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Abstract Epigenetic clocks for mice were generated based on deep-sequencing analysis of the

methylome. Here, we demonstrate that site-specific analysis of DNA methylation levels by

pyrosequencing at only three CG dinucleotides (CpGs) in the genes Prima1, Hsf4, and Kcns1

facilitates precise estimation of chronological age in murine blood samples, too. DBA/2 mice

revealed accelerated epigenetic aging as compared to C57BL6 mice, which is in line with their

shorter life-expectancy. The three-CpG-predictor provides a simple and cost-effective biomarker to

determine biological age in large intervention studies with mice.

DOI: https://doi.org/10.7554/eLife.37462.001

Introduction
Age-associated DNA methylation (DNAm) was first described for humans after Illumina Bead Chip

microarray data became available to enable cross comparison of thousands of CpG loci

(Bocklandt et al., 2011; Koch and Wagner, 2011). Many of these age-associated CpGs were then

integrated into epigenetic age-predictors (Hannum et al., 2013; Horvath, 2013; Weidner et al.,

2014). However, site-specific DNAm analysis at individual CpGs can also provide robust biomarkers

for aging. For example, we have described that DNAm analysis at only three CpGs enables age-pre-

dictions for human blood samples with a mean absolute deviation (MAD) from chronological age of

less than five years (Weidner et al., 2014). Such simplistic age-predictors for human specimen are

widely used because they enable fast and cost-effective analysis in large cohorts.

Recently, epigenetic clocks were also published for mice by using either reduced representation

bisulfite sequencing (RRBS) or whole genome bisulfite sequencing (WGBS) (Petkovich et al., 2017;

Stubbs et al., 2017; Wang et al., 2017). For example, Petkovich et al. described a 90 CpG model for

blood (Petkovich et al., 2017), and Stubbs and coworkers a 329 CpG model for various different tis-

sues (Stubbs et al., 2017). Nutrition and genetic background seem to affect the epigenetic age of

mice – and thereby possibly aging of the organism (Cole et al., 2017; Hahn et al., 2017;

Maegawa et al., 2017). In analogy, epigenetic aging of humans is associated with life expectancy,

indicating that it rather reflects biological age than chronological age (Lin et al., 2016; Marioni et al.,
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2015). However, DNAm profiling by deep sequencing technology is technically still challenging, rela-

tively expensive, and not every sequencing-run covers all relevant CpG sites with enough reading

depth.

Results
Therefore, we established pyrosequencing assays for nine genomic regions of previously pub-

lished predictors (Petkovich et al., 2017; Stubbs et al., 2017). These regions were preselected

to have multiple age-associated CpGs in close vicinity. DNAm was then analyzed in 24 blood

samples of female C57BL/6 mice that covered a broad range of 12 different age groups (11 to

117 weeks old). The nine amplicons covered a total of 71 CpG sites (Supplementary file 1) and

we used machine learning to identify the best fitted model for epigenetic age-predictions using

cross-fold validation on the training set. The best results were observed for 15 CpGs from five

different amplicons that provided an extremely high correlation with chronological age in the

training set (R2 = 0.99; mean absolute deviation [MAD]=2.76 weeks; Supplementary file 2),

albeit the training set might be too small for this approach. To make the method more easily

applicable and more cost-effective, we wanted to focus on less CpGs. When we varied the regu-

larization parameters for models with less CpGs, the precision declined significantly. For example

the best model with three CpGs comprised the three CpGs of Hsf4 (CpGs# 3,4,5) that also

revealed the overall highest Pearson correlations with chronological age (R2 = 0.95; MAD = 5.24

weeks). However, combination of different hypo- and hypermethylated amplicons might be

advantageous to facilitate better assessment of plausibility of the results. Therefore, we alterna-

tively selected those three CpGs that revealed the highest Pearson correlation with chronological

age in different amplicons. These three CpGs were associated with the genes Proline rich mem-

brane anchor 1 (Prima1: chr12:103214639; R2 = 0.71), Heat shock transcription factor 4 (Hsf4:

chr8:105271000; R2 = 0.95) and Potassium voltage-gated channel modifier subfamily S member 1

