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The purpose of this paper is the investigation of gait symmetry problem by using cross-fuzzy entropy (C-FuzzyEn), which is a
recently proposed cross entropy that has many merits as compared to the frequently used cross sample entropy (C-SampleEn).
First, we used several simulation signals to test its performance regarding the relative consistency and dependence on data length.
Second, the gait time series of the left and right stride interval were used to calculate the C-FuzzyEn values for gait symmetry
analysis. Besides the statistical analysis, we also realized a support vector machine (SVM) classifier to perform the classification
of normal and abnormal gaits. The gait dataset consists of 15 patients with Parkinson’s disease (PD) and 16 control (CO) subjects.
The results show that the C-FuzzyEn values of the PD patients’ gait are significantly higher than that of the CO subjects with a 𝑝
value of less than 10−5, and the best classification performance evaluated by a leave-one-out (LOO) cross-validation method is an
accuracy of 96.77%. Such encouraging results imply that the C-FuzzyEn-based gait symmetry measure appears as a suitable tool
for analyzing abnormal gaits.

1. Introduction

Human gait is a complex process. The locomotor system
incorporates input from the cerebellum, the motor cortex,
and the basal ganglia, as well as feedback from visual,
vestibular, and proprioceptive sensors [1]. Under healthy
conditions, thismultilevel control systemproduces a periodic
and complementary movement of legs, which can be further
subdivided into eight sequential subphases [2]. Following this
delicate control strategy, a considerable degree of symmetry
or similarity exists on the moving cadence and the stride
length between left and right limb [3]. However, factors such
as aging [4], peripheral neuropathy [5], and neurodegenera-
tive disorders [6] could undermine such control mechanism
in normal gait and lead to disturbance of gait phases and
inconsistent stride length and disrupt rhythm. As a result,
increased stride-to-stride variability and asymmetry often
happened in abnormal gait [7, 8]. Hence, gait analysis was
an important component during the clinical diagnosis or
therapy assessment for those gait-related diseases [9].

During the past decades, with the rapid development
of sensor technology and the emergence of corresponding
signal processing methods, a lot of research efforts have
been devoted to providing a quantitative and long-term gait
evaluation methodology [2, 8, 10, 11]. Our main interest in
this study is the quantitative assessment of gait symmetry,
which has been addressed in several different studies [8,
12–15]. Among these studies, one frequently used clinical
measure of symmetry [12, 15, 16] is ASI = 100 ∗ (𝑇

𝑅

−

𝑇
𝐿

)/(0.5 ∗ (𝑇
𝑅

+ 𝑇
𝐿

)), where 𝑇
𝑅

and 𝑇
𝐿

are the values of
feature 𝑇 that is extracted from a time series for right and
left limb, respectively. The degree of symmetry can also be
quantified by the Pearson correlation coefficient between two
time series, and an example of such studies was presented
by Su et al. [13]. In addition to the above two methods, gait
symmetry was also investigated by other methods. Sant’Anna
andWickström [14] proposed a symbol-based gait symmetry
measure. Liao et al. [8] introduced multiresolution entropy
analysis into the evaluation of gait symmetry.
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Though most methods have achieved a certain success,
relatively few studies have tried to apply cross entropy to the
analysis of gait symmetry. Cross entropy is a kind of complex-
ity measure that is generalized from entropy. By definition,
the cross entropy measures the synchrony of two time series
as the studies in [17–19] have done, but it can be also used
for measuring the degree of dissimilarity of two concurrent,
nonstationary biological signals [20–22]. In this study, the
application of cross entropy to the evaluation of gait symme-
try is inspired by the following observation: a symmetric gait
must be similar, and a certain degree of dissimilarity must
exist in an asymmetric gait. Therefore, by way of measuring
gait similarity, the gait symmetry can also be measured.

