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Abstract: (1) Background: Macrosomia is prevalent in China and worldwide. The current method
of predicting macrosomia is ultrasonography. We aimed to develop new predictive models for
recognizing macrosomia using a random forest model to improve the sensitivity and specificity of
macrosomia prediction; (2) Methods: Based on the Shandong Multi-Center Healthcare Big Data
Platform, we collected the prenatal examination and delivery data from June 2017 to May 2018 in
Jinan, including the macrosomia and normal-weight newborns. We constructed a random forest
model and a logistic regression model for predicting macrosomia. We compared the validity and
predictive value of these two methods and the traditional method; (3) Results: 405 macrosomia
cases and 3855 normal-weight newborns fit the selection criteria and 405 pairs of macrosomia and
control cases were brought into the random forest model and logistic regression model. On the
basis of the average decrease of the Gini coefficient, the order of influencing factors was: interspinal
diameter, transverse outlet, intercristal diameter, sacral external diameter, pre-pregnancy body mass
index, age, the number of pregnancies, and the parity. The sensitivity, specificity, and area under
curve were 91.7%, 91.7%, and 95.3% for the random forest model, and 56.2%, 82.6%, and 72.0% for
logistic regression model, respectively; the sensitivity and specificity were 29.6% and 97.5% for the
ultrasound; (4) Conclusions: A random forest model based on the maternal information can be used
to predict macrosomia accurately during pregnancy, which provides a scientific basis for developing
rapid screening and diagnosis tools for macrosomia.

Keywords: random forest; macrosomia; interspinal diameter; sacral external diameter; transverse outlet

1. Introduction

Macrosomia refers to live-born newborns with birth weight ≥ 4000 g, which is one of
the adverse outcomes of newborns [1]. Macrosomia increases the rate of a cesarean section
and several maternal and newborn complications [2]. These complications are associated
with increased risks of shoulder dystocia, brachial plexus injury, asphyxia, prolonged
labor, postpartum hemorrhage, and laceration of the anal sphincter [3]. As a consequence,
macrosomia infants, on average, have higher health care utilization [4]. It is of great
significance for obstetricians to predict macrosomia in the early stage of pregnancy, and
it is helpful to have a timely intervention for puerperal, to reduce the injury of puerperal
and newborn, to reduce the incidence of complications during delivery, and to improve the
quality of obstetrics.

At present, the occurrence of macrosomia is related to factors such as genes [5], pre-
pregnancy body mass index [6], excessive weight gain during pregnancy [7], and gestational
diabetes mellitus [8], but few studies have built a high-accuracy prediction model based on
these factors. At present, clinical workers often use the Hadlock formula built into ultrasonic
instruments to predict fetal body mass [9]. However, previous studies have shown that
the accuracy of ultrasonic diagnosis of macrosomia is low (sensitivity: 12–75%, specificity:
68–99%). A low sensitivity may result in much macrosomia being missed, increasing
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the incidence of complications in both the mother and the newborn [10]. Therefore, we
wanted to build a prediction model to deal with this problem. In the aspect of model
construction, traditional prediction of macrosomia mainly used the logistic regression
model or the Cox proportional hazards regression model, but the predictive efficiency is
not very high [11]. It is urgent to introduce advanced methods into the construction of
the macrosomia prediction model. Random forest is a methodology for learning from
existing data to make predictions on new data [12]. Random forest improves the prediction
accuracy without significantly increasing the amount of computation, and it is not sensitive
to multicollinearity [13]. It can reasonably predict the role of up to thousands of explanatory
variables and is known as one of the best algorithms at present [14]. However, its use in the
prediction of macrosomia has been relatively limited. Random forest models have been
used for many medical predictions; one study used pre-pregnancy and 26-week follow-up
data to predict large-for-gestational-age infants, with an area under curve of 0.824 [4].

Therefore, if we can identify women in early pregnancy with the tendency to deliver
macrosomia according to some characteristics and carry out the proper pregnancy guidance,
it will help to reduce the incidence of macrosomia. Based on the Shandong Multi-Center
Healthcare Big Data Platform, this study applied the random forest algorithm to construct
an auxiliary prediction model for macrosomia to identify the risk factors of macrosomia,
and the prediction ability was compared with that of traditional logistic regression model
and ultrasound, providing a reference for the development of macrosomia prevention and
early intervention strategies.