(Kcns1: chr2:164168110; R2 = 0.83; Figure 1A–C; Figure 1—figure supplement 1). Notably, all

three CpGs were derived from the epigenetic age-predictor for blood samples (Petkovich et al.,

2017). A multivariable model for age-predictions was established for DNAm at the CpGs in

Prima 1 (a), Hsf4 (b), and Kcns1 (g):

eLife digest Epigenetic marks are chemical modifications found throughout the genome – the

DNA within cells. By influencing the activity of nearby genes, the marks govern developmental

processes and help cells to adapt to changes in their surroundings. Some epigenetic marks can be

gained or lost with age. A lot of aging research focuses on one type of mark, called “DNA

methylation”. By measuring the presence or absence of specific methyl groups, scientists can

estimate biological age – which may differ from calendar age.

Recent studies have developed computer models called epigenetic aging clocks to predict the

biological age of mouse cells. These clocks use epigenetic data collected from the entire genomes

of mice, and are useful for understanding how the aging process is affected by genetic parameters,

diet, or other environmental factors. Yet, the genome sequencing methods used to construct most

existing epigenetic clocks are expensive, labor-intensive, and cannot be easily applied to large

groups of mice.

Han et al. have developed a new way to predict biological aging in mice that needs methylation

information from just three particular sections of the genome. Even though this approach is much

faster and less expensive than other epigenetic approaches to measuring aging, it has a similar level

of accuracy to existing models. Han et al. use the new method to show that cells from different

strains of laboratory mice age at different rates. Furthermore, in a strain that has a shorter life

expectancy, aging seems to be accelerated.

The new approach developed by Han et al. will make it easier to study how aging in mice is

affected by different interventions. Further studies will also be needed to better understand how

epigenetic marks relate to biological aging.

DOI: https://doi.org/10.7554/eLife.37462.002
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Predicted ageC57BL/6 (in weeks) = �58.076 + 0.25788 a + 3.06845 b + 1.00879 g

Age-predictions correlated very well with the chronological age of C57BL/6 mice in the training

set (R2 = 0.96; MAD = 4.86 weeks; Figure 1D).

Our three CpG age-predictor was subsequently validated in a blinded manner for 21 C57BL/6J

mice (7 to 104 weeks old) from the University of Ulm (validation set 1) and 19 C57BL/6J mice (14 to

109 weeks old) from the University of Groningen (validation set 2). The results of both validation sets

revealed high correlations with chronological age (R2 = 0.95 and 0.91, respectively; Figure 1E–H)

with relatively small MADs (6.9 and 7.1 weeks) and median absolute errors (MAE; 5.0 and 5.9 weeks).

Thus, our age-predictions seem to have similar precision as previously described for multi-CpG pre-

dictors based on RRBS or WGBS data (Petkovich et al., 2017; Stubbs et al., 2017; Wang et al.,

2017).

Gender did not have significant impact on our epigenetic age-predictions for mice (Figure 2), as

described before (Maegawa et al., 2017; Petkovich et al., 2017; Stubbs et al., 2017). In contrast,

the human epigenetic clock is clearly accelerated in male donors (Hannum et al., 2013;

Figure 1. Three CpG epigenetic age-predictor for mice. (a–c) DNA methylation (DNAm) of three CpGs in the genes Prima1, Hsf4 and Kcns1 was

analyzed by pyrosequencing in 24 C57BL/6 mice (training set). Coefficient of determination (R2) of DNAm versus chronological age is indicated.

(d) Based on these age-associated DNAm changes a multivariable model for age prediction was calculated. (e–g) Subsequently, two independent

validation sets were analyzed: 21 C57BL/6 mice from the University of Ulm and 19 C57BL/6 mice from the University of Groningen (validation sets 1 and

2, respectively). (h) Age predictions with the three-CpG-model revealed a high correlation with chronological age in the independent validation sets

(MAD = mean absolute deviation; MAE = median absolute error).

