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A B S T R A C T   

Background: Triple-negative breast cancer (TNBC), although the most intractable subtype, is 
characterized by abundant immunogenicity, which enhances responsiveness to immunothera-
peutic measures. 
Methods: First, we identified CD8+ T cell core genes (TRCG) based on single-cell sequence and 
traditional transcriptome sequencing and then used this data to develop a first-of-its-kind clas-
sification system based on CD8+ T cells in patients with TNBC. Next, TRCG-related patterns were 
systematically analyzed, and their correlation with genomic features, immune activity (micro-
environment associated with immune infiltration), and clinicopathological characteristics were 
assessed in the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), the 
Cancer Genome Atlas (TCGA), GSE103091, GSE96058 databases. Additionally, a CD8+ T cell- 
related prognostic signature (TRPS) was developed to quantify a patient-specific TRCG pattern. 
What’s more, the genes-related TRPS was validated by polymerase chain reaction (PCR) 
experiment. 
Results: This study, for the first time, distinguished two subsets in patients with TNBC based on the 
TRCG. The immune microenvironment and prognostic stratification between these have distinct 
heterogeneity. Furthermore, this study constructed a novel scoring system named TRPS, which 
we show to be a robust prognostic marker for TNBC that is related to the intensity of immune 
infiltration and immunotherapy. Moreover, the levels of genes related the TRPS were validated by 
quantitative Real-Time PCR. 
Conclusions: Consequently, this study unraveled an association between the TRCG and the tumor 
microenvironment in TNBC. TRPS model represents an effective tool for survival prediction and 
treatment guidance in TNBC that can also help identify individual variations in TME and stratify 
patients who are sensitive to anticancer immunotherapy.  
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1. Introduction 

Triple-negative breast cancer (TNBC), defined as the absence of expression of the estrogen receptor, the progesterone receptor, and 
ERBB2 (commonly referred to as human epidermal growth factor receptor 2, HER2), accounts for 12%–%17% of all breast cancer cases 
and is the most intractable subtype [1,2]. The major problems in TNBC treatment are early relapse and the absence of effective 
therapeutic targets [1,3]. Recent research has revealed that TNBC is characterized by greater immunogenicity than other subtypes, 
indicating the feasibility of using immunotherapeutic strategies [4–8]. Cancer cells can stimulate the expression of programmed death 
1 (PD-1) on T cells and thereby exhaust activated T cells by upregulating PD-L1 [9,10]. Thus, clinical trials have tested antibodies that 
block PD-1/PD-L1 binding to inhibit immune evasion in various types of cancer [11]. Given the higher expression of PD-L1 in TNBC 
compared to other BC subtypes [12], clinical trials utilizing PD-L1 antibodies or combined therapies have been conducted [13]. The US 
FDA has approved the use of the PD-1 inhibitor, pembrolizumab, in combination with chemotherapy, as first-line treatment for 
metastatic PD-L1 + TNBC. Interestingly, atezolizumab, another PD-L1 inhibitor, has also demonstrated clinical activity; nonetheless, 
this clinical benefit is moderate because TNBCs are PD-L1+ only in about 40% of cases, and not all patients with advanced TNBC 
respond to this treatment. These unsatisfactory results may have contributed to the absence of patient screening based on tumor 
microenvironment landscapes. Additionally, as the entire landscape of TNBC microenvironment phenotypes remains unclear, it is 
essential to expand our comprehension of genomic heterogeneity. Thus, developing a new molecular classification is essential for 
improving prognosis because it can help appropriately categorize patients and provide the most effective treatment strategies. 

Recently, single-cell RNAseq, an emerging technology, has been utilized to explore tumor heterogeneity and delineate genomic 
characteristics [14]. Several earlier studies have highlighted remarkable heterogeneity in the immune microenvironment, exosome, 
and cuproptosis in TNBC [2,15,16]. The tumor microenvironment (TME) includes abundant stromal cells, immune cells, and tumor 
cells, and greatly affects the malignant progression and tumor heterogeneity [17]. On the other hand, the dynamic interactions among 
immune cells are vital for the heterogeneity of the TME but eventually result in differential responses to therapies [17,18]. Notably, in 
TNBC, the contents of tumor-infiltrating lymphocytes (TILs) are associated with a favorable prognosis and an enhanced response to 
neoadjuvant chemotherapy [19,20]. Specifically, T cells play a crucial role in maintaining cellular integrity against intracellular tu-
mors and pathogens [21–23], and immunotherapy that is based on blocking T cell inhibitory factors has become the paradigm 
[24–28]. These observations indicate that the development of better immunotherapies may be facilitated through a more wholesome 
understanding of the genetic landscape that governs T cell function. T cell receptors recognize cognate antigens on the surface of major 
histocompatibility complex (MHC) class I (MHC-I) and activate antigen-specific CD8 T cells [29–31], which then trigger T cell pro-
liferation, cytokine production, and killing of the target cells [32]. Infections [33–36] or cancer [37–39] can be attributed to defects in 
T cells, while immunopathology and autoimmunity can arise from dysregulated CD8+ T cell activation [40–43]. Thus, CD8 T cells have 
become the central focus of emerging and novel cancer therapies [44–46]. 