2. Materials and Methods
2.1. Data Sources and the Subject

A community-based cohort was created from the “Shandong Multi-Center Healthcare
Big Data Platform” (SMCHBDP) in China, and the prenatal examination data in outpatient
records and the delivery data in hospital delivery records of the pregnant women who de-
livered newborns in Jinan city from June 2017 to May 2018 were collected. The information
collected included: (a) newborns’ birth weight in the hospital delivery records; (b) esti-
mated weight of newborns using the Hadlock formula built into the ultrasonic instruments;
(c) mother’s basic demographic information in outpatient records, such as age, pre-pregnancy
BMI, number of pregnancies, and parity; (d) extrapelvic measurement information in the
first prenatal examination records at the twelfth week of pregnancy, including interspinal
diameter, intercristal diameter, sacral external diameter, and transverse outlet.

Newborns were our study objects in which macrosomia were the cases and the normal-
weight newborns were the controls. The inclusion criteria of the subjects were: (a) newborn
birth, weight ≥ 2500 g with singleton and live birth; (b) permanent address of the mother
is in Jinan; (c) both the hospital for the maternal pregnancy examination and for delivery
are in Jinan; (d) with complete explanatory variable information needed for this study. The
inclusion criterion for the case was the weight of the newborn ≥ 4000 g and for the control
was the weight ≥ 2500 g and <4000 g. Previous studies have confirmed that data imbalance
will have a negative impact on the accuracy of random forest model classification results,
and most medical data are unbalanced data. The incidence of macrosomia is much lower
than the non-incidence, so the number of the subjects obtained in the two groups was
unbalanced. To avoid the false high accuracy caused by the bias of the classifier to most
classes, this study adopted under-sampling technology. It selected the same number of the
normal-weight newborns as the case group according to the ratio of 1:1 as the control [15].
All macrosomia that met the criteria were included in the study. We used the improved
under-sampling method to extract the control, it repeatedly sampled and trained multiple
classifiers, which not only avoided the loss of key information but also alleviated the
over-fitting [16].
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2.2. The Construction of Prediction Models

In this model, the outcome variable was whether the subjects presented with macroso-
mia, which was the goal of the decision-making classification. The explanatory variables
were multiple risk factors that may cause macrosomia, such as age, pre-pregnancy BMI, the
number of pregnancies, parity, and extrapelvic measurement. They were used to classify
the outcome variables. The subjects in the case and control groups were randomly divided
into the training set and the test set according to the percentage of 7:3, and the two datasets
were independent [17].

Firstly, the subjects were brought into the training set, modeled by the random for-
est algorithm and the logistic regression model. A stepwise regression was used in the
logistic regression model, and the inclusion and exclusion indices of the model were
SLE = SLS = 0.15. A VIF index was used to judge whether there was multicollinearity be-
tween the variables. In random forest model construction, two parameters will mainly
affect its work efficiency: [18] (1) the number of trees (ntree) and (2) the candidate feature
subset (mtry). Therefore, selecting appropriate parameters can ensure the stability of
the model.

Secondly, the two models were tested in the test set, and the area under the receiver
operating characteristic curve was measured to evaluate the accuracy of the model in
predicting the occurrence of macrosomia. The sensitivity, specificity, positive predictive
value, negative predictive value, and other indicators were obtained. The above indices
were compared with the B-ultrasound. The importance of explanatory variables in the
development of outcomes can be evaluated. The Gini coefficient evaluates the influence of
each explanatory variable on the heterogeneity of observations at each node in the decision
tree. The more significant the average decline of the Gini coefficient, the more critical the
explanatory variable is for classification to obtain the importance ranking.

Thirdly, the predicted weight obtained from the last prenatal B-ultrasound examination
was compared with the gold standard for whether actual birth weight ≥ 4000 g. The
predicted weight ≥ 4000 g was denoted as 1, and the weight < 4000 g was denoted as
0, thus obtaining the accuracy of the prediction of macrosomia by the last prenatal B-
ultrasound examination.

