and u2¼ 0 the value of RL reaches its maximumvalue of
18.37. By increasing u1 and u2 from 0 to 1, we observe that the value of RL gradually decreases and tends towards 0 (corre-
sponding to u1 ¼ 1, u2 ¼ 1). This clearly reflects how the efficacy of the drugs effect the level of infection in order to achieve
viral clearance.

Now we consider the optimal control problem which comprising of the optimality system in (11) is solved using an
iterative method named forward and backward sweep method (FBSM). The optimality system is a two-point boundary value
problem, where initial conditions are specified for the state system and terminal conditions are specified for the adjoint
system. The method of obtaining the optimal control is as follows (Lenhart & Workman, 2007):

1. Take a guess for the two controls.
2. Solve the state system forward using those controls and using a Runge-kutta method of order four algorithm with state variables initial conditions.
3. Using the new state values, solve the adjoint system backwards using the final time zero boundary conditions with Runge-Kutta of order four scheme.
4. Calculate the new control values from the characterization.
5. Go to steps 2, 3 again with new control from step 4.
6. Calculate other new control values from step 5. Compare controls from last iteration to new iteration and compare states also. Keep repeating control

updates and forward and backward solving until the iteration converges.
Fig. 1. Dynamics and data fitting of model (3) under no treatments in Semi-log scale.
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Fig. 2. Surface and contour plot of RL for various values of u1 and u2.

Fig. 3. The evolution of the immune cells in contact with HIV with and without optimal treatment. Here we initiate treatment at different days after infection.
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Most individuals in the acute phase of HIV infection are highly infectious to others, primarily because of high HIV RNA
levels, and often lack of awareness of their HIV status (Hollingsworth et al., 2008). Thus, accurate and timely detection of
primary HIV infection is critical for the future health of the infected individual and for preventing forward transmission of
HIV. In order to understand the impact of different treatment strategies, we look at different dynamics simultaneously. We
vary initiation of treatment during later days of symptomatic phase with the following initial values:

For the purpose of the simulationwe take theminimum andmaximum control to be 0� u1, u2�1 and the cost coefficients
that were introduced in the definition of the objective functional (5) were set at A1 ¼ A2 ¼ 1 (Joshi, 2002). Fig. 3 shows that
without any preventive control the uninfected T cells continue to decrease, the number of infected cells (I & L) and virus V
cells increases at the end of the time interval, these cells achieving a infected state at t ¼ 60. By using therapy at any time we
can alter the situation.

For better understanding the treatment dynamics starting at different time, we summarize the end state variables in the
following tables:

According to Table 2, it signifies that treatment must be started immediately regardless the time elapsed since infection
(see Table 1). We also notice the cases when the objective function values are larger, i.e., when initial T cell counts are higher.
So, for the patients who are in the early stage of infection, the greatest effect does occur when treatment is initiated earlier
which is end with a maximum value of T-cells adverted. This result resembles the clinical output given by D. Ho (Ho, 1995)
which conferred as “Time to hit HIV, early and hard!”. “The acute infection stage, when the viral load is very high is the easiest
stage to control” results given by P. Paci et al. (Paci et al., 2009) also confirms our output. So by administering early
1215



Table 1
The cell populations at different moments of time following the infection.

Days after infection Initial T(t) Initial I(t) Initial L(t) Initial V(t)

t ¼ 12 870691 69466 8130 415083
t ¼ 18 56088 179896 29738 5684380
t ¼ 24 50148 119087 18679 5863112
t ¼ 30 52185 117373 17888 5628812

Table 2
The cell populations at the end of time following the treatment.

Treatment initiate at End T(t) End I(t) End L(t) End V(t) J(u*)

t ¼ 12 998936 2.5 � 10�6 1.9 � 10�6 2781 7.8 � 108

t ¼ 18 985846 0.00015 0.00011 40462 5.5 � 108

t ¼ 24 974047 0.0015 0.0011 80627 4.5 � 108

t ¼ 30 952811 0.023 0.017 163588 3.5 � 108

Fig. 4. State dynamics in various optimal treatment strategy.
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antiretroviral therapy can prevents the explosive burst of viremia during acute infection and thus may improve long-term
health outcomes for the infected individuals and decrease the likelihood of viral transmission.