Additionally, inhibitors of immune checkpoints that neutralize CTLA-4 and PD-1/PD-L1 also amplify CD8 T cell responses against 
tumors [28,30,35,47–49] and the discovery of CTLA-4 and PD-1 pathways has demonstrated that the mechanisms underlying immune 
evasion involve inhibiting CD8 T cell signaling [50,51]. Hence, it is possible that the level of CD8+ T cell infiltration can contribute to 
the prognostic and even predictive stratification of patients with TNBC. However, this necessitates a greater understanding of CD8+ T 
cell characteristics and their classification based on single-cell RNA-seq. Interestingly, two heterogeneous clusters have arisen in the 
Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) cohort and these have been validated by three inde-
pendent external cohorts. The differences in genomic variations, prognosis, biological characteristics, and the microenvironment were 
evident between the two clusters. Our study reveals novel aspects of the infiltration level of CD8+ T cells with underlying association of 
immunotherapy response and biological regulation stratification. Additionally, for the first time, we have developed a CD8+ T 
cell-related prognostic signature (TRPS). This study tested the prognostic value, clinical characteristics and tumor microenvironment 
(TME) of TRPS in TNBC. Ultimately, we examined the efficacy of TRPS in TNBC immunotherapy and chemotherapy. 

2. Methods 

2.1. Data collection 

Data was mined from the METABRIC, the Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) and the Cancer 
Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/) databases. Single-cell RNA-sequencing data of 6 TNBC samples in GSE118389 
and 10 TNBC samples in GSE176078 were retrieved from the GEO database and were utilized to determine the CD8+ T cell marker 
genes in TNBC. METABRIC data of 310 patients with TNBC were downloaded from cBioPortal [52,53] and the Meta-TNBC cohort 
(TCGA-TNBC, GSE96058, GSE103091) [54] was utilized to validate the robustness of the results. The batch effects of non-biological 
technical biases from each dataset were mitigated by applying the ComBat algorithm in the package sva [55]. After excluding samples 
with the survival of fewer than 30 days, 315 samples were eventually selected for this study. 

2.2. Identification of CD8+ T cell marker genes by scRNA-seq analysis 

First, we implemented quality control in the data retrieved from GSE118389 and GSE176078. Specifically, three screening criteria 
were implemented at the raw matrix level for each cell, viz., (i) only genes that were expressed in at least five single cells were selected, 
(ii) cells that expressed less than 100 genes were removed, and (iii) cells with more than 15% mitochondrial genes were eliminated. 
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Subsequently, the Seurat package was utilized to standardize the expression matrix of the GSE118389 and the GSE176078 datasets and 
“SeuratObject” was constructed. The two datasets were integrated to acquire a total of 5786 cells by sequentially performing “Fin-
dIntegrationAnchors” and “IntegrateData”. Next, using the “FindClusters” and “FindNeighbors” functions in the Seurat package, cell 
cluster analysis was implemented. Dimensionality reduction (Uniform Manifold Approximation and Projection, UMAP) analyses were 
run using the runUMAP function in the Seurat package. Subsequently, using the FindAllMarkers functionality in the Seurat package, 
marker genes for each cell cluster were identified based on the following screening criteria: log fold change (FC) ≥ 0.25 and p value <
0.05. For cluster annotation, we identified six cell subtypes, namely, B cells, endothelial cells, epithelial cells, fibroblasts, monocytes, 
and T cells. The Monocle 2 package was performed to reveal the pseudotime trajectory of single cells [56]. 

2.3. Annotation and further segmentation of T cells 

Data on T cells were extracted and clustered by implementing the “FindNeighbors” and the “FindClusters” functions (setting 
Resolution = 0.8). T cells were further divided into four subgroups and re-TSNE dimensionality was reduced by running the RunTSNE 
function. 

2.4. Obtaining marker genes 

The “FindMarkers” function in the “Seurat” package was utilized to identify differentially expressed genes (DEGs) between CD8+

and non-CD8 + T cells using the Wilcoxson test. The cutoff threshold values applied were log2 (fold change) > 0.25 and adjusted p 
value < 0.05. 

Construction and Validation of CD8+ T cell linked Molecular Classification Based on Marker Genes. 
The MCPcounter [57] and the CIBERSORT [58] algorithms were applied to evaluate differences in the infiltration level of CD8+ T 

cell in each sample in the METABRIC cohort. Given that the weighted gene coexpression network analysis (WGCNA) has the ability to 
identify associations between gene modules and characteristics [59], the gene co-expression network was shaped according to CD8+ T 
cell marker genes and then transformed as a scale-free network by identifying a soft threshold β (power of β = 3) and a scale-free R2 of 
0.9. Based on the association between the module eigenvalue and characteristics, we curated an notable module by immune trait and 
module connectivity and further a coexpression network was shaped via the exportNetworkToCytoscape function in the WGCNA R 
package. Hub nodes were visualized using Cytoscape software [60] and CD8+ T cell related core genes (TRCG) were selected by 
implementing the cytoHubba plugin according to the maximal clique centrality (MCC) algorithm [61]. 