At last, we compared the accuracy and predictive value of the three methods with
ultrasonography.

Because of the use of under-sampling method, some information may have been lost
in the analysis. We cross-validated external data to confirm the stability of the model.

2.3. Statistical Analysis

Categorical variables were described as absolute values and percentages, and continu-
ous variables were expressed as means ± standard deviations or medians and interquartile
ranges. The mean difference was assessed by Student’s t-test, and the median difference was
assessed by the Mann–Whitney test. All analyses were performed using R software version
4.0.2 (R Foundation for Statistical Computing, Vienna, Austria; http://www.r-project.org,
accessed on 25 February 2022). p value < 0.05 was considered significant. We used the
“randomForest “package to develop the random forest models, and the” ROSE “package
was used to sort imbalanced data. The “MASS “package was used to build the logistic
regression model.

3. Results
3.1. Essential Population Characteristics

In this study, we firstly collected 4260 newborns that fit the criteria of the subjects, in
which 405 were macrosomia and 3855 were normal-weight newborns. The prevalence of
macrosomia based on the big data platform was 9.5% in the newborn for singleton and live
birth. Compared with the population delivering normal-weight newborns, the mothers
who delivered macrosomia newborns had higher age, pre-pregnancy BMI and interspinal
diameter and a lower sacral external diameter. The number of pregnancies and parity
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were different between the two groups (Table 1). There was no significant difference in
mothers’ information between the control selected by the under-sampling method and
total normal weight newborns (Table 1), indicating that the randomly selected control had
good representativeness.

Table 1. Characterization of macrosomia and control groups and the representativeness of the control.

Variables

Total Subjects Control

Macrosomia
(N = 405)

(A)

Normal Weight
Newborns
(N = 3855)

(B)

p
Not Selected

(N = 3450)
(C)

Selected
(N = 405)

(D)
p

Age (years old) 30.2 ± 4.2 28.1 ± 3.7 <0.001 28.9 ± 3.8 29.2 ± 4.1 0.251
Pre-pregnancy BMI (Kg/m2) 23.6 ± 4.0 22.3 ± 3.2 <0.001 21.9 ± 3.1 22.1 ± 3.3 0.236

Gestational Age (week) 40.1 ± 0.9 39.8 ± 1.1 0.285 39.8 ± 1.1 39.9 ± 0.8 0.883
Birth Weight (g) 4201.5 ± 249.1 3325.9 ± 340.1 <0.001 3331.1 ± 349.9 3283.5 ± 339.9 0.532

Number of pregnancies N (%) <0.001 0.295
1 153 (37.8) 2209 (57.3) 1979 (57.4) 230 (56.7)
2 149 (36.8) 1121 (29.1) 1002 (29.0) 119 (29.3)
≥3 103(25.4) 525(13.6) 469(13.6) 56 (13.8)

Parity N (%) <0.001 0.347
1 291 (71.9) 3577 (92.8) 3198 (92.7) 379 (93.5)
≥2 114 (28.1) 278 (7.2) 252 (7.3) 26 (6.4)

Interspinal Diameter (cm) 25.4 ± 1.2 25.6 ± 1.9 0.374 25.5 ± 1.8 25.3 ± 1.7 0.115
Intercristal Diameter (cm) 28.2 ± 1.3 28.0 ± 2.2 0.005 28.1 ± 1.8 28.0 ± 2.4 0.236

Sacral External Diameter (cm) 19.8 ± 0.6 20.1 ± 1.4 0.050 19.9 ± 1.2 20.0 ± 1.2 0.434
Transverse Outlet (cm) 8.5 ± 0.2 8.5 ± 0.5 0.971 8.5 ± 0.3 8.5 ± 0.4 0.867

BMI: body mass index.

