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Abstract: The Bcl-2-associated athanogene (BAG) family, a group of co-chaperones that share conser-
vative domains in flora and fauna, is involved in plant growth, development, and stress tolerance.
However, the function of tomato BAG genes on thermotolerance remains largely unknown. Herein,
we found that the expression of BAG9 was induced during heat stress in tomato plants. Knockout
of the BAG9 gene by CRISPR/Cas9 reduced, while its overexpression increased thermotolerance
in tomato plants as reflected by the phenotype, photosynthesis rate, and membrane peroxidation.
Heat-induced reactive oxygen species and oxidative/oxidized proteins were further increased in
bag9 mutants and were normalized in BAG9 overexpressing plants. Furthermore, the activities of
antioxidant enzymes, ascorbic acid (AsA)/dehydroascorbic acid (DHA), and reduced glutathione
(GSH)/oxidized glutathione (GSSG) were reduced in bag9 mutants and were increased in BAG9 over-
expressing plants under heat stress. Additionally, BAG9 interacted with Hsp20 proteins in vitro and
in vivo. Accumulation of Hsp proteins induced by heat showed a reduction in bag9 mutants; mean-
while, it was increased in BAG9 overexpressing plants. Thus, BAG9 played a crucial role in response
to heat stress by regulating cellular redox homeostasis and the stability of heat shock proteins.

Keywords: antioxidants; BAG9; Hsps; Solanum lycopersicum; thermotolerance

1. Introduction

Global warming exacerbates the occurrence of extreme weather, among which high
temperature is a major environmental threat to crop yields [1]. Under heat stress, the
ultrastructure and function of chloroplasts and mitochondria suffer damage, resulting
in a burst of reactive oxygen species (ROS), such as singlet oxygen, superoxide anion,
hydrogen peroxide, and hydroxyl [2]. The accumulation of ROS leads to the damage of
nucleotides, membrane lipid peroxidation, and protein denaturation [3,4]. Furthermore,
protein denaturation induced by high temperature results in oxidation, misfolding, and
aggregation of proteins. The gathering of these proteins leads to cell death in the absence
of chaperones, proteasomes, and autophagy systems [5].

Molecular chaperones help in maintaining protein homeostasis under heat by restoring
the native conformation of proteins and preventing the aggregation of non-native proteins
for later folding or assembling [6]. Five groups of molecular chaperones heat shock proteins
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(Hsps) have been identified, including small heat shock proteins (sHsps)/Hsp20, Hsp60,
Hsp70, Hsp90, and Hsp100 [7,8]. They not only protect proteins, but also increase the
stability of lipid membranes, membrane proteins such as the photosystems, and soluble
proteins [9]. Small Hsps are distinguished from other Hsps since they work in an ATP-
independent manner to form a complex with non-native proteins preventing the harmful
aggregation of proteins under stress [10]. Overexpressing OsHsp18.2 in Arabidopsis highly
enhanced the activity of seeds and the percentage of germination under heat stress [11].
Hsp60 especially improved the thermotolerance of plastid proteins such as Rubisco and
retarded cell death [12,13]. Hsp90 interacted with the FK506 binding proteins (FKBPs) reg-
ulating thermotolerance [14]. In Hsp100 class, Hsp101 exhibited significant heat resistance
and functioned well in recovery from heat shock [15,16]. Co-operation between Hsp100
and heat stress-associated 32-KD protein (HSA32) promoted the effects of heat acclimation
in rice seedlings [17].

Among Hsps, Hsp70 regulating mechanism has been widely researched [18]. The work
of hsp70 is assisted by a large chaperone system [19–21]. Under cell stress, ATP hydrolysis
is indispensable for the binding of Hsp70 to polypeptide chains in non-native protein
structures [22]. J-proteins are significant components in the Hsp70 chaperone system, which
involve in heat stress response by regulating ATP activity, thus enhancing the binding
affinity of Hsp70 with unfolded peptides or other substrates [23]. Nucleotide exchange
factors (NEFs) are also necessary co-chaperones in the Hsp70 system [24]. Bcl-2-associated
athanogene (BAG) has been identified as a NEF chaperone family, which contains a BAG
domain interacting with Hsp70 on its ATPase domain, influencing nucleotide exchange by
assisting ATP to bind with Hsp70 and releasing ADP, enhancing protein quality control.
The BAG family may establish an association between the Hsp chaperone system and
its substrates [25].

As chaperones, the BAG family in plants plays various roles in response to multiple
stresses such as heat, freezing, salinity, drought, and ultraviolet (UV) [26,27]. For tempera-
ture resistance, Atbag2 or Atbag6 mutants survived worse under heat [28]. Upon sensing
heat, the processed AtBAG7 entered the nucleus from the endoplasmic reticulum (ER)
to interact with WRKY29, initiating unfolded protein response (UPR) pathway to en-
hance thermotolerance [29,30]. For pathogen resistance, BAG6 activated autophagy by
being cleaved by aspartyl protease (APCB1) upon recognizing an intrusive pathogen in
Arabidopsis thaliana [31]. Similarly in rice, enhanced blight and blast resistance 1 (EBR1)
targeted OsBAG4, ubiquitinating and degrading it for immunity regulation and extensive
defense against disease [32]. For inhibiting senescence, the signal complex calmodulin-
like motif (CaM)/AtBAG5/heat shock cognate 70 (Hsc70) upregulated a high level of
Ca2+ in mitochondria to inhibit senescence [33]. Likewise in tomato, BAG2 and BAG5b
improved the resistance to dark-induced leaf senescence [34]. Various abiotic stresses
induced AtBAG4 and regulated ion channels and stomatal motion by interacting with and
adjusting KAT1 [35,36].