DOI: https://doi.org/10.7554/eLife.37462.003

The following figure supplement is available for figure 1:

Figure supplement 1. Target sequences of pyrosequencing assays.

DOI: https://doi.org/10.7554/eLife.37462.004
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Horvath, 2013; Weidner et al., 2014). This coincides with shorter life expectancy in men than

woman, whereas in mice there are no consistent sex differences in longevity (Goodrick, 1975).

To address the question if our three CpG signature was also applicable for other tissues than

blood we analyzed the DNAm in skin, kidney, intestine, lung, liver, heart, brain, testis, and pancreas

of 3 young (9.6 weeks old) and three old mice (56.9 weeks old). In all tissues tested the samples of

old mice were predicted to be older using our three CpG signature. However, the different DNAm

levels clearly demonstrate that the model needs to be retrained to be applied for these tissues

(Figure 3).

Subsequently, we analyzed epigenetic aging of DBA/2 mice that have a shorter life expectancy

than C57BL/6 mice (Goodrick, 1975) (33 mice from Ulm and Groningen; 6 to 109 weeks old). The

three CpGs in Prima1, Hsf4 and Kcns1 revealed high correlation with chronological age (R2 = 0.91,

0.88 and 0.83, respectively), albeit the offset in DNAm between DBA/2 and C57BL/6 mice indicated

that the signature needs to be retrained for different mouse strains (Figure 4a–c). Notably, the

slopes were higher in DBA/2 mice, particularly for the CpG in Prima1. Furthermore, DNAm of Hsf4

increased at a higher rate in young DBA/2 mice, indicating that it is more accurately modelled as a

function of logarithmic age. This has also been described in human for many age-associated CpGs in

pediatric cohorts (Alisch et al., 2012). In fact, epigenetic age-predictions in DBA/2 mice seemed to

follow a logarithmic model of age (R2 = 0.89; Figure 4d) rather than a linear association (R2 = 0.86).

These results provided evidence for accelerated epigenetic aging of DBA/2 mice.

Either way, epigenetic age-predictions were overall significantly overestimated in the shorter-

lived DBA/2 mice, suggesting that age-predictors need to be adjusted for different inbreed mice

strains. To this end, we have retrained a multivariate model for DBA/2 mice:

Predicted ageDBA/2 (in weeks) = 87.54294–1.22221 a + 0.991558 b + 0.355444 g

This adjusted model facilitated relatively precise age-predictions for DBA/2 mice (R2 = 0.95;

MAD = 7.1 weeks; MAE = 5.3 weeks; Figure 4e).

Discussion
Generation of confined epigenetic signatures is always a tradeoff between integrating more CpGs

for higher precision and higher costs for analysis (Wagner, 2017). It was somewhat unexpected that

with only three CpGs our signature facilitated similar precision of epigenetic age-predictions as the

previously published signatures based on more than 90 CpGs. This can be attributed to the higher

precision of DNAm measurements at individual CpGs by bisulfite pyrosequencing, which is one of

Figure 2. Gender does not affect epigenetic age predictions in mice. The deviations of predicted age by our

three-CpG predictor versus chronological age did not reveal significant differences between female and male

C57BL/6 mice (Mann–Whitney U test p=0.6).

DOI: https://doi.org/10.7554/eLife.37462.005
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Figure 3. Age-associated DNA methylation at the three CpG sites in different tissues. Different tissues were

isolated of three young (9.6 weeks) and three old mice (56.9 weeks) and DNAm was analyzed at the three relevant

CpGs in (a) Prima1, (b) Hsf4, and (c) Kcns1. Epigenetic age-predictions using the 3 CpG model for blood

demonstrated also significant differences between young and old mice in skin, intestine, brain, and testis

(mean ± standard deviation; Student t-tests: *p<0.05; **p<0.01; ***p<0.001).