From the literature, the first cross entropy, that is, cross-
approximate entropy (C-ApEn), was proposed by Pincus
and Singer [23]. However, it has two obvious limitations.
First, because there are no self-matches, C-ApEn is not
always defined. Second, there is “direction dependence” of
C-ApEn analysis due to its template-wise approach. Then,
Richman and Moorman [24] proposed cross sample entropy
(C-SampleEn) between two time series. C-SampleEn is not
direction dependent since it does not use a template-wise
approach when estimating conditional probabilities. How-
ever, due to the same reason as C-ApEn that it does not
count self-match, the definition of C-SampleEn is not always
guaranteed. Recently, Xie et al. [25] proposed a new measure
called cross-fuzzy entropy (C-FuzzyEn), which was derived
from fuzzy entropy [26] that was based on the concept of
fuzzy sets. Contrary to the common practice in C-ApEn
and C-SampleEn, the similarity between any two embedded
vectors is not measured by a Heaviside function, but with an
exponential function. Thus, the discontinuity caused by the
hard boundary of the Heaviside function is eliminated. As
a result, C-FuzzyEn is always defined, and the choice of the
parameters is assigned with more freedom.

The main purpose of this paper was to investigate the
utility of the cross-fuzzy entropy for measuring gait sym-
metry using gait rhythm signals. The gaits of the patients
with Parkinson’s disease (PD) and the healthy control (CO)
subjects were analyzed in this study. Parkinson’s disease is
a typical neurodegenerative disorder related to the central
nervous system, and one of the main symptoms at its early
stage is gait disorders, such as reduced stride length [27],
freezing of gait [28], and increased gait variability [29]. The
gait symmetry problem of PD patients was also investigated
in previous studies [30, 31], and it has been reported that
the degree of asymmetry of the PD patients’ gaits was larger
than that of the normal gaits. In the present study, we
reinvestigated the quantification of gait symmetry for PD
patients and CO subjects. We hypothesized that the degree
of symmetry can also be measured by using the novel gait
symmetry measure that was based on C-FuzzyEn. With the
encouraging results obtained in the experiments, we hope
this study can provide a useful method for evaluating the
abnormal gait of PD patients, especially at its early stage.

2. Methodologies

2.1. Gait Dataset. The gait dataset used in this study was
contributed by Hausdorff et al. [32]. It includes gait data

from fifteen PD subjects aged 44–80 years (age mean ±

standard deviation, SD: 66.8 ± 10.9 years; 10 males and 5
females) and sixteen healthy CO subjects aged 20–74 years
(agemean ± standard deviation, SD: 39.3±18.5 years; 2males
and 14 females). According to the experimental protocol,
the subjects were asked to walk at their normal pace along
a straight hallway that was 77m in length for 300 s. The
gait signals were measured with ultrathin force-sensitive
switches placed inside each subject’s shoes. Seven different
gait rhythm signals for left or right limb were calculated with
the algorithm proposed in [33]. In the present study, we have
interest only in left and right stride interval (time from initial
contact of one foot to the immediate subsequent contact)
time series. To remove the outliers data points caused by the
turnaround at the end of the hallway, a preprocessingmethod
[34] was also applied.

2.2. Definition of Cross-Fuzzy Entropy. Since cross-fuzzy
entropy is developed on the basis of cross sample entropy, we
first introduce the cross sample entropy and then point out
how cross-fuzzy entropy differs fromcross sample entropy. By
this way of establishment, it is believed that the comparison
of these two cross entropies can be more impressive.

Given two one-dimensional discrete time series with
equal length, {𝑢(𝑖) : 1 ≤ 𝑖 ≤ 𝑁} and {V(𝑖) : 1 ≤ 𝑖 ≤ 𝑁},
the definition of cross sample entropy is given as follows [24]:

(1) Form the vectors:

𝑥
𝑚

(𝑖) = {𝑢 (𝑖 + 𝑘) : 0 ≤ 𝑘 ≤ 𝑚 − 1} ,

𝑦
𝑚

(𝑗) = {V (𝑗 + 𝑘) : 0 ≤ 𝑘 ≤ 𝑚 − 1} .