Tomato is one of the main economic crops in protected cultivation. Heat stress de-
ranges metabolic imbalance in tomato, highly decreasing the quality and production [37].
However, the mechanism of BAGs affecting the thermotolerance of tomato is unclear.
To further explore the role of the BAG chaperone family under heat stress and its relation-
ship with Hsps, we generated BAG9 overexpressing lines and bag9 mutants and treated
them with high temperature. We observed the phenotypes and measured a range of re-
sistance indicators. Results showed that bag9 was more sensitive to heat stress compared
to the wild type (WT), while BAG9 overexpressing plants showed the opposite tendency.
It indicated a positive regulatory effect of BAG9 in temperature tolerance.

2. Materials and Methods
2.1. Phylogenetic Analysis and Structural Domain Prediction of BAG Family

The amino-acid sequences of BAG family proteins in Solanum lycopersicum, Arabidopsis
thaliana, Oryza sativa, and Nicotiana tabacum were obtained from the Ensembl Plants database
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(http://plants.ensembl.org (accessed on 4 May 2020)). The set of protein sequences was im-
ported into the Molecular Evolutionary Genetics Analysis tool (MEGA 11) and multiplexed
using the ClustalW method and exported in MEGA format. The phylogenetic tree was
constructed using the maximum likelihood tree (ML) method and the bootstrap analysis
was applied with 1000 replicates/iterations. Finally, the constructed phylogenetic tree
was polished with Evolview (http://evolgenius.info (accessed on 5 May 2020)). Structural
domains of the BAG family in tomato were analyzed using the native InterProScan pro-
gram (http://www.ebi.ac.uk/interpro/ (accessed on 5 May 2020)). The structural domain
sequences were obtained from the Pfam database and the structural schematics were man-
ufactured using Domain Graph (DOG) software (http://dog.biocuckoo.org/ (accessed on
5 May 2020)).

2.2. Plant Material, Growth Condition, and Heat Treatment

Ailsa Craig (AC) of tomato from Tomato Genetics Resource Center (TGRC) was used
as a wild type (WT). Peat and vermiculite were mixed in a suitable ratio (7:3, v:v) for
seedling growth. Hoagland nutrient solutions were used twice a week to supplement the
tomato with nutrients. The growing conditions of plants were ensured according to the
following criteria: photoperiod was performed by 14 h/10 h (day/night), the ambient air
temperature was kept by 25 ◦C/20 ◦C (day/night), and photosynthetic photon flux density
was arranged to 400 µmol m−2 s−1. Plants at the five-week seedling stage were used for
the following experiments. Two groups of AC, OE-BAG9, and bag9 plants were separated.
The control group and the heat stress group were treated for 10 h at 25 ◦C and 45 ◦C,
respectively, in growth chambers (Qiushi, Hangzhou, China). Except for the temperature
in the growth chambers, other environmental parameters remained the same as previously
described. Leaf samples were collected at different times from heated or unheated tomato
plants, then frozen rapidly in liquid nitrogen and stored at −80 ◦C before analysis for gene
expression, malondialdehyde (MDA), antioxidant, enzyme activity, and immunoblotting.
While after being treated for 7 h, leaf samples were collected from the control group and
the heat stress group and then immediately analyzed for a maximum quantum yield of
PSII (Fv/Fm) and 3,3′-diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) staining.

2.3. Construction of Plant Expression Vector and Tomato Transformation

To generate the BAG9-overexpressing lines, BAG9 full-length coding sequence (CDS) was
amplified with the forward primer (5′-gggcgcgccgatatcgtcgacATGGAGAATCTCTTCAATTGG
TCC-3′) and reverse primer (5′-aacatcgtatgggtaggtaccGCTGCCGGAAACAATGGAG-3′)
using tomato complementary DNA (cDNA) as the template. To insert the PCR product
into the pFGC1008-HA vector behind the cauliflower mosaic virus (CaMV) 35S promoter,
the product was digested with AscI and KpnI. As described previously, CRISPR/Cas9
vectors were constructed and used to generate bag9 mutants [38]. Using the CRISPR-P web
tool (http://crispr.hzau.edu.cn/ (accessed on 11 September 2020)), the target sequences
(5′-GCTCGCCGTCGCTATTCCTC-3′) were achieved and subsequently introduced into
the BbsI site of the AtU6-sgRNA-AtUBQ-Cas9 vectors following annealing into the double
strands. The fragments of the AtU6-sgRNA-AtUBQ-Cas9 were fused to the KpnI and HindIII
sites of the pCAMBIA1301 binary vectors. The final vectors were introduced into tomato
AC via A. tumefaciens-mediated transformation. A homozygous T2 BAG9 overexpressing
line was used for experiments and identified by Western blot using an anti-HA (26183,
Thermo Fisher Scientific, Waltham, MA, USA) monoclonal antibody (Figure S1A). bag9
mutant contained mutations near the protospacer adjacent motif (PAM), which induced
mismatched amino-acid sequence and terminated translation (Figure S1B).