Nowwe turn our attention to why we use combined drug treatment strategy. Fig. 4 shows the graph of the solution to the
optimality system when drugs (RTIs and PIs) are administered individually and combinedly for 60 days. The figure depicts
that except administrating only PIs both combined and only RTIs show almost same result at the end. By covering different
path during treatment period all treatment strategies attain optimal level at the end. Fig. 5 shows corresponding drug
administration schedule during the period of treatment, which shows each drug have to use 100% dose to attain optimal level
except PIs during combined therapy.

Again, for better understanding insight the treatment dynamics, we summarize the state variables at different time of the
treatment in the following tables:

Regarding the question of optimizing treatment scheduling, i.e. which treatment should be given, whatever the stage of
infection would be, the results from Tables 3e5 are conclusive. More or less each strategy is efficient to increase T cell but in
contest of decrease virus cell only PIs treatment clearly dominate to others. However, when comparing the objective function
values in case of different treatment strategy (only RTIs, only PIs and combined therapy) following the infection, we remark
that the best result is obtained in the last situation.
5. Conclusion

In this paper, we studied an optimal control problem, with the state equation describing the interaction of the immune
system with HIV and the objective function based on a contribution of maximizing benefit relied on T cells count and
minimizing the side effects of combined treatment. The controls represent the efficiency of drug treatment in inhibiting viral
1216



Fig. 5. Optimal drug profile during treatment.

Table 3
A summary of the cell populations at different moments of time administering only RTIs.

Time Only RTIs

TR(t) IR(t) LR(t) VR(t)

t ¼ 21 9.5 � 105 213 127 3.5 � 105

t ¼ 45 9.95 � 105 0.14 0.024 18159
t ¼ 60 9.989 � 105 0.02 0.004 2824
J(u*) 779554636

Table 4
A summary of the cell populations at different moments of time administering only PIs.

Time Only PIs

TP(t) IP(t) LP(t) VP(t)

t ¼ 21 6.4 � 105 42311 7125 1.3 � 105

t ¼ 45 9.1 � 105 3023 509 6913
t ¼ 60 9.7 � 105 508 86 1075
J(u*) 655996592

Table 5
A summary of the cell populations at different moments of time during combined treatment strategy.

Time Combined Therapy

TC(t) IC(t) LC(t) VC(t)

t ¼ 21 9.5 � 105 210 127 3.5 � 105

t ¼ 45 9.95 � 105 0.0026 0.0019 17893
t ¼ 60 9.99 � 105 2.52 � 10�6 1.9 � 10�6 2781
J(u*) 779560365
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production and preventing new infections; this combination efficacy was defined in such a way that the persistence or
clearance of infection depend on a critical drug efficacy. Existence for the optimal control pair is established and the Pon-
tryagin's maximum principle is used to uniquely characterized these optimal controls. Our results show that with preventive
control the uninfected T cells continue to increase, the number of infected cells (I& L) and virus V cells decreases at the end of
the time interval, which improves the quality of life of the patient. The key finding is that during acute infection earlier
treatment with a better pharmacodynamics profile is always associated with more substantial suppression of the viral load
1217



S. Ahmed, S. Rahman and M. Kamrujjaman Infectious Disease Modelling 6 (2021) 1202e1219
and latently infected cells and corresponds to the highest number of T cells. The model we consider in this paper is a basic
model with HIV latency; further studies need to be done to incorporate a more accurate model of the immune system. For
instance, taking multi-scale (within host and between hosts) andmutation of the virus into account in themodel formulation
will better reflect HIV dynamics over a longer time interval or when drug resistance emerges in patients. It would be
interesting to compare the corresponding difference in optimal controls.

Appendix A. Appendix

Appendix A.1 Parameter Estimation

The Markov Chain Monte Carlo (MCMC) method has become more and more popular, which is widely used in actual
research and data fitting. A brief introduce of the basic steps of MCMC using virus concentration data to estimate unknown
parameters is given below.