3.2. Macrosomia Establishment of Random Forest Model

Based on the above information, a random forest model was established. A total of
405 normal-weight newborns were matched by a 1:1 under-sampling technique as control,
and a total of 810 subjects were brought into the model. When the number of random seeds
was 666, the number of candidate feature subsets (mtry) was 4, and the number of fixed
decision trees (ntree) was 1–500, and the variation of the average out-of-bag estimation
error rate with ntree was observed (Figure 1). When ntree was 1–50, the average out-of-bag
estimation error rate decreased rapidly, but it decreased slowly after 50 and tended to be
stable after 500. Therefore, this study selected the number of decision trees when ntree
was 500 to obtain the optimal model. The overall misjudgment rate of the model based on
the OBB data was 6.34%. In line with the average decline of the Gini coefficient of each
risk factor in the random forest model, the importance ranking of explanatory variables
were obtained (Figure 2). The predictive macrosomia factors that were screened by the
variable importance measure in the random forest were obtained as follows: interspinal
diameter, transverse outlet, intercristal diameter, sacral external diameter, pre-pregnancy
BMI, age, the number of pregnancies, and the parity. The number of decision tree nodes
in the model was at least 45 and at most 85 (Figure 3). The classification accuracy was
92.6%, the sensitivity was 88.4%, and the specificity was 96.7% (Figure 4). We conducted
cross-validation 9 times with the remaining 3450 unselected controls, and the results were
relatively robust, as shown in Figure 5.

3.3. The Comparison of the Three Methods in Predicting Macrosomia

According to the predicted weight obtained from the last prenatal ultrasound exami-
nation, the median gestational age of macrosomia at the last ultrasound was 39.9 weeks and
the interquartile range was 1.5 weeks. The median gestational age at the last ultrasonogra-
phy of normal weight infants was 39.1 weeks, and the interquartile interval was 1.6 weeks.
In total, 127 cases were foreseen as macrosomia, and 278 cases were predicted as normal-
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weight newborns of 405 macrosomia newborns. Conversely, 3762 controls were predicted
as normal-weight newborns and 93 controls were predicted as macrosomia newborns
of 3855 normal-weight newborns. As shown in Table 2, the AUC, sensitivity, specificity,
Youden’s index, false-negative rate, false-positive rate, positive predictive value, and neg-
ative predictive value of the random forest model were 0.953, 91.7%, 91.7%, 83.4%, 8.3%,
8.3%, 91.7%, and 91.7%. The AUC, sensitivity, specificity, Youden’s index, false-negative
rate, false-positive rate, positive predictive value, and negative predictive value of the
logistic regression model were 0.720, 52.6%, 82.6%, 38.8%, 43.8%, 17.4%, 70.8%, and 37.9%.
The sensitivity, specificity, Youden’s index, false-negative rate, false-positive rate, positive
predictive value, and negative predictive value of ultrasound in predicting macrosomia
were 29.6%, 97.6%, 27.2%, 70.1%, 2.4%, 57.7%, and 93.1%. Therefore, we can infer that the
current value of ultrasound in predicting macrosomia is low, and a more accurate model is
needed. The comparison of the three methods is shown in Figure 4.
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Table 2. The comparison of the random forest, logistic regression model, and B-ultrasound in the
prediction of macrosomia.

Evaluating Indicator Random Forest Logistic Regression
Model Ultrasound

Validity
Sensitivity (%) 91.7 56.2 29.6
Specificity (%) 91.7 82.6 97.6

False-negative rate (%) 8.3 43.8 70.1
False-positive rate (%) 8.3 17.4 2.4

Youden’s index (%) 83.4 38.8 27.2
Predictive value
Positive predictive value (%) 91.7 70.8 57.7

Negative predictive value (%) 91.7 37.9 93.1
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4. Discussion