2.4. Total RNA Extraction and Gene-Expression Analysis

RNA extraction kits were used for obtaining total RNA (DP419, Tiangen, Beijing,
China). The HiScript Q RT SuperMix for the quantitative real-time PCR (+gDNA wiper)
Kit (R223, Vazyme, Nanjing, China) was used to produce first-strand cDNA from 500 ng
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of total RNA. ChamQ Universal SYBR qPCR Master Mix (Q711, Vazyme, Nanjing, China)
and Light Cycler® 480 II Real-Time PCR detection system (Roche, Basel, Switzerland)
were used in the RT-qPCR. In this program, predenaturation at 95 ◦C for 3 min, followed
by 40 cycles of denaturation at 95 ◦C for 30 s, annealing at 58 ◦C for 15 s and 72 ◦C for
30 s, and a final extension at 72 ◦C for 30 s. Table S2 listed primers used for RT-qPCR,
as well as tomato Actin as an internal control. To calculate relative gene expression, the
2−∆∆CT method was used, and a heat-map analysis was conducted using MEV version 4.9
(http://www.mev.tm4.org/ (accessed on 10 June 2020)). At the bottom, the intensity of the
color bar showed the intensity of expression.

2.5. Gas Exchange and Chlorophyll Fluorescence Measurements

The infrared gas analyzer-based portable photosynthesis system (LI-6400T, Li-Cor
Inc., Lincoln, NE, USA) was applied for measuring the net photosynthetic rate (Pn)
in plants under heat or controlled environment. The measurements were carried out
at 1000 µmol m−2 s−1 photosynthetic photon flux density (PPFD), 400 µmol mol−1 atmo-
spheric carbon dioxide (CO2) concentrations, and 25 ◦C leaf temperature, respectively.
Fluorescence measurements for chlorophyll were conducted using a MAXI Version of the
Imaging-PAM M-Series fluorescence system (Heinz-Walz, Effeltrich, Germany). For 30 min
prior to measurement, plants were kept in the dark. According to previous descriptions,
the maximum quantum yield of PSII (Fv/Fm) was measured and calculated [39].

2.6. Analysis of H2O2, O2
•− and Malondialdehyde (MDA)

In order to observe the accumulation of hydrogen peroxide (H2O2) and superoxide
anion (O2

•−) on leaves, the DAB and NBT staining were performed as previously described
with minor modifications [40].

For O2
•− staining, leaf samples were stained with 0.5 mg mL−1 NBT in 25 mM N-2-

hydroxyethylpiperazine-N-ethane-sulphonic acid (HEPES) (pH 7.8) and incubated in the
dark under 25 ◦C for 6 h. For H2O2 staining, leaf samples were stained with 1 mg mL−1

DAB in 50 mM Tris-HCl (pH 3.8) and incubated at 25 ◦C for 12 h in the dark. In both
cases, leaf samples were washed in 95% (v:v) ethanol for 10 min at 95 ◦C, kept in lactic
acid/phenol/water (1:1:1; v:v:v), and photographed.

The H2O2 concentration in the leaves was quantified based on the method described
previously with minor modifications [41]. In brief, a 0.3 g leaf sample was taken for analysis.
After being ground with 3 mL 0.2 M HClO4 in liquid nitrogen, the material was centrifuged
at 6000 g for 10 min at 4 ◦C. A total of 4 M KOH was used to neutralize the pH to about
6–7. 0.05 g activated carbon was added and the solution was centrifuged at 12,000× g for
5 min at 4 ◦C. The 0.22 µm filter membrane was used to filter the supernatant into a new
centrifuge tube to obtain extracting solution. A total of 100 mM potassium acetate buffer
(pH 4.4, containing 1 mM ABTS) was used as the reaction buffer. For the nonenzymatic
tube reaction system, 1 mL H2O2 sample and 1 mL reaction buffer were mixed and the
absorption peak at 412 nm was determined. For the enzyme tube reaction system, 1 mL
H2O2 sample, 996 µL reaction buffer, and 4 µL horseradish peroxidase (POD) were mixed.
Finally, the absorption peak at 412 nm was determined to measure the content of H2O2.
The content of MDA in the leaves was measured according to a previous protocol [39].
Extracted leaves were heated at 95 ◦C for 25 min with trichloroacetic acid containing 0.65%
2-thiobarbituric acid (TBA). By subtracting the absorbance at 532 nm of a TBA-free solution
containing the plant extract, non-MDA compounds were corrected.

2.7. Antioxidant and Enzyme Activity Assays

For nonenzymatic antioxidant assays, approximately 100 mg of leaf sample was pow-
dered in liquid nitrogen and extracted into 1 mL 0.2 M HCl. The solution was centrifugated
by 12,000 g for 10 min under 4 ◦C and then 0.2 M NaOH was used to neutralize the
mixed solution to pH 4–5 containing 500 µL supernatant of the last step and 100 µL 0.2 M
phosphate buffer (pH 5.6). Finally, spectrophotometric assays were used to measure the

http://www.mev.tm4.org/
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extracting solution for ascorbic acid (AsA)/dehydroascorbic acid (DHA), and reduced
glutathione (GSH)/oxidized glutathione (GSSG) according to previous methods [42].