Step 1. Collect sample observations
Suppose, we are fitting the given virions bV ðtiÞ at time ti, with the given data
fðt1; bV 1Þ; ðt2; bV 2Þ;…; ðtn; bVnÞg:

nd V(ti, Q) represents the virus concentration at time ti with parameter Q.
a

Step 2. Determine the conditional density function
Consider bV ¼ fbV 1;

bV 2;…; bVng, the conditional density function of parameter vector Q is given by
PðQjbV Þ ¼ PðbV jQÞPðQÞ
PðbV Þ

:

e PðbV Þ is a constant relative to parameter vector Q, the conditional density function is usually rewritten as follows
Sinc
PðQjbV Þf PðbV jQÞPðQÞ:
Step 3. Construct the likelihood function
We assume that the viral load of day ti follows a Poisson distribution with parameter V(ti, Q). Then the likelihood function is given by ! Pn
L bV jQÞ¼
Yn

i¼1
PðbV ijQ ¼

Yn

i¼1

Vðti;QÞbV ie� i¼1
Vðti;QÞ

ðbV 1;
bV 2;…; bVnÞ!:
Step 4. Establish the probability of joint posterior distribution
By selecting the non-informative prior distribution P(Q) fconstant, then the probability of joint posterior distribution is given by
PðQjbV ÞfLðbV jQÞPðQÞf
Yn
i¼1

PðbV ijQÞf
Yn
i¼1

Vðti;QÞbV ie�Vðti ;QÞbV i!
:

Step 5. Select the initial value of parameters
Here, we select the initial parameter vector Q0 based on previous studies and use the randomwalk method to generate candidate parameter Q* and

assume that the proposal distribution q(Q*, Q), that satisfies

* *
qðQ ;QÞ ¼ qðQ;Q Þ:
Step 6. Determine the acceptance probability
Since the proposal distribution is symmetric, the acceptance probability can be simplified as( )
aðQ*
;QÞ ¼ min

�
1;

qðQ;Q*ÞPðQ*jbV Þ
qðQ*

;QÞPðQjbV Þ

�
¼ min 1;

�
Vðti;QÞ
Vðti;Q*Þ

�bV i

eVðti;QÞ�Vðti ;Q*Þ
Select the random number z from the Uniform distribution U(0, 1). When a(Q*,Q)� z accept the candidate parameterQ*
and denoted byQtþ1 ¼Q*, otherwise rejectQ*. Select a burn-in period of m times and a cycle of N times, calculate the mean
value Q* of the last N � m times about unknown parameters and take them as the estimated values of Q.
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Appendix A.2 Results

Certain parameters such as production rate l, natural death rates dT of T cells can be estimated directly from population
data as given in Table A.6. The rest of the parametersQ¼ (k, f, dI, a, dL, N, dV) are estimated from the set of data gathered from
plasma donor samples obtained in (Nowak & May 2000) at primary stage of HIV infection. We have taken most of our initial
parameters from previous literature (Perelson et al., 1993) except the fraction of latent infection f. Since f2 (0, 1), we take the
initial guess as Q0 ¼ (2 � 10�7, 0.1, 0.5, 0.4, 0.004, 50, 5) with initial conditions (T0, I0, L0, V0) ¼ (106, 0, 0, 15.8), under no
treatments (u1 ¼ u2 ¼ 0) we obtained estimated parameters of model (3) in Table A.6.