2.5. Identifying TRCG-related patterns 

TNBC samples were classified into two subtypes based on TRCG using a consensus clustering algorithm in the METABRIC-TNBC 
cohort and further verified in the META-TNBC cohort. To ensure classification stability, this procedure was performed and 
repeated 1000 times using the package ConsensusClusterPlus. 

2.6. Tumor microenvironment infiltration assessment 

Based on immune cell type marker gene sets derived from Charoentong et al. [62], the relative amounts of the 28 immune cell types 
were quantified through single sample gene set enrichment analysis (ssGSEA) and the GSVA R package [63]. The gene set for each 
immune cell subset was acquired from Bindea et al. [64]. Additionally, we utilized the R package to assess stromal and immune 
infiltration levels between the two TRCG-related patterns [65]. The MCPcounter and the CIBERSORT algorithms were utilized to 
compare differences in immune cell infiltration levels between the two clusters in the METABRIC-TNBC cohort and the META-TNBC 
cohort. Immunotherapeutic efficacy among distinct clusters was assessed by two prevalent approaches that contained unsupervised 
subclass mapping (Submap) and T cell inflammatory signatures (TIS). Submap was used to analyze similarity in expression profiles 
between TNBC and immunotherapy patients [66], which corresponded to the similarity in clinical efficiency. TIS was calculated using 
the ssGSEA algorithm and contained 18 inflammatory genes with higher scores typically suggesting a more sensitive response to PD-1 
inhibitor therapy [67]. Previous studies have identified characteristic signatures that indicate differential infiltration of immune cells 
based on TNBC subtypes. 

2.7. Annotation and functional enrichment analyses 

For the purpose of evaluating the correlation between immune markers and molecular subtypes [68], data for immunomodulators 
and inhibitory immune checkpoints, which included chemokines, MHC molecules, receptor molecules, immunostimulant molecules, 
and inhibitory immune checkpoint molecules, were retrieved from previous studies [62,69,70]. The Wilcoxson rank sum test was 
applied to determine whether these genes are differentially expressed among the TNBC subtypes. The gene sets obtained from h. all. 
v7.5.1. symbols, ontology gene sets in the Molecular Signatures Database v5.1 (MSigDB) (http://www.broad.mit.edu/gsea/msigdb/) 
were used to assess the association between molecular subtypes and specific biological processes. 
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2.8. Assessment of the Cancer–Immunity cycle 

The cancer–immunity cycle, also called the anticancer immune response, has seven steps related to the TME. The Tracking Tumor 
Immunophenotype (TIP; http://biocc.hrbmu.edu.cn/TIP/index.jsp) program was used to assess the activity score of each step [71]. 

2.9. Construction of CD8+ T cell-related prognostic signature (TRPS) 

To construct a quantification system based on TRCG, DEGs were extracted from two clusters in the METABRIC-TNBC cohort and 
intersected with genes involved in the merge-TNBC cohort. Subsequently, univariate Cox regression, a least absolute shrinkage and 
selection operator (LASSO), and multivariate Cox analysis were performed to build the TRPS: 

TRPS = esum (each gene’s expression × corresponding regression coefficient). 
Cox regression models are usually tested for accuracy using the receiver operating characteristic (ROC). Further, based on the 

training and the test datasets, we performed Kaplan–Meier survival analyses of TRPS and calculated ROC curves using the R package 
(timeROC) for 1-, 3-, and 5-year survival. We also checked if TRPS is an independent prognostic factor using univariate and multi-
variate Cox regression analyses. 

2.10. Establishment of a nomogram 

Based on the results of multivariate analysis, the nomogram function in the “rms” package was used to shape the nomogram. 
Additionally, calibration plots were drawn with the rms package to estimate consistency among predicted 1-, 3-, and 5-year endpoint 
events and practical outcomes. 

2.11. Cell cultures 

Human breast cancer cell lines (MDA-MB-231, BT-549) and non-tumorigence epithelial cells (MCF-10 A) were purchased from the 
Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (Shanghai, China). MDA-MB-231 cells were maintained in 
DMEM medium (Gibco, Eggenstein, Germany), BT-549 cells were maintained in RPMI-1640 medium (Gibco). MCF-10 A were 
maintained in DMED-F12 with 500 μg/ml hydrocortisone, 20 ng/ml EGF, 10 μg/ml insulin, 0.3 g/L L-glutamine, 40 mg/L gentamicin. 
All media were supplemented with 10% fetal bovine serum (Gibco, USA). 

2.12. RNA isolation and quantitative Real-Time PCR 

qRT-PCR was used to estimate relative expression of N4BP2L1, IL18RAP, and KIR3DL3 in TNBC cells. Trizol reagent was used to 

Fig. 1. Schematic summary of the workflow.  
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extract RNA, which was then reverse transcribed using a kit (Toyobo, Osaka, Japan). Ultimately, qRT-PCR was performed using the 
THUN DERBIRD SYBR qPCR Mix (Toyobo, Osaka, Japan) on an Applied Biosystems 7500 cycler. Relative expression of N4BP2L1, 
IL18RAP, and KIR3DL3 was normalized to that of GAPDH, and each sample was analyzed at least in triplicate. The list of the primer 
sequences used for cDNA amplification in Supplement table 3. 