To measure antioxidant enzyme activity, 300 mg leaf sample was milled with 3 mL
of ice-cold enzyme buffer containing 25 mM HEPES, 0.2 mM ethylene diamine tetraacetic
acid (EDTA), 2 mM AsA, and 2% polyvinylpolypyrrolidone (w:v) (pH 7.8). The extracting
solution was centrifugated at 12,000× g for 10 min under 4 ◦C and then the supernatants
were kept for measurement. Subsequently, SHIMADZU UV-2410PC spectrophotometer
(Shimadzu, Kyoto, Japan) was employed to detect enzyme activity. The activities of
antioxidant enzymes catalase (CAT), ascorbate peroxidase (APX), glutathione reductase
(GR), and dehydroascorbate reductase (DHAR) were analyzed according to the previous
protocol with minor modifications [43]. For analyzing CAT activity, 100 µL of enzyme
solution, 1700 µL of 25 mM phosphate buffer Solution (PBS) (PH 7.0, containing 0.1 mM
EDTA), and 200 µL of 100 mM hydrogen peroxide were mixed. The kinetic changes of
OD240 were determined according to the kinetic program, and the enzymatic reaction rate
was calculated by taking the kinetic changes of 10 s. For analyzing APX activity, 100 µL
of enzyme solution, 1700 µL of 25 mM PBS (pH 7.0, containing 0.1 mM EDTA), 100 µL of
20 mM H2O2, and 100 µL of 5 mM AsA were mixed together at 25 ◦C. The kinetic changes
of OD290 were determined according to the kinetic program, and the enzymatic reaction
rate was calculated by taking the kinetic changes of 10 s. The reaction rate without H2O2
was used as blank control. For analyzing GR activity, 100 µL of enzyme solution, 1700 µL of
25 mM PBS buffer (PH7.8, containing 0.2 mM EDTA), 100 µL of 10 mM GSSG, and 100 µL
of 2.4 mM NADPH were mixed together at 25 ◦C. The kinetic changes of OD340 were
measured, and the enzymatic reaction rate was calculated by taking the kinetic changes
of 10 s. For analyzing DHAR activity, 100 µL of enzyme solution, 1700 µL of 25 mM PBS
(pH 7.0, containing 0.1 mM EDTA), 100 µL of 70 mM GSH, and 100 µL of 8 mM DHA were
mixed together. The kinetic changes of OD265 were measured, and the kinetic change of
10 s was taken to calculate the enzymatic reaction rate. The enzyme activities of superoxide
dismutase (SOD) and peroxidase (POD) were detected according to the previous protocol
with minor modifications [44]. For analyzing SOD activity, 50 µL of enzyme solution and
3 mL reaction solution (containing 50 mM PBS (pH 7.8), 15 mM methionine, 65 mM NBT,
2 µM riboflavin, 0.1 mM EDTA) were mixed. After 15 min illumination at 25 ◦C, 4000 lx,
the absorbance was measured at 560 nm. For analyzing POD activity, 100 µL of enzyme
solution, 1700 µL of 25 mM PBS (pH 7.0, containing 0.1 mM EDTA), 100 µL of 10 mM H2O2,
and 100 µL of 1% guaiacol were mixed together at 25 ◦C. The kinetic changes of OD470
were determined according to the kinetic program, and the kinetic changes of 10 s were
taken to calculate the enzymatic reaction rate.

2.8. Immunoblotting Assay

Following the manufacturer’s instructions, the oxidized protein fractions extracted
from the soluble protein were tested with an OxyBlot Protein Oxidation Detection Kit
(Chemicon International, Temecula, CA, USA).

For immunoblotting assay, the protein extraction and Western blotting assay were
modified by protocol described previously [45]. A 0.1 g leaf sample was grinded in
liquid nitrogen and added with the extraction buffer (100 mM Tris-HCl, pH 8.0, 10 mM
NaCl, 1 mM EDTA, 1% Triton X-100, 1 mM phenylmethylsulphonyl fluoride, and 0.2%
β-mercaptoethanol). The Bio-Rad protein assay kit was used to measure the protein
concentration and the total protein concentration of all samples were adjusted to 6 µg/µL.
After denaturation by 95 ◦C for 10 min, the protein samples were detected by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and were subsequently
transferred to nitrocellulose membrane (GE Healthcare Biosciences, Piscataway, NJ, USA).
Antibodies of cytosolic Hsp90 (AS08 346, Agrisera, Vännäs, Sweden), Hsp70 (PHY0034S,
Phytoab, San Jose, CA, USA), Hsp101 (AS07 253, Agrisera, Vännäs, Sweden) and Hsp17.6
(PHY0149S, Phytoab, San Jose, CA, USA) were used to detect proteins. Afterwards, the
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goat anti-rabbit horseradish peroxidase-linked antibody (7074, Cell Signaling Technology,
Boston, MA, USA) was used as the secondary antibody for these analyses.

2.9. Yeast Two-Hybrid (Y2H) Screen and Assays, and Bimolecular Fluorescence Complementation
(BiFC) Assay

In order to find out BAG9-interacting proteins in tomato, the coding sequences of
BAG9 were cloned into the pGBKT7 vector using gene-specific promoters (Table S3) and
subsequently transferred into the AH109 yeast strain. The cDNA library building and
Y2H screening were implemented as the manufacturer’s protocol described (Takara, Shiga,
Japan). SD-Trp-Leu-Ade-His plates were used for Y2H screening. Hsp20s in tomato were
identified as BAG9-interacting proteins from Y2H screens. The coding sequences of Hsp20s
were amplified by PCR using specific primers (Table S4) and cloned into a pGADT7 vector.
Cotransformed bait-and-prey constructs were plated onto a selection medium lacking Trp,
Leu, Ade, and His to analyze interactions. Before this study, pFGC-N-YFP and pFGC-C-
YFP had been described for the BiFC vectors [46]. Gene-specific primers were used to
amplify the full-length sequences of BAG9 and Hsp20s in PCRs and clone them into pFGC-
N-YFP or pFGC-C-YFP vectors (Figure S5). To infiltrate N. benthamiana, plasmids were
infectively introduced into A. tumefaciens GV3101 strains, according to previously described
procedures [46]. During 48 h after infiltration, fluorescent signals from infected tissues were
analyzed by a Zeiss LSM 780 confocal microscope (Zeiss LSM 780, Oberkochen, Germany)
using appropriate filter sets (excitation wavelengths 488 nm and emission between 500 nm
and 530 nm).