(1)

(2) The distance between two such vectors is defined as

𝑑 [𝑥
𝑚

(𝑖) , 𝑦
𝑚

(𝑗)] = max {󵄨󵄨󵄨󵄨𝑢 (𝑖 + 𝑘) − V (𝑗 + 𝑘)󵄨󵄨󵄨󵄨 : 0 ≤ 𝑘 ≤ 𝑚 − 1} . (2)

(3) Define 𝐵𝑚
𝑖

(𝑟)(V ‖ 𝑢) = (𝑁 − 𝑚)
−1

∑
𝑁−𝑚

𝑗=1

𝜃(𝑑[𝑥
𝑚

(𝑖),

𝑦
𝑚

(𝑗)], where 𝜃(⋅) is a Heaviside function and is given
as

𝜃 (𝑑) =
{

{

{

1, if 𝑑 < 𝑟

0, otherwise,
(3)

where 𝑟 is a threshold value.
Thus, 𝐵𝑚

𝑖

(𝑟)(V ‖ 𝑢) can be deemed as the number
of 𝑦
𝑚

(𝑗) within 𝑟 of 𝑥
𝑚

(𝑖) divided by (𝑁 − 𝑚), and
the distance threshold 𝑟 controls the similarity of two
vectors.

(4) Define 𝐵𝑚(𝑟)(V ‖ 𝑢) = (𝑁 − 𝑚)
−1

∑
𝑁−𝑚

𝑖=1

𝐵
𝑚

𝑖

(𝑟)(V ‖ 𝑢),
and similarly 𝐵𝑚+1(𝑟)(V ‖ 𝑢) is defined on the vectors
𝑥
𝑚+1

(𝑖) and 𝑦
𝑚+1

(𝑖). Then, cross sample entropy is
given as

C-SampleEn (𝑚, 𝑟,𝑁) = − ln{
[𝐵
𝑚

(𝑟) (V ‖ 𝑢)]
[𝐵𝑚+1 (𝑟) (V ‖ 𝑢)]

} . (4)
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Notably, there are two modifications in the cross-fuzzy
entropy (C-FuzzyEn) proposed by Xie et al. [25] to the above
C-SampleEn. First, the Heaviside function that measures
the similarity of two vectors is replaced by an exponential
function:

𝜃 (𝑑, 𝑛, 𝑟) = exp(−(𝑑)
𝑛

𝑟
) , (5)

where 𝑟 controls the width of the exponential function and
𝑛 determines the gradient of its boundary. Thus, C-FuzzyEn
can be written as C-FuzzyEn(𝑚, 𝑛, 𝑟,𝑁) to include its dif-
ferent parameters. We set 𝑛 to be 2 in this study according
to the suggestion given in [26]. By this fuzzy function, the
discontinuity caused by the hard boundary of the Heaviside
function can be eliminated. Second, to highlight the effect
of vector’s shape instead of the absolute values in the fuzzy-
based similarity measurement, the baseline is subtracted
from the vector; that is,

𝑥
𝑚

(𝑖) = {𝑢 (𝑖 + 𝑘) − 𝑢 (𝑖) : 0 ≤ 𝑘 ≤ 𝑚 − 1} , (6)

where the baseline 𝑢(𝑖) is the average of all 𝑢(𝑖 + 𝑘), 0 ≤ 𝑘 ≤
𝑚 − 1. Similar preprocessing is performed on 𝑦

𝑚

(𝑗), 𝑥
𝑚+1

(𝑖),
and 𝑦

𝑚+1

(𝑗).

2.3. Performance Tests of C-FuzzyEn. The performance of C-
FuzzyEn was tested on some typical simulation signals, such
as i.i.d. uniform random numbers and theMIX(𝑝) processes.
The MIX(𝑝) process [35] is a composite of stochastic and
deterministic components. For fixed 0 < 𝑝 < 1 and
a sine wave signal with 𝑁 points, the MIX(𝑝) signal is
formed by substituting the randomly chosen 𝑝 × 𝑁 points
of the sine signal with the i.i.d. random numbers. In all the
following experiments, to highlight the statistical stability of
C-FuzzyEn, the time series pair was generated 200 times
randomly for a fixed parameter set, and then the mean and
the standard deviation (SD) of the C-FuzzyEn values were
computed. As a comparison, C-SampleEn was also calculated
with the same testing process.