2.13. Evaluation of clinical treatment 

The pRRophetic package was used to forecast drug response according to gene expression data [72] and to estimate the 
half-maximal inhibitory concentration (IC50) of common chemotherapy drugs. Immunophenoscore (IPS) of samples in the TCGA was 

Fig. 2. Single cell RNA data analysis; Umap diagram of 16 samples(A); umap distribution diagram of annotation cell subgroups(B); umap of four T 
cell subpopulations after cluster analysis (C); Analysis of the weighted co-expression network in metabric-TNBC cohort. Sample clustering of dataset 
metabric-TNBC(D). Volcano Plot illustrated the DEGs between CD8+ T cells and no CD8+ T cells based on single cell datasets, the genes of CD8+ T 
cell related classifier are exhibited(E). Analysis of correlations between modules and CD8+ T cell characteristic(F). Different modules are produced 
and shown in different colors by aggregating genes with strong correlations into a same module (G). Identification of optimal thresholds, which is 3 
(H). Scatter plot of module eigengenes in the turquoise module (I). Heatmap describing the topological overlap matrix among genes based on co- 
expression modules (J). 
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retrieved from The Cancer Immunome Atlas (https://tcia.at/). 

2.14. Statistical analyses 

All data analysis were performed using the R software (v4.1.3). Kaplan–Meier and Cox regression analyses were performed with the 
survival package. Log-rank test was utilized to compare survival statistics of categorical variables. Multivariate Cox regression analysis 
was employed to evaluate hazard ratio and validate the independent significance of multiple traits. The relationship between two 
continuous variables was assessed using Pearson’s correlation analysis. ROC plots were generated using the pROC package to predict 
binary categorical variables. P < 0.05 was defined as statistically significant. 

3. Results 

3.1. Data processing 

The flow chart in Fig. 1 illustrates how data was processed and analyzed for this study. 

3.2. Identification of CD8+ T cell marker genes 

The scRNA-seq data available at GSE118386 and GSE176078 provided gene expression profiles of 5786 cells from 16 TNBC 
samples for follow up analysis (Fig. 2A). Dimensionality of all genes was reduced using the PCA algorithm and 27 cell clusters were 
identified. Next, the cell identity of each cluster was annotated using immune markers described previously [73–75] (Fig. 2B), and T 
cell subgroups were extracted and divided to four subgroups based on immune markers described elsewhere [74] (Fig. 2C). Finally, 
1078 DEGs were curated between CD8+ T cell and non-CD8+ T cells, which were defined as TNBC-related CD8+ T cell marker genes 
(Fig. 2E, Supplement Table 1). 

3.3. Shaping Co-expression network 

Samples from the METABRIC-TNBC cohort were clustered using average linkage and Pearson’s correlation (Fig. 2D). A scale-free 
network was ensured by utilizing the soft-thresholding parameter, which included a power of β = 3 and scale-free R2 of 0.9 (Fig. 2H). 
Subsequently, two modules were identified, namely, the turquoise module had a stronger correlation with levels of CD8+ T cell 
infiltration (Fig. 2F, G, 2I), and hence, this module was used for further analysis as a vital immune-related module. Eventually, an 
eigengene adjacency heatmap was drawn to illustrate the relationship between different modules (Fig. 2J). A total of 20 hub genes, 
which were screened using the cytoHubba plugin according to the MCC algorithm [61], were customized as CD8+ T cell related 
classifiers (Fig. 2E, Supplement Table 2). 

3.4. Unsupervised learning yielded two different TRCG-related patterns 

Based on TRCG-related classifiers, two unique TRCG-related patterns were distinguished in the METABRIC-TNBC cohort upon 
application of an unsupervised clustering algorithm (Fig. 3A). Moreover, Kaplan–Meier analysis revealed that cases in Cluster 1 were 
associated with worse prognoses (Fig. 3B), and importantly, exploration of the merge-TNBC cohort attested to the robustness of the 
TRCG-related classifier (Fig. 3C and D). Intriguingly, there was a positive correlation between TRCG-related genes and the level of 
immune cell infiltration (Fig. 3E), and heatmap analysis revealed that TRCG-related genes were indeed abundant in cluster2, indi-
cating an activated immune response (Fig. 3F). 

3.5. The immune landscape of TRCG-related patterns 

Firstly, a comparison of the proportion of immune cell infiltration of the TME between the two TRCG-related subtypes (supplement 
figure 1A) yielded the following crucial results. 1) Samples in Cluster 2, i.e., with a more favorable prognosis, mostly exhibited higher 
immune cell infiltration than samples in Cluster 1; and 2) immune cells, e.g., activated CD8+ T cells, dendritic cells, and type 1 T helper 
(Th1) cells, which have ability to mediate antitumor immune response, and multiple immunosuppressive cells, such as regulatory T 
cells (Treg), bone marrow derived suppressor cells, neutrophils, and immature dendritic cells, are abundant in the heatmap’s immune 
infiltration zone, indicating that there may be a feedback mechanism, i.e., that the TME may stimulate the differentiation or 
recruitment of immunosuppressive cells. 