DOI: https://doi.org/10.7554/eLife.37462.006
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the most precise methods for determining DNAm at single CpG resolution

(BLUEPRINT consortium, 2016). Particularly in RRBS data not all CpG sites are covered in all sam-

ples and a limited number of reads notoriously entails lower precision of DNAm levels at these geno-

mic locations. Thus, genome wide deep sequencing approaches facilitate generation of robust large

epigenetic age-predictors, while site specific analysis may compensate by higher precision of DNAm

measurement at individual CpGs.

The ultimate goal of epigenetic age-predictors for mice is not to develop near perfect age predic-

tors, but to provide a surrogate for biological aging that facilitates assessment of interventions on

aging. In fact, using deep sequencing approaches (RRBS or WGBS) several groups already indicated

that relevant parameters that affect aging of the organism - such as diet, genetic background, and

drugs - do also impact on epigenetic aging (Cole et al., 2017; Hahn et al., 2017; Maegawa et al.,

2017). It is yet unclear if epigenetic aging signatures can be specifically trained to either correlate

with chronological age or biological age. For humans, recent studies indicate that this might be pos-

sible (Levine et al., 2018) and we have previously demonstrated that even individual age-associated

CpGs can be indicative for life expectancy (Zhang et al., 2017). Further studies will be necessary to

gain better understanding how epigenetic age predictions are related to the real state of biological

aging, and how it is related to alternative approaches to quantify biological aging, such as telomere

length (Belsky et al., 2018).

Our three CpG model has been trained for blood samples – a specimen that is commonly used in

biochemical analysis and the small required volume can be taken without sacrificing the mice. How-

ever, epigenetic aging may occur at different rates in different tissues. It is difficult to address this

question in humans because it is difficult to collect samples of various tissues in large aging cohorts,

Figure 4. Epigenetic aging is accelerated in DBA/2 mice as compared to C57BL/6 mice. (a–c) Age-related DNA methylation (DNAm) determined by

pyrosequencing assay for three candidate CpGs on 33 of DBA/2 blood samples (14 mice from the University of Ulm and 19 mice from the University of

Groningen; red). For comparison we provided measurements of the C57BL/6 mice (only from validation sets; blue). (d) Epigenetic age-predictions using

the three CpG multivariable model for the C57BL/6 mice (blue; linear regression) and DBA/2 mice (red, logarithmic regression). Age-predictions in

DBA/2 mice rather followed a logarithmic regression (R = Pearson correlation); (e) Based on the DNAm measurements in DBA/2 we adjusted the

multivariate regression model for age-predictions of this mouse strain as described in the text (DBA/2 predictor).

DOI: https://doi.org/10.7554/eLife.37462.007
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whereas this is feasible in mice. We demonstrate that age-associated DNAm changes occur in multi-

ple tissues in our three CpGs albeit they were initially identified in blood (Petkovich et al., 2017).

Furthermore, DNAm levels may vary between different hematopoietic subsets (Frobel et al., 2018;

Houseman et al., 2014). In the future, sorted subsets should be analyzed to determine how the

three CpG signature is affected by blood counts.

The results of our three CpG signature suggest that epigenetic aging is accelerated in DBA/2

mice. Notably, in elderly DBA/2 mice the epigenetic age predictions revealed higher ‘errors’ from

chronological age, which might be attributed to the fact that the variation of lifespan is higher in

DBA/2 than C57BL/6 mice (de Haan et al., 1998; Goodrick, 1975). It will be important to validate

the association of the epigenetic age-predictions with biological age by additional correlative stud-

ies, including life expectancy in mice.

Taken together, we describe an easily applicable but quite precise approach to determine epige-

netic age of mice. We believe that our assay will be instrumental to gain additional insight into

mechanisms that regulate age-associated DNAm and for longevity intervention studies in mice.