2.3.1. Effect of Parameter r and 𝑁. It can be found from the
definition that the most relevant parameters of C-FuzzyEn
are parameter 𝑟 and data length𝑁.The influence of these two
parameters on the calculation of C-FuzzyEnwas evaluated by
two experiments. We first evaluated the effect of parameter 𝑟.
The testing signal pairs were an i.i.d. uniform random time
series and a MIX(0.6) time series. The embedded dimension
𝑚was set to be 2, and the data length𝑁was first set to be 100
and then 50. As for parameter 𝑟, it varied from a predefined
value set of [0.01 : 0.01 : 0.1] ∪ [0.11 : 0.1 : 1], where
𝑑
1

: 𝑑 : 𝑑
2

meant that the value varied from 𝑑
1

to 𝑑
2

in
steps of 𝑑. The second experiment was designed to evaluate
the influence of the data length. Two i.i.d. random uniform
numbers of different lengths were examined. Data length 𝑁
ranged from 50 to 500 in steps of 50, parameter 𝑟 was set to
be 0.3, and the embedded dimension𝑚 was set to be 2 and 3
successively.

2.3.2. Relative Consistency Analysis. Let 𝜃 denote a parameter
of the given cross entropy algorithm. Given two pairs of time
series, (𝑋

1

, 𝑌
1

) and (𝑋
2

, 𝑌
2

), then the relative consistency is
defined in the following way: if there is 𝜃

0

∈ 𝜃, inducing the
cross entropy of (𝑋

1

, 𝑌
1

) to be lower than that of (𝑋
2

, 𝑌
2

),
that is, Algorithm

(𝑋

1
,𝑌

1
)

(𝜃
0

) < Algorithm
(𝑋

2
,𝑌

2
)

(𝜃
0

), then,
for all 𝜃

𝑘

∈ 𝜃, Algorithm
(𝑋

1
,𝑌

1
)

(𝜃
𝑘

) < Algorithm
(𝑋

2
,𝑌

2
)

(𝜃
𝑘

)

should be true. We tested the relative consistency of C-
FuzzyEn by using the following two pairs of time series: the
[MIX(0.2),MIX(0.3)] pair and the [MIX(0.3),MIX(0.4)] pair.
Since the MIX(0.4) time series should be more disordered
than MIX(0.2) time series, it was hypothesized that the cross
entropy of the [MIX(0.2), MIX(0.3)] pair should have a lower
value than that of the [MIX(0.3), MIX(0.4)] pair for all the
parameters.The data length was set to be 100, 50 in sequential
order, while in both cases parameter 𝑟 was changed from the
set of [0.01 : 0.01 : 0.1] ∪ [0.11 : 0.1 : 1].

2.4. Gait Symmetry Analysis Using C-FuzzyEn. To apply C-
FuzzyEn on the gait stride interval signals for the analysis of
gait symmetry, there were three parameters to be set up. The
first parameter was the embedded dimension 𝑚, that is, the
length of the comparing vectors. Since the data series used in
this study were very short (with a length from 169 to 269),
we used 𝑚 = 1 in order to calculate the frequency of 𝑚 and
(𝑚+1)-component vectors with sufficient statistical accuracy.
Then, the value of parameter 𝑟 was chosen from a predefined
value set, that is, [0.0001 : 0.0001 : 0.001] ∪ [0.002 : 0.001 :
0.01] ∪ [0.01 : 0.01 : 0.1], based on the gait data precision
and the results of some preliminary experiments. During the
above setting process of parameter 𝑟, data length𝑁 was fixed
to be 150 since it was close to the maximum length of some
gait sequences used in this study. By parameter selection, we
hope to find out a parameter set that can provide the largest
separation between the C-FuzzyEn values for the normal gait
and that for the PD patients’ gait.

2.5. Statistical Analysis and Classification of Gait Patterns.
SPSS software (Version 17.0, SPSS Inc., Chicago, IL, USA)
was adopted for all statistical analyses. The continuous and
categorical variables between the groups were compared
using Mann-Whitney 𝑈 test. A 𝑝 < 0.05 was considered
statistically significant.

To implement the classification of Parkinson gait and
normal gait with the proposed gait symmetry feature, the
popular support vectormachine (SVM) classifier was utilized
in this study. The SVM classifier introduced by Vapnik [36]
is the first implementation of structural risk minimization
(SRM), which is a theory that enforced the selection of the
optimal learning model from a subset of models. To set
up a linear separating hyperplane for nonlinear problems,
SVM employed kernel methods to map data to a higher
dimensional feature space. In the present study, the popular
radial basis function (RBF) kernel was adopted.