Table A.6
Description of parameter and values for model (3).
Parameter
 Description
1219
Value
 Reference
l
 Production rate of T cells
 105 cells ml�1 d�1
 Nowak and May (2000)

dT
 Death rate of T cell population
 0.1 d�1
 Nowak and May (2000)

k
 Rate of T cell become infected by free virus
 3.22 � 10�7 ml d�1
 Estimated

f
 Proportion of latent infection
 0.087
 Estimated

dI
 Death rate of Infected T cell population
 0.80 d�1
 Estimated

a
 Activation rate of latent cells
 0.45d�1
 Estimated

dL
 Death rate of latently T cell population
 0.008 d�1
 Estimated

N
 Number of free virus produced by I cells
 7
 Estimated

dV
 Death rate of free virions
 0.12 d�1
 Estimated
References

Adams, B. M., Banks, H. T., Davidian, M., Kwon, H. D., Tran, H. T., Wynne, S. N., et al. (2005). HIV dynamics: Modeling, data analysis, and optimal treatment
protocols. Journal of Computational and Applied Mathematics, 184, 10e49.

Ahmed, S., Alim, A., & Rahman, S. (2018). A controlled treatment strategy applied to HIV immunology model. Numerical Algebra, Control and Optimization,
8(3), 309e324.

Ahmed, S., Kamrujjaman,M., & Rahman, S. (2020). Dynamics of a viral infectiology under treatment. Journal of Applied Analysis and Computation. Forthcoming.
Archin, N. M., Vaidya, N. K., Kuruca, J. D., Libertya, A. L., Wiegandd, A., Kearneyd, M. F., et al. (2012). Immediate antiviral therapy appears to restrict resting

CD4þT cell HIV-1 infection without accelerating the decay of latent infection. Proceedings of the National Academy of Sciences, USA, 109, 9523e9528.
Butler, S., Kirschner, D., & Lenhart, S. (1997). Optimal control of chemotherapy affecting the infectivity of HIV. Advances in Mathematical Population Dy-

namics: Molecules, Cells and Man, 6, 104e120.
Chun, T. W., Carruth, L., Finzi, D., Shen, X., DiGiuseppe, J. A., Taylor, H., et al. (1997). Quantification of latent tissue reservoirs and total body viral load in HIV-1

infection. Nature, 387, 183e188.
Chun, T. W., Engel, D., Berrey, M. M., Shea, T., Corey, L., & Fauci, A. S. (1998). Early establishment of a pool of latently infected, resting CD4þT cells during

primary HIV-1 infection. Proceedings of the National Academy of Sciences, USA, 95, 8869e8873.
Diekmann, O., Heesterbeek, J. A. P., & Metz, J. A. J. (1990). On the definition and the computation of the basic reproduction ratio R0 in models for infectious

diseases in heterogeneous populations. Journal of Mathematical Biology, 28, 365e382.
Fleming, W. H., & Rishel, R. W. (1975). Deterministic and stochastic optimal control. New York: Springer Verlag.
Gronwall, T. H. (1919).Noteon the derivativeswith respect to a parameterof the solutions of a systemofdifferential equations.Annals ofMathematics, 4, 292e296.
Hattaf, K., & Yousfi, N. (2012). Two optimal treatments of HIV infection model. World Journal of Modelling and Simulation, 8(1), 27e36.
Heffernan, J. M., Smith, R. J., & Wahl, L. M. (2005). Perspectives on the basic reproductive ratio. Journal of Royal Society, 2, 281e293.
Ho, D. (1995). Time to hit HIV, early and hard. New England Journal of Medicine, 333, 450e451.
Hollingsworth, T. D., Anderson, R. M., & Fraser, C. (2008). HIV-1 transmission, by stage of infection. The Journal of Infectious Diseases, 198, 687e693.
Joshi, H. R. (2002). Optimal control of an HIV immunology model. Optimal Control Applications and Methods, 23, 199e213.
Kelley, W. G., & Peterson, A. C. (2010). The theory of differential equations. New York: Springer.
Kim, H., & Perelson, A. S. (2006). Viral and latent reservoir persistence in HIV-1 infected patients on therapy. PLoS Computational Biology, 2, e135.
Kirschner, D., Lenhart, S., & Serbin, S. (1997). Optimal control of the chemotherapy of HIV. Journal of Mathematical Biology, 35, 775e792.
Lenhart, S., & Workman, J. (2007). Optimal control applied to biological models. Chapman & Hall/CRC Mathematical and Computational Biology.
Noe, A., Plum, J., & Verhofstede, C. (2005). The latent HIV-1 reservoir in patients undergoing HAART: An archive of pre-HAART drug resistance. Journal of

Antimicrobial Chemotherapy, 55, 410e412.
Nowak, M. A., & May, R. M. (2000). Virus dynamics: Mathematical principles of immunology and virology. Oxford.: Oxford University Press.
Ogunlaran, O. M., & Oukouomi Noutchie, S. C. (2016). Mathematical model for an effective management of HIV infection. BioMed Research International, 6.