2.10. Statistical Analysis

Each determination was repeated at least three times independently. Based on the
results of independent biological replicates, the data were presented as means ± standard
deviations. Analyzing the bioassays was accomplished using SPSS 25 statistics 25 (SPSS
Inc., Chicago, IL, USA). In the analysis of treatment differences, Tukey’s test was used at
0.05 for significance.

3. Results
3.1. Identification of BAG Homologs in Plants

Previous studies have demonstrated that the BAG protein family was evolutionarily
conserved and highly similar in structure and function in eukaryotes [26]. Phylogenetic
analysis of the BAG gene family across species was significant for understanding the differ-
ences in function or predicting similarities between tomato and other species. We identified
10 BAG genes in the tomato genome using the SGN database (https://solgenomics.net/
(accessed on 19 April 2020)) and named BAG1-10 based on homology and evolutionary
analysis with the Arabidopsis protein sequences (Figure 1A, Table S1). In light of the function
of BAGs, we performed a phylogenetic analysis of BAG proteins from three dicot plants,
Arabidopsis, tomato, and tobacco (Nicotiana tabacum), and a monocot plant, rice. Based on
the resultant phylogenetic tree, the BAG proteins of the four species were divided into three
subfamilies (Figure 1A). BAG5, BAG6, BAG8, and BAG9 belonged to the first group, BAG7
belonged to the second group, and BAG1, BAG2, BAG3, BAG4, and BAG10 belonged to
the third group.

Then, we further analyzed the structural domains of the BAG proteins (Figure 1B).
Results showed that all BAG proteins contained a conservative BAG domain. Further-
more, BAG1-4 and BAG10 contained extra ubiquitin-like (UBL) structural domains at the
N-terminus, while BAG6, BAG8, and BAG9 each comprised an extra CaM-binding motif.
In addition, BAG7 protein was distinguished since it had no other kinds of motifs but triple
BAG domains. In terms of the length of BAG proteins, BAG5 was the shortest, while BAG6
had the longest sequence length.

https://solgenomics.net/
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3.2. Involvement of BAG9 in Tomato Thermotolerance

Transcript analysis of 10 SlBAGs under heat stress was conducted to determine whether
heat stress induced BAG gene expression.

Figure 2 displayed that exposure to heat within 1 h can quickly induced BAG6, BAG8,
and BAG9 and whose transcript levels subsequently reached a maximum after 3 h. Nev-
ertheless, the expression levels of other BAGs were not changed or decreased after heat
stress (Figure 2). These results suggested that BAG6, BAG8, and BAG9 may be important in
regulating tomato response to heat stress.

Then, we analyzed the cis-elements in promoters of BAG genes and found that only
the BAG9 promoter contained the heat shock element (HSE), which was transcriptionally
regulated by heat shock factors under heat stress (Figure S2). To investigate whether
BAG9 was involved in the regulation of plant thermotolerance, we generated the bag9
mutants and BAG9 overexpressing plants as described in the “Materials and Methods”
section (Figure S1). As shown in Figure 3A, the phenotypes of bag9 mutants and BAG9
overexpressing plants were similar to WT plants, when they were grown under normal
conditions (Figure 3A).

To examine how BAG9 functions in tomato under heat, bag9 mutants, WT plants,
and BAG9 overexpressing plants grown for about 5 weeks were kept in a 45 ◦C growth
chamber for 10 h. The exposure of tomato plants to heat stress resulted in plant withering
and decreased Fv/Fm value, more significantly in bag9 mutants compared with WT plants
(Figure 3). In contrast, thermotolerance was significantly increased in BAG9 overexpressing
plants with higher Fv/Fm value (Figure 3). Moreover, heat stress inhibited photosynthesis
in tomato plants. Net photosynthetic rate (Pn) was decreased by 42.4% in bag9 mutants
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but was increased by 100.1% in BAG9 overexpressing plants compared with WT plants
(Figure 3D). Additionally, MDA accumulation was aggravated in bag9 mutants, while
alleviated in BAG9 overexpressing plants compared with WT plants (Figure 3E). Thus,
these results suggested that BAG9 played a positive role in tomato response to heat stress.
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Figure 3. Influence of BAG9 on tomato thermotolerance. (A) Representative images of bag9 mutants,
wild type (WT), and BAG9 overexpressing (BAG9-OE) plants without or with heat stress. Bar = 10 cm.
The plants were subjected to normal temperature (25 ◦C) or high temperature (45 ◦C) treatment
for 10 h, photographs of plants were then taken. (B,C) After undergoing different temperature
treatments for 7 h, images of representative leaves showed the maximum photochemical efficiency of
photosystem II (Fv/Fm). At the bottom, a color gradient showed the strength of the fluorescence signal
depicted by each color. (D) Net photosynthetic (Pn) efficiency at 7 h under heat. (E) MDA content
at 7 h under heat or without heat stress. Data were the means ± SD of three biological replicates.
Different letters represented significant differences (p < 0.05) according to Tukey’s test.
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3.3. BAG9 Alleviates Heat-Stress-Induced ROS Accumulation