The classification performance was evaluated by the
leave-one-out (LOO) cross-validationmethod.Moreover, the
classification results were measured by sensitivity, specificity,
and accuracy. The area under the receiver operator curve
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Figure 1: The relationship of C-FuzzyEn(2, 2, 𝑟,𝑁) and C-SampleEn(2, 𝑟,𝑁) with parameter 𝑟 for a time series pair composed of a MIX(0.5)
signal and a time series of i.i.d. uniform random variables. Circles or stars are themean value, while bars correspond to the standard deviation
for 200 runs of testing. The data length𝑁 is 100 and 50 for (a) and (b), respectively.
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Figure 2: The relationship of C-FuzzyEn(𝑚, 2, 0.3,𝑁) and C-SampleEn(𝑚, 0.3,𝑁) with data length 𝑁 for two time series of i.i.d. uniform
random variables. Circles or stars are the mean value, while bars correspond to the standard deviation for 200 runs of testing.The embedded
dimension𝑚 is 3 and 2 for (a) and (b), respectively.

(ROC), as a well-established index of diagnostic accuracy,
was also calculated by using the software ROCKIT provided
by the University of Chicago, Chicago, IL, USA [37].

3. Results

3.1. Results of Performance Tests for C-FuzzyEn

3.1.1. Effect of Parameter 𝑟 and𝑁. Figure 1 illustrates the cal-
culation results of C-FuzzyEn(2, 2, 𝑟,𝑁) and C-SampleEn(2,
𝑟,𝑁) with parameter 𝑟 changing from the value set of [0.01 :
0.01 : 0.1] ∪ [0.11 : 0.1 : 1]. In either Figure 1(a) (𝑁 = 100)
or Figure 1(b) (𝑁 = 50), it can be found that C-SampleEn
gives no value when 𝑟 falls below a certain value, and the
smaller the value of𝑁 is, the larger the minimum value of 𝑟 is
needed to ensure the definition of C-SampleEn. In contrast,
such problems do not bother the calculation of C-FuzzyEn,
and the choice of parameter 𝑟 and𝑁 is much more free.

Figure 2 shows the relationship of C-FuzzyEn and C-
SampleEn with data length 𝑁. The C-FuzzyEn statistics give
values for all the data lengths from 50 to 500; however,
C-SampleEn fails to work when 𝑁 < 200 for embedded
dimension 𝑚 = 3 and 𝑁 < 100 for 𝑚 = 2. In addition, for
200 runs of testing, the standard deviation of the C-FuzzyEn

values at each 𝑁 is very small (the mean of the SD value is
0.05 and 0.04 for 𝑚 = 2 and 3, resp.) and the mean values at
different data length are practically constant as it is supposed
to be like that (the SD value of the mean values is 0.0056 and
0.0068 for 𝑚 = 2 and 3, resp.). In contrast, the values of
C-SampleEn display large fluctuations especially when data
length 𝑁 is small (the mean of the SD value is 0.10 and 0.27
for 𝑚 = 2 and 3, resp.), and it is manifested more obviously
when 𝑁 is smaller. From the above comparison, it is clear
that C-FuzzyEn has less dependence on the data length. This
property has potential for its usage in gait signals since it is
hard to sample a long and continuous gait time series due to
the muscle fatigue, especially for those patients with limited
walking ability.

3.1.2. Relative Consistency Analysis. Figures 3 and 4 dis-
play the testing results of the relative consistency analy-
sis where the data length is 100 and 50, respectively. It
can be clearly seen that the C-FuzzyEn statistics for the
[MIX(0.2), MIX(0.3)] pair are consistently lower than that
for the [MIX(0.3), MIX(0.4)] pair when 𝑟 takes values from
0.01 to 1. However, the large fluctuations of the values at
different 𝑟 value cause the C-SampleEn statistics for the
[MIX(0.2), MIX(0.3)] pair to be sometimes larger than that
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Figure 3: The relative consistency performance of C-FuzzyEn and C-SampleEn on the MIX(0.2) versus MIX(0.3) pair and the MIX(0.3)
versus MIX(0.4) pair. Circles or stars are the mean value, while bars correspond to the standard deviation for 200 runs of testing. The data
length𝑁 is 100, and embedded dimension𝑚 is 2.
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Figure 4: The relative consistency of C-FuzzyEn and C-SampleEn
on the MIX(0.2) versus MIX(0.3) pair and the MIX(0.3) versus
MIX(0.4) pair. Circles or stars are the mean value, while bars
correspond to the standard deviation for 200 runs of testing. The
data length𝑁 is 50, and embedded dimension𝑚 is 2.