Materials and methods

Mouse strains and blood collection
Blood samples of C57BL/6J mice of the training set and of the validation set one were taken at the

University of Ulm by submandibular bleeding (100–200 ml) of living mice or postmortem from the

vena cava. C57BL/6J samples of the validation set two were taken at the University of Groningen

from the cheek. DBA/2J samples were taken at the University of Ulm (n = 14) and Groningen

(n = 19). All mice were accommodated under pathogen-free conditions. Experiments were approved

by the Institutional Animal Care of the Ulm University as well as by Regierungspräsidium Tübingen

and by the Institutional Animal Care and Use Committee of the University of Groningen (IACUC-

RUG), respectively. To analyze age-associated changes in different tissues we used three young (9.6

weeks old) and three old mice (56.9 weeks old) C57BL/6J mice (JaxMice) in accordance with relevant

Spanish and European guidelines after approval by the Biodonostia Animal Care Committee. These

mice were sacrificed and dissected immediately. 25 mg of tissue (10 mg in the case of spleen) or 200

ml of blood were used for DNA extraction.

Genomic DNA isolation and bisulfite conversion
Genomic DNA was isolated from 50 ml blood using the QIAamp DNA Mini Kit (Qiagen, Hilden, Ger-

many). Kidney and liver DNA extractions were digested with Ribonuclease A (100 mg/ml, Sigma

R4875). DNA concentration was quantified by Nanodrop 2000 Spectrophotometers (Thermo Scien-

tific, Wilmington, USA). 200 ng of genomic DNA was subsequently bisulfite-converted with the EZ

DNA Methylation Kit (Zymo Research, Irvine, USA).

Pyrosequencing
Bisulfite converted DNA was subjected to PCR amplification. Primers were purchased at Metabion

and the sequences are provided in Supplementary file 3. 20 mg PCR product was immobilized to 5

ml Streptavidin Sepharose High Performance Bead (GE Healthcare, Piscataway, NJ, USA), and then

annealed to 1 ml sequencing primer (5 mM) for 2 min at 80˚C. Amplicons were sequenced on Pyro-

Mark Q96 ID System (Qiagen, Hilden, Germany) and analyzed with PyroMark Q CpG software

(Qiagen).

Alternative approaches to select CpGs for multivariable models
We used a penalized regression model from the R package glmnet on the training dataset to estab-

lish a predictor of mouse age based on CpG methylation. The alpha parameter of glmnet was set to

1 (lasso regression) and the lambda parameter was chosen by cross-fold validation of the training

dataset (10-fold cross validation). Alternatively, we trained our multivariable model with preselected

CpGs based on location in three different amplicons, high Pearson correlation (R) of DNAm with

chronological age, and combination of hyper- and hypomethylated sites.
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Statistical analysis
Linear regressions, MAD and MAE were calculated with Excel. Statistical significance of the devia-

tions between predicted and chronological age was estimated by Mann–Whitney U test or Student´s

t-test as indicated.
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Frobel J, Božić T, Lenz M, Uciechowski P, Han Y, Herwartz R, Strathmann K, Isfort S, Panse J, Esser A, Birkhofer
C, Gerstenmaier U, Kraus T, Rink L, Koschmieder S, Wagner W. 2018. Leukocyte counts based on DNA
methylation at individual cytosines. Clinical Chemistry 64:566–575. DOI: https://doi.org/10.1373/clinchem.
2017.279935, PMID: 29118064

Goodrick CL. 1975. Life-span and the inheritance of longevity of inbred mice. Journal of Gerontology 30:257–
263. DOI: https://doi.org/10.1093/geronj/30.3.257, PMID: 1120887

Hahn O, Grönke S, Stubbs TM, Ficz G, Hendrich O, Krueger F, Andrews S, Zhang Q, Wakelam MJ, Beyer A, Reik
W, Partridge L. 2017. Dietary restriction protects from age-associated DNA methylation and induces epigenetic
reprogramming of lipid metabolism. Genome Biology 18:56. DOI: https://doi.org/10.1186/s13059-017-1187-1,
PMID: 28351387

Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan JB, Gao Y, Deconde R,
Chen M, Rajapakse I, Friend S, Ideker T, Zhang K. 2013. Genome-wide methylation profiles reveal quantitative
views of human aging rates. Molecular Cell 49:359–367. DOI: https://doi.org/10.1016/j.molcel.2012.10.016,
PMID: 23177740

Horvath S. 2013. DNA methylation age of human tissues and cell types. Genome Biology 14:R115. DOI: https://
doi.org/10.1186/gb-2013-14-10-r115, PMID: 24138928

Houseman EA, Molitor J, Marsit CJ. 2014. Reference-free cell mixture adjustments in analysis of DNA
methylation data. Bioinformatics 30:1431–1439. DOI: https://doi.org/10.1093/bioinformatics/btu029,
PMID: 24451622

Koch CM, Wagner W. 2011. Epigenetic-aging-signature to determine age in different tissues. Aging 3:1018–
1027. DOI: https://doi.org/10.18632/aging.100395, PMID: 22067257

Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, Hou L, Baccarelli AA, Stewart JD, Li Y, Whitsel
EA, Wilson JG, Reiner AP, Aviv A, Lohman K, Liu Y, Ferrucci L, Horvath S. 2018. An epigenetic biomarker of
aging for lifespan and healthspan. Aging 10:573–591. DOI: https://doi.org/10.18632/aging.101414, PMID: 2
9676998

Lin Q, Weidner CI, Costa IG, Marioni RE, Ferreira MR, Deary IJ, Wagner W. 2016. DNA methylation levels at
individual age-associated CpG sites can be indicative for life expectancy. Aging 8:394–401. DOI: https://doi.
org/10.18632/aging.100908, PMID: 26928272

Maegawa S, Lu Y, Tahara T, Lee JT, Madzo J, Liang S, Jelinek J, Colman RJ, Issa JJ. 2017. Caloric restriction
delays age-related methylation drift. Nature Communications 8:539. DOI: https://doi.org/10.1038/s41467-017-
00607-3, PMID: 28912502

Marioni RE, Shah S, McRae AF, Chen BH, Colicino E, Harris SE, Gibson J, Henders AK, Redmond P, Cox SR,
Pattie A, Corley J, Murphy L, Martin NG, Montgomery GW, Feinberg AP, Fallin MD, Multhaup ML, Jaffe AE,
Joehanes R, et al. 2015. DNA methylation age of blood predicts all-cause mortality in later life. Genome
Biology 16:25. DOI: https://doi.org/10.1186/s13059-015-0584-6, PMID: 25633388

Petkovich DA, Podolskiy DI, Lobanov AV, Lee S-G, Miller RA, Gladyshev VN. 2017. Using DNA methylation
profiling to evaluate biological age and longevity interventions. Cell Metabolism 25:954–960. DOI: https://doi.
org/10.1016/j.cmet.2017.03.016

Stubbs TM, Bonder MJ, Stark AK, Krueger F, von Meyenn F, Stegle O, Reik W, BI Ageing Clock Team. 2017.
Multi-tissue DNA methylation age predictor in mouse. Genome Biology 18:68. DOI: https://doi.org/10.1186/
s13059-017-1203-5, PMID: 28399939

Wagner W. 2017. Epigenetic aging clocks in mice and men. Genome Biology 18:107. DOI: https://doi.org/10.
1186/s13059-017-1245-8, PMID: 28615041

Wang T, Tsui B, Kreisberg JF, Robertson NA, Gross AM, Yu MK, Carter H, Brown-Borg HM, Adams PD, Ideker T.
2017. Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction and rapamycin
treatment. Genome Biology 18:57. DOI: https://doi.org/10.1186/s13059-017-1186-2, PMID: 28351423

Weidner CI, Lin Q, Koch CM, Eisele L, Beier F, Ziegler P, Bauerschlag DO, Jöckel KH, Erbel R, Mühleisen TW,
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