ROS production and scavenging keep homeostasis balanced in plants under normal
conditions [42]. However, this homeostasis will be disturbed after heat-stress exposure [2].
To verify the effect of BAG9 on heat-induced oxidative stress, we first detected H2O2 and
O2
•− accumulation. Tomato leaves were stained with DAB dye for histochemical detection

of H2O2 and with NBT dye for O2
•− detection. As shown in Figure 4, heat stress induced

H2O2 and O2
•− production in the leaves of WT plants. Interestingly, H2O2 and O2

•−

production was significantly induced in bag9 mutants, whereas it was reduced in BAG9
overexpressing plants (Figure 4A). Similarly, the H2O2 content was quantitatively analyzed
in support of the observation that H2O2 was more accumulated in bag9 mutants, but
significantly reduced in BAG9 overexpressing plants compared with WT plants (Figure 4B).
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Figure 4. The accumulation of reactive oxygen species (ROS) and oxidative proteins in tomato plants
under heat stress. (A) Representative images of H2O2 and O2

•− accumulation were detected by
DAB and NBT staining, respectively. Bar = 5 cm. (B) Quantification of H2O2 at 7 h under heat.
(C) Oxidative proteins. An anti-DNP antibody was used to detect total proteins on SDS-PAGE.
Coomassie Blue staining (CBB) was applied to indicate the protein input, and on the top of the image
was the relative intensity of oxidative proteins. Three independent experiments were performed
with similar results. Data were the means ± SD of three biological replicates. Different letters
represented significant differences (p < 0.05) according to Tukey’s test. WT, wild type; BAG9-OE,
BAG9 overexpressing plants; RLS, Rubisco large subunit.

To further investigate whether heat-induced oxidative stress caused the oxidation
of functional proteins, SDS-PAGE was used to analyze protein oxidation among proteins
isolated from total proteins. Figure 4C illustrated that the accumulation of oxidative
proteins was similar in bag9 mutants, WT, and BAG9 overexpressing plants under normal
conditions. Mutants bag9 and plants overexpressing BAG9, however, had increased and
decreased levels of oxidative proteins, respectively, compared to wild-type plants. Thus,
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these results suggested that BAG9 reduced the accumulation of ROS and the oxidation of
protein caused by heat.

3.4. BAG9 Enhances Antioxidant Capacity under Heat Stress

Antioxidant defense mechanisms contain antioxidant enzymes such as SOD, APX,
GR, CAT, DHAR, POD, and antioxidants such as ASA and GSH to trap and scavenge
free radicals and ROS, thereby protecting plant cells and organelles from destruction
and increasing stress resistance [47]. As shown in Figure 5, heat stress increased all six
antioxidant enzyme activities in WT and BAG9 overexpressing plants. However, in bag9
mutants, POD, APX, GR, DHAR, and CAT activities between control and heat treatment
showed no significant difference (Figure 5). The enzyme activities in BAG9 overexpressing
tomato were higher than those in WT. According to these results, BAG9 promoted the
activities of antioxidant enzymes under heat stress.
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Figure 5. Activities of SOD, POD, APX, GR, CAT, and DHAR with or without heat stress in tomato
leaves. Data were the means ± SD of three biological replicates. Different letters represented
significant differences (p < 0.05) according to Tukey’s test. WT, wild type; BAG9-OE, BAG9 overex-
pressing plants.

To determine whether BAG9-induced thermotolerance was related to the state of
cellular redox, the variation of contents and ratios of AsA/DHA and GSH/GSSG were
examined (Figure 6). Heat stress had little effect on the AsA and GSH levels but sig-
nificantly increased the DHA and GSSG contents, leading to significant declines in the
AsA/DHA and GSH/GSSG ratios in all plants compared with control. Under heat stress,
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the DHA and GSSG contents were considerably increased in bag9 mutants but reduced in
BAG9 overexpressing plants compared with WT plants. Meanwhile, ratios of AsA/DHA
and GSH/GSSG were lower in bag9 mutants but higher in BAG9 overexpressing plants
compared with WT plants (Figure 6).
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Figure 6. Effects of heat stress on AsA and GSH pools in tomato leaves. Data were the means ± SD
of three biological replicates. Different letters represented significant differences (p < 0.05) according
to Tukey’s test. WT, wild type; BAG9-OE, BAG9 overexpressing plants.

3.5. BAG9 Interacts with Hsp20s and Maintains Hsps Stability under Heat Stress

We next identified BAG9-interacting proteins by applying yeast two-hybrid screens.
Choosing the fused BAG9 protein as baits, we screened 6 × 106 independent transformants
of a tomato cDNA prey library and identified more than twenty clones. The proteins en-
coded by these positive clones included four Hsp20s (Hsp17.7A, Solyc06g076520; Hsp17.7B,
Solyc09g015020; Hsp17.6B, Solyc06g076560; Hsp17.6C, Solyc06g076570). Then, we per-
formed yeast two-hybrid assays to explore whether BAG9 interacted with Hsp20s. By
co-transforming the bait and prey vectors, we found that BAG9 interacted with four Hsp20
proteins in yeast (Figure 7A).