Additionally, we used the ssGSEA algorithm on 50 Hallmark gene sets to assess the underlying carcinogenic features of the two 
clusters [76] (Supplement figure 2A). In accordance with the above-mentioned findings, cluster 1(C1) was characterized by genes 

Fig. 3. Patients stratified into two clusters based on the CD8+ T cells hub genes. Consensus matrices of patients in the metabric-TNBC(A) and merge- 
TNBC(C) cohort via the unsupervised consensus clustering method (K-means). Survival analysis of the heterogeneous clusters in the metabric-TNBC 
(B) and merge-TNBC (D) cohort. Analysis of the hub genes–immune response relationships of TNBC in METABRIC data(E). Heatmap of the clini-
copathological manifestations among the TRCG-related patterns (F). 
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related to glycolysis, metabolic, and carcinogenic pathways, while cluster 2(C2) was abundant in immune inflammatory pathway 
genes via gene set enrichment analysis(GSEA) (Supplement figure 2B). These results show that cases in C2 might display greater 
responsiveness to immunotherapeutics. Consequently, we attempted to delineate immune checkpoint expression and the landscape of 
immune cell infiltration to understand the potential mechanism. C2, which was the “immune-hot” subtype, showed greater infiltration 
of immune cells, including CD8+ T cells, CD4+ T cells, B cells, nature killer cells, monocytes, macrophage M1 cells, and activated 
dendritic cells (P < 0.05) (Fig. 4B). Additionally, C2 also exhibited abundant expression of immune checkpoint genes, such as CTLA-4, 
CD274 (PD-L1) and LAG3, implying that C2 might be more responsive to immune checkpoint inhibitor (ICI) therapy (Supplement 
figure 2C). Our results also indicate enriched expression of chemokines in Cluster2, such as CXCL6, CXCL9, CXCL10, CXCL12, CXCL13, 
CXCL14, CXCR4, CXCR3, and CCL5 (Fig. 4A, top panel), which can attract DCs and CD8 + T cells. Concurrently, the expression of HLA 
molecules was also abundant in C2, suggesting that these patients may exhibit stronger antigen presentation (Fig. 4A, bottom panel). 
Kim et al. have revealed that MHC downregulation contributes to immune escape in cancer cells [77] and we found higher immune 
score and stromal score in C2 (Fig. 4C). The cancer immune cycle can be visualized as a series of step-by-step events during which the 
antitumor immune response effectively kills cancer cells. These pathways are evidently active in C2 (Fig. 4E), underscoring the sig-
nificant role of TRCG in cancer infiltration. As patients with abundant expression of TRCG were indicated to have better tumor im-
munity, we subsequently compared heterogeneity in immune-associated gene set scores between the two subtypes. Intriguingly, gene 
sets scores for CD8 T effector cells, angiogenesis, antigen processing machinery, immune checkpoint, Epithelial–mesenchymal tran-
sition (EMT) 3, pan_F_TBRS, and WNT targets were higher in C2 (Fig. 4D). 

Next, immune marker gene profiles were further explored in the two ways. Cluster 1 patients had high amounts of SPP1 and VEGFA 
expression, which can promote M2 macrophage polarization and give rise to vascular abnormalities, respectively, and facilitate 

Fig. 4. Comparison of the two subtypes in TNBC patients. Expression of chemokines, receptors and MHC molecules(A) and Immune cell infiltration 
levels Immune cell infiltration levels(B). Evaluation of the TME in the two TTK related patterns(C). Boxplots depicting the difference of the TME 
related signatures(D), the cancer–immunity cycle(E) and TIS scores(F) amongs the two TRCG related patterns via ssGSEA. Response prediction to 
immunotherapy (anti-PD-1 and anti-CTLA4) amongs the two TRCG patterns based on SubMap algorithms(G). 
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immune escape [78,79] (Supplementary Figure 3). Conversely, patients in Cluster 2 had favorable survival outcomes that can be partly 
attributed to richer expression of cytolytic activity markers, such as PRF1 and GZMA, activated T cell markers, such as ZAP70, CD3E, 
IL2RB, and ITK, and exhaustion markers in T cells, such as PDCD1 (Supplementary Figure 3). 

Additionally, sensitivity of the response to anti-PD1 and anti-CTLA4 immunotherapy was evaluated using TIS and the submap 
algorithm. As expected, C2 had higher TIS scores, indicating stronger response to ICIs and immune activation (P < 0.0001) (Fig. 4F). 
Furthermore, expression patterns of samples in C2 were strikingly similar to those that had responded to PD-L1 inhibitors (Bonferroni 
corrected P < 0.01), implying that C2 may also be responsive to anti-PD-L1 treatment. Taken together, these results indicate that 
precision immunotherapy may be an efficient treatment option in patients who are classified as C2 (Fig. 4G). These results was 
repeatable in merge-TNBC cohort(Supplement Figure 1B,4,5). 