Article ID 4217548.
Orellana, J. M. (2011). Optimal drug scheduling for HIV therapy efficiency improvement. Biomed. Signal Process, 6, 379e386.
Paci, P., Carello, R., Bernaschi, M., D'Offizi, G., & Castiglione, F. (2009). Immune control of HIV-1 infection after therapy interruption: Immediate versus

deferred antiretroviral therapy. BMS Infections Diseases, 9, 1e13.
Pankavich, S. (2016). The effects of latent infection on the dynamics of HIV. Differential Equations and Dynamical Systems, 24(3), 281e303.
Perelson, A. S., Kirschner, D. E., & Boer, R.d (1993). Dynamics of HIV infection of CD4þT cells. Mathematical Biosciences, 114, 81e125.
Pontryagin, L. S., Boltyanskii, V. G., Gamkrelize, R. V., & Mishchenko, E. F. (1962). The mathematical theory of optimal processes. Wiley.
Protter, M. H., & Weinberger, H. F. (1999). Maximum principles in differential equations. New York: Springer.
Rong, L., & Perelson, A. S. (2009). Modeling latently infected cell activation: Viral and latent reservoir persistence, and viral blips in HIV-infected patients on

potent therapy. PLoS Computational Biology, 5, Article e1000533.
Whitney, J. B., Hill, A. L., Sanisetty, S., MacMaster, P. P., Liu, J., Shetty, M., et al. (2014). Rapid seeding of the viral reservoir prior to SIV viraemia in rhesus

Monkeys. Nature, 512, 74e77.
Who. (2018). HIV/AIDS. http://www.who.int/hiv/data/en.
World Health Organization. HIV/AIDS key facts. Available from https://www.who.int/en/news-room/fact-sheets/detail/hiv-aids.
Zhou, Y., Liang, Y., & Wui, J. (2014). An optimal strategy for HIV multitherapy. Journal of Computational and Applied Mathematics, 263, 326e337.

http://refhub.elsevier.com/S2468-0427(21)00065-8/sref1
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref1
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref1
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref2
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref2
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref2
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref3
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref4
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref4
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref4
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref4
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref5
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref5
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref5
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref6
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref6
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref6
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref7
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref7
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref7
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref7
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref8
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref8
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref8
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref8
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref9
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref10
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref10
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref11
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref11
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref12
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref12
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref13
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref13
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref14
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref14
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref15
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref15
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref16
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref17
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref18
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref18
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref19
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref19
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref20
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref20
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref20
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref21
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref22
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref22
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref23
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref23
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref24
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref24
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref24
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref25
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref25
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref26
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref26
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref26
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref27
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref28
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref29
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref29
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref30
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref30
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref30
http://www.who.int/hiv/data/en
https://www.who.int/en/news-room/fact-sheets/detail/hiv-aids
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref33
http://refhub.elsevier.com/S2468-0427(21)00065-8/sref33

	Optimal treatment strategies to control acute HIV infection
	1. Introduction
	2. Qualitative study of the model
	2.1. Steady states
	2.2. Basic reproduction number
	2.3. Critical drug efficacy

	3. The optimal control problem
	3.1. Existence of an optimal control pair
	3.2. The optimality conditions
	3.3. Uniqueness of the optimality system

	4. Numerical results
	5. Conclusion
	Appendix A. Appendix
	Appendix A.1 Parameter Estimation
	Appendix A.2 Results

	References