for the [MIX(0.3), MIX(0.4)] pair, though the mean values
are always lower for the former than the latter. In addition,
by comparing the results in Figures 3 and 4, it can be
found that the fluctuation magnitude of C-SampleEn at
different 𝑟 value increases significantly when the data length
decreases. For instance, the mean of the SD value for the
[MIX(0.3), MIX(0.4)] pair is 0.1549 in Figure 3, while it is
0.2772 in Figure 4. Similar to the results in the previous
testing, C-SampleEn fails toworkwhen the data length is very

short and parameter 𝑟 falls below a certain value, as shown in
Figure 4.

3.2. Results of C-FuzzyEn on Gait Signals. The results of
applying C-FuzzyEn(1, 2, 𝑟, 150) on the left and right stride
interval signals are shown in Figure 5, and the results of
C-SampleEn(1, 𝑟, 150) are displayed in the same figure as a
comparison. It can be seen that the mean values of both C-
FuzzyEn and C-SampleEn for the PD patients are generally
higher than that for the normal subjects, while for C-
SampleEn the overlapping degree between the PD group
and the CO group is greater than the case for C-FuzzyEn.
The results, on the one hand, indicate that the PD patients’
gait is more asymmetric than the normal gait with respect
to the stride interval signal, consistent with the findings
in previous studies [13, 31]. On the other hand, the less
overlapping between the two groups of gaits demonstrates
that C-FuzzyEn has better self-consistency than C-SampleEn
when it is applied on two groups of time series pairs with
different synchrony or symmetry, especially when the data
length is very short [38].

We also observed that in Figure 5 the C-FuzzyEn values
for the PD group and the CO group had a tendency to be near
zero and equal as parameter 𝑟 increased. This result can be
explained as follows: when parameter 𝑟 takes a large value, the
width of themembership functionwill broaden quickly; thus,
the membership values will approach one for most distance
values. Consequently, the numerator and denominator are
both close to one, which leads to very small values of C-
FuzzyEn. Therefore, to obtain the largest separation of the
two groups, parameter 𝑟 should not take a very large value.
We then applied theMann-Whitney𝑈 test on the C-FuzzyEn
values between the two gait groups by taking the value of
parameter 𝑟 from the set [0.0001 : 0.0001 : 0.001] ∪ [0.002 :
0.001 : 0.01]. It was found that the minimum 𝑝 value of
1.27×10

−6 was obtainedwhenparameter 𝑟was set to be 0.004.
Therefore, we took the value of parameter 𝑟 to be 0.004 as it
provided the largest separation between the two groups from
the perspective of statistics.

For gait stride interval signals, the relationship of C-
FuzzyEn with parameter 𝑚 was also investigated in the
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Figure 5: C-FuzzyEn(1, 2, 𝑟, 150) and C-SampleEn(1, 𝑟, 150) as functions of 𝑟 for left and right stride interval time series. Circles or stars are
the mean value, while bars correspond to the standard deviation for each group of gaits.

1 2 3 4 5 6
0.5

0.6

0.7

0.8

0.9

1.0

0.5

0.6

0.7

0.8

0.9

C-
Fu

zz
yE

n

Left: PD
Right: CO

m

Figure 6: The relationship of C-FuzzyEn(1, 2, 0.004, 150) with
parameter𝑚.

experiments.The results are shown in Figure 6. It can be seen
that the values of C-FuzzyEn have a tendency to decrease for
both groups of gait signals as the value of 𝑚 increases. This
result is not surprising. This is because when 𝑚 is increased,
that is, at a more coarse time resolution, the length of the vec-
tor becomes longer correspondingly. Thus, the possibility of
several adjacent vectors with the same similarity is increased
as they have more overlapping parts. The increase of simi-
lar vectors and the decrease of the total vectors together lead
to the reduction of the C-FuzzyEn value.