To determine whether BAG9 and Hsp20s interact in vivo, we performed a BiFC assay
in A. tumefaciens-infiltrated tobacco. BAG9 was fused to the C-YFP vector (BAG9-C-YFP)
and Hsp20s were fused to the N-YFP vectors (Hsp 17.7A, Solyc06g076520; Hsp17.7B,
Solyc09g015020; Hsp17.6B, Solyc06g076560; Hsp17.6C, Solyc06g076570). When the BAG9-
C-YFP was co-expressed with four Hsp-N-YFP in tobacco leaves, YFP signals were observed
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in tobacco cells that had been transformed (Figure 7B). All these experiments revealed that
BAG9 interacted with four Hsp proteins.
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Figure 7. BAG9 interacted with Hsp20s. (A) Yeast two-hybrid assay showed interactions between
BAG9 and Hsp17.7A, Hsp17.7B, Hsp17.6B, and Hsp17.6C. By growing yeast cells at different concen-
trations lacking Trp (T), Leu (L), Ade (A), and His (H), the interaction of proteins has been evaluated.
(B) BiFC analysis showed that the interaction between BAG9 and Hsp20s took place in the cytoplasm.
Spliced YFP fusion constructs were transiently coexpressed in N. benthamiana leaves for 2 d. The YFP
fluorescence signals were obtained by confocal microscopy.

BAG9 and Hsps are both chaperones. To investigate whether BAG9 affects the stability
of Hsps under heat stress, we examined the accumulation of Hsps by Western blotting.
As shown in Figure 8, there was almost no difference in the accumulation under normal
conditions. While heat stress induced a great accumulation of Hsp20, Hsp70, Hsp90,
and Hsp101 in all genotypes. However, compared with WT, the accumulation of these
four Hsps was still lower in bag9 mutants, while higher in BAG9 overexpressing plants
(Figure 8). Thus, BAG9 promoted the stability of Hsps under heat stress.
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Figure 8. The accumulation of Hsps with or without heat stress in tomato leaves. Hsp17.6, Hsp70,
Hsp90, and Hsp101 were detected by immunoblot analysis. After exposing to heat for 7 h, the
leaf samples were obtained for experiments. The protein input was indicated by Coomassie Blue
staining (CBB). Three independent experiments were performed with similar results. WT, wild type;
BAG9-OE, BAG9 overexpressing plants; RLS, Rubisco large subunit.

4. Discussion

In this study, we found that the expression of BAG9 was highly induced under heat
stress in tomato. Bag9 mutants reduced thermotolerance while overexpressing BAG9
increased thermotolerance as reflected by antioxidant assays. We also found that BAG9
interacted with Hsp20 proteins in vitro and in vivo. Overexpressing BAG9 enhanced the
accumulation of Hsp proteins induced by heat, while the mutants had the opposite tendency.
Thus, BAG9 played a crucial role in response to heat stress by regulating cellular redox
homeostasis and the stability of heat shock proteins.

Similar to our study, the transcript levels of OsBAGs and BAG family members in
grapes were significantly increased under heat exposure [48,49]. Considering that BAG9
contained the HSE in the promoter region, it was selected to conduct further research for
its potential significance in thermotolerance. BAG9 contained a conserved BAG domain
and a CaM binding motif. The BAG domain combined with Hsc70 for decomposing
incorrectly folded or translocated chloroplast proteins in Arabidopsis [50]. The phylogenetic
analysis revealed that BAG9 was most close to OsBAG5, OsBAG6, AtBAG5, and AtBAG6.
According to previous research and evolutionary relationships, we speculated that BAG9
may function in temperature protection, especially heat stress by binding with Hsps and
maintaining cellular stability or involving in the Ca2+ sensing [28,48].

Various kinds of BAG proteins functioning in plant thermotolerance have been iden-
tified [28,29]. Heat shock-induced gene 1 (HSG1), a grape Bcl-2-associated athanogene,
enhanced heat tolerance and activated CONSTANS (CO) expression in transgenic Arabidop-
sis plants [51]. In Arabidopsis, heat shock transcription factor (HsfA2) directly bound to HSE
motif of AtBAG6, which dramatically increased its relative expression under heat stress [52].
AtBAG2 enhanced survival under heat by clearing ROS in plants [28]. AtBAG7 played a key
role in mediating the heat-induced UPR pathway [29]. Studies in the BAG family showed
that BAG9 stimulated burning symptoms under heat and reduced the thermotolerance of
tomato, which did not occur in our experiment [53]. By overexpressing BAG9 in Arabidopsis,
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the sensitivity to water scarcity, salinity, as well as ABA during the germination of seeds
and the growth of seedlings were increased [54]. BAG5b (Solyc10g084170, namely BAG9) in
leaves was activated by various adversity stimuli (extreme temperatures, salinity, and UV
light) as well as treatment with phytohormones. Specifically, it improved the resistance to
dark-induced leaf senescence by eliminating ROS and downgrading genes associated with
leaf senescence [34].