3.6. Construction of CD8+ T cell-related prognostic signature (TRPS) 

To develop a more convenient scoring model for clinical applications, 1286 DEGs were screened in both TRCG-related subtypes 
after intersecting with genes involved in the merge-TNBC cohort (Supplement Table 4). Additionally, for exploring biological path-
ways related to DEGs, GO and KEGG analyses were performed, and we show that DEGs were enriched in immune-related biological 
pathways (Supplement Figure 6). Next, univariate Cox regression (Supplement Table 5), LASSO, and multivariate Cox regression 
analysis identified three genes, viz, N4BP2L1, IL18RAP, and KIR3DL3, which were used to construct the TRPS using the following 
formula: 

TRPS = (− 0.19699 * expression of N4BP2L1) + (− 0.22011 * expression of IL18RAP) + (− 0.23479 * expression of KIR3DL3) 

Fig. 5. TRSP in metabric-TNBC cohort analysis. Kaplan–Meier curves (A), time-dependent ROC analysis (B) and risk score(C). The association 
between TRSP and special clinicopathological traits(D). Kaplan–Meier curves of TRSP related genes in METABRIC-TNBC and merge - TNBC cohort 
(E, F, G). 
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Patients with TNBC from the training (METABRIC) and the validating (merge - TNBC, GSE103091, GSE96058) cohorts were 
separated into high- and low-TRPS groups based on median TRPS value. Compared to patients with high TRPS in the training (Fig. 5A) 
and validating (Supplement Fig. 7A-C) sets, Kaplan–Meier survival curves revealed favorable survival outcomes in patients with low- 
TRPS. Area under the ROC curve values for predicting 1-, 3-, 5-year survival times were 0.695, 0.661, and 0.666 in METABRIC-TNBC 
cohort (Fig. 5B and C), 0.672, 0.656, and 0.665 in merge-TNBC cohort, 0.602, 0.703, 0.726 in GSE103091, and 0.728, 0.644, 0.634 in 
GSE96058, respectively. These values attest to the outstanding ability of the model to forecast overall survival (OS) in patients with 
TNBC (supplement Fig. 7D-F). The hazard ratio and 95% CI of TRSP in the univariate (P = 0.002) and multivariate Cox regression 
analyses (P = 0.011), indicate that it is indeed an independent prognostic index of OS in patients with TNBC (Supplement Fig. 7G and 
H). Likewise, the heatmap delineates the association between TRSP and clinicopathological traits (Fig. 5D). Surprisedly, Kaplan–Meier 
survival curves also revealed beneficial survival outcomes in patients with high-IL18RAP(Fig. 5E), high-N4BP2L1(Fig. 5F), high- 
KIR3DL(Fig. 5G) groups in multiple cohorts, respectively. A hybrid nomogram containing TRSP and clinicopathological manifestations 
is delineated in Supplementary Figure 7I. Both practical and predicted 1-, 3-, and 5-year survival rates, generated using calibration 
curve analysis, are delineated in Supplementary Figure 7J. These results indicate that the nomogram is both robust and precise, and 
can, consequently, be applied in clinical settings, i.e., in patients with TNBC. 

3.7. Estimation of TME and immunotherapy efficacy in high- and low- TRSP 

We attempted to understand the differences in immune characteristics between high- and low- TRSP subgroups and found that both 
immune and ESTIMATE scores were conspicuously upregulated in the low-TRSP subgroup, suggesting greater proportion of infil-
trating immune cells (Fig. 6A). To further explore the correlation between TRSP and TME, we evaluated heterogeneity among immune 
infiltrating cells and immune function to more precisely assess the TME landscape. Our results demonstrate higher levels of immune 
cells equipped for antigen-presenting, antigen processing, and tumor-killing in low-TRSP group, such as CD8 T cells, T cells, B cells, and 
cytotoxic lymphocytes (Fig. 6B). As expected, we found that the signaling for antigen recognition, processing and presentation, and 
antitumor effects, containing APC co-stimulation, cytolytic activity, MHC class I, HLA, type I IFN response, type II IFN response, and T 
cell co-stimulation, were more active in the low-TRSP group (Fig. 6C). The TRSP is negative correlation with the expression of immune 
checkpoint genes, suggesting the low-TRSP set possible sensitivity to ICI therapy (Fig. 6D). Furthermore, the cancer immune cycle 
related pathways are evidently active in low-TRSP group (Fig. 6E). Additionally, compared to those with high TRPS scores, patients in 
the low-TRSP group had higher TIS and IPS, (Fig. 6F and G). Moreover, expression patterns of samples in TRSP-low subgroup were 
significantly similar to those that had responded to PD-L1 inhibitors (Fig. 6H) (Bonferroni corrected P < 0.01). Together, these results 
indicate that patients with a low-TRSP score can possibly benefit from immunotherapy. 

3.8. Chemotherapy sensitivity related to the TRSP 

A comparison was made of the IC50 values of chemotherapeutic drugs amongs patients in high- and low- TRSP subgroups, which 
can indicate the sensitivity to them. Patients in the low-TRSP group were more applicable to Cisplatin and Gefitinib, Methotrexate, 
Rapamycin, Sunitinib, Vinblastine, Vinorelbine. On the contrary, patients in the high-TRSP set were more responsive to Docetaxel, 
Doxorubicin and Sorafenib(Supplement Figure 8). 