3.3. Results of Classification Experiments. Figure 7 shows the
boxplot of the C-FuzzyEn(1, 2, 0.004, 150) values for the left
and right stride interval time series pairs, which are associ-
ated with the PD patients and the healthy CO subjects. For a
comparison, the boxplots for the other two features, that is, C-
SampleEn(1, 0.004, 150) and ASI feature, are also illustrated
in Figure 7. For each feature, all the values are normalized
to a range between 0 and 1 by using a min-max normal-
ization method [39]. It can be observed that the C-FuzzyEn
values for the normal gaits are congregated in a small range
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Figure 7: Boxplots of C-FuzzyEn(1, 2, 0.004, 150), C-SampleEn(1,
0.004, 150), and ASI feature calculated from the left and right stride
interval time series pairs of the PD patients and the CO subjects.

(from 0.09 to 0.19), while for the PD patients’ gaits the values
are dispersed more widely. Similar distributions also exist for
the other two features. Such results indicate that, for the PD
patients with different severity levels, significant differences
also exist for the degree of gait asymmetry. From Figure 7,
one can also find that there is obvious overlapping between
the PD group and the CO group for the ASI feature, which
indicates that ASI feature is not a good classification feature in
the present study. As for C-SampleEn feature, the overlapping
is not so obvious, but one can still find that the box of the PD
group is closer to the box of the CO group compared with the
case for the C-FuzzyEn feature.

Table 1 presents the classification results of C-FuzzyEn(1,
2, 0.004, 150), C-SampleEn(1, 0.004, 150), andASI feature. As
shown in Table 1, the accuracies provided by the two cross
entropy-based features, that is, C-FuzzyEn and C-SampleEn,
are relatively higher than that by the ASI feature. Such results
indicate the suitability of cross entropy in expressing the gait
symmetry.The best classification performance is provided by
C-FuzzyEn(1, 2, 0.004, 150) with overall accuracy, sensitivity,
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Table 1: Summary of the classification results for PD patients and CO subjects using C-FuzzyEn(1, 2, 0.004, 150), C-SampleEn(1, 0.004, 150),
and ASI feature calculated from the left and right stride interval time series. The results were obtained by using RBF-kernel-based SVM
classifier and the LOO cross-validation method. TP, TN, FP, and FN denote true positives, true negatives, false positives, and false negatives,
respectively.

Feature Positive class (PD) Negative class (CO) Specificity (𝑆
𝑝

) Sensitivity (𝑆
𝑛

) Accuracy (𝐶
𝑎

)
TP FN TN FP

C-FuzzyEn 14 1 16 0 100% 93.33% 96.77%
C-SampleEn 13 2 15 1 93.75% 86.67% 90.32%
ASI 11 4 13 3 81.25% 73.33% 77.42%

and specificity of 96.77%, 93.33%, and 100%, respectively.
The corresponding ROC area was also calculated, which
was 0.968 with a standard error of 0.041. This encouraging
classification performance implies that the gait symmetry
measure based on C-FuzzyEn may be positively considered
as an indicator for the analysis of PD gait patterns.

In the classification experiments, we also investigated
how embedded dimension 𝑚 and data length 𝑁 influenced
the classification accuracy. As shown in Figure 6, the C-
FuzzyEn values for the PD group and that for the CO group
also have a tendency to be closer as𝑚 increases, which is due
to the statistical inaccuracy caused by large 𝑚 when the data
length is small. Thus, the discrimination of different groups
becomes more subtle. Our experimental results showed that
when 𝑚 was equal to 6, the best classification accuracy we
obtained was 80.64%. To investigate the effect of data length
𝑁 on the values of C-FuzzyEn(1, 2, 0.004,𝑁), we changed𝑁
from 10 to 160with a step of 10 since theminimumdata length
in our gait dataset was 169. The experimental results showed
that significant difference of C-FuzzyEn values existed all the
time for all data lengths in the above range; however, when
𝑁 was smaller than 40, the overlapping of the two groups of
C-FuzzyEn values increased considerably, thus leading to a
relatively poor accuracy of less than 80%.