In this study, Pn, a typical indicator of photosystem I (PSI), was decreased in bag9
mutants but was highly increased in BAG9 overexpressing plants compared with WT
plants. Similarly, BAG9 overexpressing plants showed higher Fv/Fm values, and the mu-
tants showed compromised Fv/Fm values than WT plants. Our results indicated that
BAG9 promoted the stability of photosynthesis under heat exposure. Photosynthesis is a
thermosensitive physiological process since the photochemical reactions and the carbon
metabolism are susceptible to damage under heat exposure [55]. The disruption of the
thylakoid membranes inhibits the rate of photosynthesis and PSII activity is also greatly
reduced or even stopped under heat stress [56]. Chaperones protect and enhance photo-
synthesis under stressful environments [56]. The thermal resistance of photosystem II is
upregulated by constitutive overexpression of a small Hsp, which suggests that sHsps
prevent the damaging of photosynthetic apparatus from high temperature [57]. Hsp90 in
the chloroplast was also an irreplaceable chaperone for protein translocating from the mem-
brane into the organelles and served a significant role in heat resistance in photosynthetic
organisms [58,59]. Similar to previous research, BAG9 served as a chaperone protein that
may protect photosynthesis as shown in this study.

In previous studies, ROS is used as an indicator of plant resistance [60]. Overexpressing
AtBAG4 into the rice and exposing it to osmotic stress revealed that ROS accumulation
was significantly reduced in its overexpressing plants [61]. The mutants Atbag2 and Atbag6
also showed higher ROS levels and less survival after heat treatment than WT [28]. Similar
to the previous study, our results showed that BAG9 overexpressing plants accumulated
less ROS (H2O2, O2•−) and less protein carbonylation (which is a hallmark of protein
oxidation), indicating a better resistance to high temperature. MDA is one of the products
of ROS-induced membrane damage, whose amount represents the degree of cell membrane
lipid peroxidation [60]. The continuous accumulation of MDA is positively correlated to
high temperatures [62]. This study discovered that BAG9 overexpressing plants showed
less accumulation of MDA than WT, which indicated that BAG9 may protect biomembrane
from being damaged under heat stress.

To mitigate elevated ROS-induced damage, plants have established a well-organized
antioxidant-defense mechanism [62]. Antioxidants in plants have been classified into
two main types: enzymatic and nonenzymatic antioxidants. The significant antioxidant
enzymes in plant cells contain SOD, CAT, POD, and so on [63]. GSH and AsA are vital
nonenzymatic antioxidants in plants. Meanwhile, APX, DHAR, and GR serve as significant
enzymes in the AsA-GSH cycle [64]. Antioxidants are involved in multiple plant abiotic
stresses, including heat stress [63]. Treating seedlings of Broussonetia papyrifera at high
temperature, the activities of SOD, POD, and CAT were significantly increased [65]. The
antioxidant enzyme activities in Cruciferae were closely related to high temperature, since
its SOD, CAT, and GR activities under high-temperature (32 ◦C) stress were all higher than
those of the control plants (20 ◦C) [66]. In Brassica napus, the developed activities of MDAR,
DHAR, and GR under sub-high-temperature treatment (30 ◦C) elevated the levels of AsA
and GSH, resulting in enhanced thermotolerance [67]. Similarly, our results illustrated that
BAG9 overexpressing plants upregulated the activities of antioxidant enzymes (SOD, CAT,
POD, APX, DHAR, GR) and ratios of AsA/DHA and GSH/GSSG. All results indicated
that the higher thermotolerance in BAG9 overexpressing plants was probably achieved by
enhanced activities of various antioxidants.

Hsps exist widely in plants to prevent stress from inducing damage to cells [68].
Previous studies showed that Hsp70 functioned in a chaperone cycle by Hsp70 chaperone
systems [20]. BAG family is a kind of NEF that establishes direct interactions with the
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ATPase domain of Hsp70 [25]. In tomato, results showed that BAG1 and BAG2 interacted
with Hsp70 protein [69].

However, there have been no other Hsp–BAG interactions reported. In this study, we
discovered that BAG9 interacted with Hsp20s (Hsp17.7A, Hsp17.7B, Hsp17.6B, Hsp17.6C)
in the cytoplasm. Hsp20 is the predominant and most abundant class of proteins in
many species induced by heat stress [70]. High temperature significantly induced the
upregulation of TaHsp17.4, TaHsp17.7A, TaHsp19.1, and TaHsp23.7 in wheat [71]. OsHsp20
overexpressing plants had longer root length and higher germination rates than the control
under heat and showed better resistance to high temperature [70]. Nonetheless, how BAG9
works under heat stress by interacting with Hsp20s requires further study.

Our results also witnessed the increase in the accumulation of Hsps (Hsp20, Hsp70,
Hsp90, Hsp101) in BAG9 overexpressing plants, indicating that BAG9 stimulated Hsps for
enhancing thermotolerance. Hsp90 bound with Hsp70, establishing multiple complexes
of chaperones and functioning well in sense signaling [72]. Hsp101, the most functional
member in Hsp100, not only increased heat tolerance but also helped in recovery from
heat shock [15]. However, the co-operations of BAG9, Hsp90, and Hsp101 need to be
studied further.

5. Conclusions

In conclusion, we identified that BAG9 was involved in tomato thermotolerance. BAG9
was highly induced under high temperature. bag9 mutants were sensitive, while BAG9
overexpressing plants were resistant under heat stress compared with WT. By analyzing
the antioxidant and photosynthetic systems, we found that overexpressing BAG9 may help
in the removal of ROS and protect photosynthesis under heat stress. BAG9 interacted with
Hsp20 proteins and protected Hsps accumulation under heat stress. In a word, BAG9 was
probably significant for thermotolerance by regulating cellular redox homeostasis and the
stability of heat shock proteins. Our findings further illustrated the functions of BAGs in
adversity modulation, especially temperature stress.
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