3.9. Validation of TRSP related genes expression via qRT-PCR, scRNA-seq analysis and bulk analysis 

The qRT-PCR unraveled that these TRSP related genes all are poorer expression in TNBC cells than normal breast cell(Fig. 6I). To 
further confirm the type of cells expressing these TRSP related genes in the TME, we analyzed previously available TNBC scRNA-seq 
data and, as expected, found that N4BP2L1, IL18RAP, and KIR3DL3 were predominantly expressed in T cells(Fig. 7A–C). Moreover, to 
shed light on the underlying correlation between the TRPS related genes and the dynamic evolutionary trajectory of T cells in TNBC, 
we reordered single cells into a pseudo-temporal timeline based on Monocle2 toolkit, and the result clearly unrevealed the uniform 
development route T cells(Fig. 7D–F). In the heatmap, the pseudo-time-dependent genes are displayed based on their pseudo-timeline 
trends(Fig. 7G). Notably, these genes are remarkably positive association with the infiltration levels of immunocompetent cells, 
specially CD8+ T cells, based on MCPcounter algorithm in metabric-TNBC cohort(Fig. 7H). These results again indicated that the TRSP 
related genes take crucial roles on TME in TNBC. 

Fig. 6. The comparison of the TRSP -high and -low subgroups. Evaluation of the TME in the TRSP -high and -low subgroups(A). The heterogeneity 
of Immune cell infiltration levels amongs TRSP -high and -low subgroups in METABRIC(B) cohort by MCPcounter. Boxplots depicting the difference 
of the TME related signatures(C) amongs the two TRCG related patterns via ssGSEA. Correlation between TRSP and immune checkpoint-related 
genes(D). A comparison of the relative sensitivity of responding to anti-PD-1/PD-L1 as well as anti-CTLA-4 treatment in the TRSP high and low 
subgroups(E). The distinction of TIS scores amongs TRSP -high and -low subgroups(F). Response prediction to immunotherapy (anti-PD-1 and anti- 
CTLA4) amongs the TRSP – high and – low subgroups based on TIDE(G) and SubMap algorithms(H). The TRSP related genes are all low expressed in 
TNBC cells compared to normal breast cancer cell by Student’s t-test. 2− ΔΔCt is used to present the fold change in qRT-PCR experiment(I). (*P <
0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). 
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4. Discussion 

TNBC is the most invasive breast cancer subtype and is characterized by inferior prognosis and distinct heterogeneity [1,80]. 
Irrespective of cancer stage, chemotherapy remains the preferential treatment modality; however, TNBC displays resistance to 
chemotherapy and high rates of relapse. Further, compared to other breast cancer subtypes, TNBC has greater expression of PD-L1; this 
fact has contributed to the recent approval of immunotherapy with anti-PD-L1 monoclonal antibodies. Recent clinical trials with ICIs 
have revealed poor efficacy of immunotherapy in TNBC patients [81–83], which may be attributed to molecular heterogeneity in these 
patients. Thus, TNBC lesions with abundant TILs [84] may exhibit potentially greater benefits from chemotherapy and a lower pos-
sibility of disease relapse, indicating that it is imperative to investigate genomic characteristics and develop appropriate molecular 
classification. Notably, the infiltrating density of CD8+ T cells (preferred immune cells for targeting cancers), is a predictive marker of 
the efficacy of ICIs therapy [85]. Recent developments in single-cell RNA seq have helped explore tumor heterogeneity, and we have 
used this emerging technology to identify immune cell subpopulations and features of CD8+ T cells. Previous studies have proved that 
TME is intricately associated with and actively modulates antitumor immune responses and tumor heterogeneity [1,86], and as CD8+ T 
cells are known to possess cytotoxic properties that kill tumor cells [87], they are associated with the effectiveness of immunotherapy 
and prognosis [87,88]. 

Our results point toward a close relationship between the characteristics of CD8+ T cells, prognosis, and heterogeneity in clinical 
outcomes, which provide a rationale for constructing a molecular classification. Thence, the unsupervised clustering algorithm was 
implemented to obtain different molecular clusters based on CD8+ T cell marker genes. Ultimately, two robust clusters were distin-
guished in the METABRIC-TNBC cohort, and the results indicate that both clusters had heterogeneous survival and that prognosis was 
robust and reproducible in the merge-TNBC cohort. Delineating the intrinsic biological features of the two clusters according to GSVA 
and GSEA enrichment analyses revealed that while cluster 1 was significantly enriched in glycolysis metabolic pathways, cluster 2 was 
predominantly related to immune-inflammatory pathways. Additionally, the two clusters showed diverse genomic characteristics. 
Owing to stronger immune inflammatory activity, greater stable genomic characteristics, and more favorable clinical prognosis, pa-
tients in cluster2 may display better antitumor activity and profit from immunotherapy. It is known that molecular characteristics can 
predict clinical prognosis and facilitate personalized treatment approaches; nonetheless, to tailor a clinical plan for patients with 
TNBC, it is essential to identify individual variations and account for the same. The efficacy of distinct clinical treatments was assessed 
and compared among the two clusters. Cluster2 was defined as the “immune-hot” subtype with abundant immune cells, such as CD4+ T 
cells, CD8+ T cells, and activated dendritic cells, along with greater expression of immune checkpoint genes, such as CD274 (PD-L1), 
CTLA- 4, and LAG3. Activated CD8 T cells are capable of anti-tumor activity, and dendritic cells trigger immune responses after 
eliminating tumor cells [88,89]. Additionally, PD-L1 releases negative regulatory signals and promotes immune escape [88]. As 
multiple approaches used here have demonstrated that cluster 2 patients may be more responsive to immunotherapy, a more proactive 
strategy for immunotherapy should be recommended to patients classified as cluster 2. 