4. Discussion

As a generalization of entropy, the cross entropy represents
the synchronicity of patterns embedded in two time series.
If two time series have more similar patterns, then the cross
entropy should have a lower value. Otherwise, a higher value
indicates that the pattern structures between them have a
huge difference. As an example, the cross entropy of the
[MIX(0.2), MIX(0.3)] pair should be lower than that for
the [MIX(0.3), MIX(0.4)] pair by definition. However, the
calculation of most entropies often requires a long time
series to approximate the theoretical value, which makes
it difficult to be applied to practical time series often with
short length. Different efforts [23, 24] have been devoted to
designing an entropy that has less dependence on the data
length. The cross-fuzzy entropy (C-FuzzyEn) is a recently
proposed one that is based on fuzzy set theory and has
similar definition to the cross sample entropy (C-SampleEn).
It obtains better performance by replacing the Heaviside
function of C-SampleEn with the exponential function when
measuring the similarity of two vectors with equal length.
By this way, the problem caused by the rigid boundary of

Heaviside function is eliminated, leading to more relative
consistency and more freedom of parameter selection as
compared to C-SampleEn.

Though cross entropy does not describe time synchronic-
ity of two signals, its application to the analysis of gait symme-
try is reasonably effective. As we know, a normal gait is walk-
ing with a periodic, symmetric pattern between the left and
right limb; hence, the measured kinetic or kinematic bilateral
signals should have a synchronous and periodic structure
[40]. It means that there are many common patterns between
the pair of signals; thus, the cross entropy of the left and right
gait signals for normal walking should be lower than that for
an abnormal gait.This hypothesis was verified by applying the
C-FuzzyEn measure to analyze the gait symmetry problem
using the left and right stride interval time series. A gait
dataset collected from 15 PD patients and 16 CO subjects
was considered in the present study. The statistical analysis
demonstrated that the C-FuzzyEn values for the PD patients’
gait were significantly higher than those for the CO subjects,
which were consistent with previous findings that the gait of
PD patients is more asymmetric than that of the CO subjects.

The classification accuracy obtained in this study for
differentiating PD gait from normal gait is also comparable
to those reported in other studies [29, 41] on the same
gait dataset. Daliri [41] used a genetic algorithm to select
the best feature subset for classification from a total of 28
features extracted from gait rhythm signals. The best feature
set for classification of PD gaits and normal gaits included the
left swing interval, left stance interval, and double support
interval, and the results of the specificity, sensitivity, and
accuracy obtained by the SVM classifier are 89.76%, 89.79%,
and 89.33%, respectively. In another similar study, Wu and
Krishnan [29] calculated the standard deviation (𝜎) of the
stride interval time series based on the probability density
function obtained with the nonparametric Parzen-window
method, and the signal turns count (STC) of the same
time series was also computed. By using SVM classifier and
the feature vector formed by STC and 𝜎, the classification
accuracy and ROC area they reported were 90.32% and 0.952,
respectively. From the above comparisons, one can find that
with an overall accuracy of 96.77% the proposed gait symme-
try measure based on cross-fuzzy entropy is a very promising
feature used for classifying PD gait and normal gait.

Some limitations of this study should be acknowledged.
First, the size of the current database is small, which limits the
test of the generalization ability of the SVM classifier [11]. To
better evaluate the classification performance of the proposed
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feature, more samples need to be added to form a training
dataset and a separate testing set in the future studies. Second,
in the current database, since the subgroupswith different age
ranges, sexes, and severity levels have relatively few subjects, it
is hard to test the performance of the proposed gait symmetry
measure in differentiating those subgroups. To address this
problem, future studies need to balance the number of
subjects in each subgroup when recruiting more subjects.

5. Conclusion

This study investigated the usage of cross-fuzzy entropy for
analyzing gait symmetry/synchrony problem. By testing on
several simulation signals, we demonstrated that a better per-
formance was obtained by cross-fuzzy entropy as compared
with cross sample entropy. On a gait dataset with 15 PD
patients and 16 normal subjects, we verified that significant
difference (with a minimum 𝑝 value of 1.27 × 10−6) existed
between such two groups for the gait symmetry measured by
C-FuzzyEn values, which were calculated from the left and
right stride interval signals.We also realized SVMclassifier by
using the proposed gait symmetry feature; the classification
results evaluated by leave-one-out cross-validation method
showed accuracy of 96.77%, sensitivity of 93.33%, specificity
of 100%, and ROC area of 0.968.
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