Previous studies on macrosomia were limited to screening risk factors for macrosomia
and could not be used to predict macrosomia [19]. Therefore, the most useful method
to estimate fetal body weight at present is ultrasonography. There are many methods to
predict newborn birth weight, such as the Hadlock formula [20], Merz E formula [21],
Ott WJ formula [22], Combs CA formula [23], and Scioscia M formula [24], etc. The most
common used formula in China is the Hadlock formula, which is based on four fetal biolog-
ical indices: abdominal circumference (AC), femoral neck (FL), biparietal diameter (BPD),
and head circumference (HC). However, a review of 14 studies showed widely varying
diagnostic results for the sonographic detection of macrosomia (≥4000 g) in general ob-
stetric populations (sensitivity: 12–75%, specificity: 68–99%, post-test probability: 17–79%).
Moreover, in this study, we calculated the accuracy of ultrasound in predicting macrosomia.
We used the last B-ultrasound before delivery for prediction. The sensitivity was 29.6%, and
the specificity was 97.6%. Previous studies indicated that the B-ultrasound at 35th week of
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gestational age may have greater prediction than the last B-ultrasound before delivery for
prediction [25], so the low discrimination may be related to the proximity to delivery.

As a machine learning algorithm, a random forest algorithm can value the importance
of a variable for the prediction of dependent variables and can provide a reference basis
for subsequent clinical decision-making. Previous studies on the risk factors of macroso-
mia mainly used the traditional logistic regression model or Cox proportional hazards
regression model. These models have special requirements for data distribution and are
sensitive to multivariate collinearity, so they have some limitations in application. However,
a random forest algorithm can overcome these limits [26]. The sensitivity, specificity, and
AUC of the logistic regression model in this study were 56.2%, 82.6%, and 72.0%. The
predictive power is indeed lower than that of random forest. Random forest is widely used
in the medical area, and it can be used to distinguish and classify gene–gene expression
data [27] and protein action sites [28]. In terms of application of the model prediction, a
study in China used random forest to predict heatstroke [29]. Another study established a
weather-based forecasting and early warning model for HFMD [30], with the sensitivity
and specificity higher than 0.90. However, the use of a random forest model to predict
macrosomia is rare in obstetrics and gynecology. In this paper, we show that building
random forest model to predict the occurrence of macrosomia is better than ultrasound.
The specificity of ultrasound in predicting macrosomia is very high, indicating that the
false-positive rate is low. However, random forest significantly improves the sensitivity
from 29.6% to 91.7%, improves the positive predictive value of predicting macrosomia,
reduces the false-negative rate, has great significance for macrosomia prevention, and
significantly improves the predictive value. The specificity and false positive rate between
two methods are close.

The under-sampling method eliminates class imbalance by reducing the number of
samples in most classes, the simplest and most effective under-sampling method is Random
under-sampling (RUS), which is consistent with the idea of random sampling. This method
randomly selects samples of the same size as those of the minority samples from the
majority samples and then combines the selected samples with the minority samples to
form a new balanced sample set. Obviously, selecting some samples randomly from the
population will cause the loss of key information in the population. Based on this problem,
we used the improved under-sampling method and used the EasyEnsemble algorithm to
repeatedly sample most classes and train multiple classifiers, which not only avoids the
problem of key information loss caused by under-sampling but also alleviates the problem
of over-fitting, making the sample more representative.

The strengths of the study are the early use of a big data platform in China and
building an early prediction model for macrosomia. Our study was limited by the lack of
validation of data from other regions other than Jinan city. In addition, a large number
of mothers with missing basic information were excluded. A future study should bring
more data from more regions into the model. During the first prenatal examination in the
early stage of pregnancy, the tendency of pregnant women to produce macrosomia can be
predicted, so that the pregnant women with low fetal weight predicted by B-ultrasound can
be more alert, and the occurrence of emergencies during labor can be reduced. Extrapelvic
measurements are a standard method to estimate whether spontaneous labor is normal
or not. Using them to estimate macrosomia has a specific new significance. We can obtain
the possible results of prediction in the early stage of pregnancy, which also has a distinct
guiding sense for pregnancy health care.

5. Conclusions

The random forest algorithm identified the pelvis as an essential factor in predicting
the occurrence of macrosomia from the basic information of mothers in pregnancy, which
provided a basis for the prevention and early intervention of macrosomia. In conclusion, a
random forest model based on the maternal index can be used to diagnose macrosomia
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accurately during pregnancy and provide a scientific basis for developing rapid screening
and diagnosis tools.
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