Furthermore, DEGs between TRCG-related patterns were shown to be enriched in immune-related biological processes; this, when 
combined with individual heterogeneity, facilitated the construction of a scoring system, TRPS, to estimate and quantify TRCG-related 
patterns in TNBC patients. We reveal that, while those with low TRPS were enriched in immune activation pathways, indicating an 
immune-inflamed condition, those with high TRPS showed higher expression in carcinogenic pathways. Concurrently, cluster 2, 
defined as an immune-inflamed phenotype, is characterized by a favorable prognosis and a lower TRPS, whereas cluster 1 features an 
adverse prognosis and the higher TRPS. Together, these results indicate that TRPS is a robust and reliable device for the broad 
evaluation of personalized immune response patterns and could be utilized to further explore tumor immune phenotypes and immune 
cell infiltration in the TME. Moreover, patients with high TRPS were more prone to suffer malignancy and adverse clinicopathological 
manifestations and molecular subtypes; in contrast, opposite patterns were found in the low TRPS subgroup. Additionally, patients 
with lower TRPS, defined by immune activation, were strikingly associated with greater sensitivity to ICI immunotherapy. 

Multiple trials have shown that immune checkpoint inhibitors and chemotherapy are synergistic because chemotherapy can not 
only damage the activity of immunosuppressive cells, such as Tregs and myeloid suppressor cells (MDSC), but also facilitate tumor cell 
apoptosis, enhance tumor antigen cross-presentation ability, and promote dendritic cell (DC) maturation and CD8+T cell infiltration to 
increase immune response. Currently, a series of clinical studies are exploring the potential benefits of immunotherapy, combined with 
chemotherapy, for advanced TNBC [90]. 

It is imperative to seek valid biomarkers that can predict if TNBC patients will benefit from combined chemotherapy and immu-
notherapy. We show that TRPS is negatively associated with immune checkpoint molecules, TMB, and TME scores, which indirectly 
suggests that the TRPS may play a crucial role in evaluating the efficiency of immunotherapy. The sensitivity of some chemothera-
peutic and targeted drugs is linked to TRSP, implying that TNBC patients may be able to select more efficacious chemotherapeutics 
based on TRPS. 

Fig. 7. The exploration of TRSP relaed genes. UMPA (A) plots showing different TRSP related genes expression distribution based on scRNA-Seq and 
Violin plots revealing the difference of the expression of N4BP2L1, IL18RAP, KIR3DL3 in all cell subgroup (B) and T cell subgroup (C), respectively. 
Trajectory reconstruction of all T cells in TNBC, with a color code for pseudo-time (D), clusters (E), cell subtypes (F), respectively. The branched 
heatmap indicates the dynamics of the expression of N4BP2L1, IL18RAP, KIR3DL3 during T cells transdifferentiation(G), the redder the color, the 
higher the expression. The correlation between N4BP2L1, IL18RAP, KIR3DL3 and the level of immune cell infiltration (H). 

Y.-w. Dai et al.                                                                                                                                                                                                         



Heliyon 9 (2023) e19798

14

5. Conclusion 

In conclusion, we describe the presence of two distinct heterogeneous clusters of TNBC patients that are characterized by differ-
ences in molecular characteristics and heterogeneity in clinical features, biological characteristics, genomic variations, and immune 
landscapes. Moreover, we identify TRPS as a useful prognostic marker for TNBC that is also linked to immune cell infiltration and 
immunotherapy. We hypothesize that this TRSP model is a valid tool for predicting survival and providing treatment guidance in TNBC 
and that it can help elucidate individual variations in TME and to identify patients who would benefit most from anticancer immu-
notherapy. Future research should focus on understanding the specific mechanisms involved in TRPS and immune cells. Despite the 
above, TRPS has some limitations. First, all the samples used in this study were derived from different public datasets and were 
retrospective. Proper validation with actual clinical data of eligible patients who had undergone immunotherapy was not possible. 
Second, the median value of TRPS was used as the cutoff to divide TNBC samples into high and low TRPS, but stratifying TNBC patients 
based on an optimal cutoff value may be more appropriate. Third, there is still a lack of clarity regarding the detailed signaling 
pathways of the target genes in the immune microenvironment. Our future research will focus on understanding the specific mech-
anisms involved in TRPS and immune cells. 
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