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Background: Human population exposed to influenza viruses exhibited wide

variation in susceptibility. The ratio of neutrophils to lymphocytes (NLR) has

been examined to be a marker of systemic inflammation. We sought to

investigate the relationship between influenza susceptibility and the NLR taken

before influenza virus infection.

Methods: We investigated blood samples from five independent influenza

challenge cohorts prior to influenza inoculation at the cellular level by using

digital cytometry. We used multi-cohort gene expression analysis to compare

the NLR between the symptomatic infected (SI) and asymptomatic uninfected

(AU) subjects. We then used a network analysis approach to identify host

factors associated with NLR and influenza susceptibility.

Results: The baseline NLR was significantly higher in the SI group in both

discovery and validation cohorts. The NLR achieved an AUC of 0.724 on the

H3N2 data, and 0.736 on the H1N1 data in predicting influenza susceptibility.

We identified four key modules that were not only significantly correlated

with the baseline NLR, but also di�erentially expressed between the SI and AU

groups. Genes within these four modules were enriched in pathways involved

in B cell-mediated immune responses, cellular metabolism, cell cycle, and

signal transduction, respectively.

Conclusions: This study identified the NLR as a potential biomarker for

predicting disease susceptibility to symptomatic influenza. An elevated NLR

was detected in susceptible hosts, who may have defects in B cell-mediated

immunity or impaired function in cellular metabolism, cell cycle or signal

transduction. Our work can serve as a comparative model to provide insights

into the COVID-19 susceptibility.

KEYWORDS

neutrophil-to-lymphocyte ratio, NLR, influenza susceptibility, digital cytometry,
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1. Introduction

Influenza viruses are highly contagious human respiratory

pathogens that cause recurrent epidemics and occasional

global pandemics. Seasonal influenza vaccines are traditionally

trivalent and include components of influenza A viruses of

the H1N1 and H3N2 subtypes and an influenza B virus.

The pandemic influenza A(H1N1)pdm09 virus gave rise to

the first influenza pandemic of the twenty-first century. The

subtype H3N2 has been the most frequently occurring seasonal
influenza since 1968, causing a significant threat to public health.
Human population exposed to influenza viruses exhibited

wide variation in susceptibility (Clohisey and Baillie, 2019).
Earlier studies demonstrated that host factors, such as age,
pregnancy, obesity, cardiovascular disease, and host genetics

(Horby et al., 2012, 2013; Mertz et al., 2013; Patarčić et al.,

2015), played a critical role in susceptibility to influenza viruses.

In addition, several host factors of preexisting immune cell

composition in blood have now been reported to associate with

influenza susceptibility. The proportions of pre-existing CD4+

T cells recognizing nucleoprotein and matrix were inversely

associated with total symptom scores and virus shedding of

H3N2 (Wilkinson et al., 2012). The subjects having a higher

proportion of pre-existing CD8+ T cells to conserved viral

epitopes developed less severe illness after A(H1N1)pdm09

infection (Sridhar et al., 2013). Moreover, the proportion of

KLRD1-expressing natural killer cells at baseline (i.e., prior

to exposure to influenza) was lower in symptomatic shedders

compared to asymptomatic nonshedders who were inoculated

with H3N2 or H1N1 influenza (Bongen et al., 2018).

When there is local infection, various leukocyte populations

are recruited to the infection site which is a critical early

component of inflammatory responses (Luster et al., 2005; Leick

et al., 2014). Neutrophils are the most abundant leukocytes

in the circulation and the first to be recruited to the site of

infection where they enhance local innate responses (Rosales,

2018). The innate immune system not only responses quickly

to invasion by an infectious agent but also plays essential roles

in activating adaptive immune responses (Clark and Kupper,

2005; Mantovani et al., 2011). While innate cells at the infection

site (resident innate cells and newly recruited neutrophils) are

generating antimicrobial and pro-inflammatory responses that

will slow down the infection, they are also initiating steps to

deliver the pathogens to lymphoid tissues where lymphocytes

(T and B cells) can recognize them and generate adaptive

immune responses (Schmolke and García-Sastre, 2010; Hufford

et al., 2012; Chen et al., 2018). Innate immune responses and

the inflammatory responses play critical roles in eliminating

infections but also can be harmful when not adequately

controlled. Overproduction of various normally beneficial

mediators and uncontrolled local or systemic responses can

cause illness and even death (Chen and Nuñez, 2010; Brandes

et al., 2013). Prior studies have revealed that the host’s

inflammatory responses were likely to influence both the

likelihood of influenza virus infection and disease severity

(Hayden et al., 1998; Julkunen et al., 2000; Price et al., 2015).

When the baseline levels of systemic inflammation increased, the

host may be excessively susceptible to influenza virus infection

(Clohisey and Baillie, 2019). The neutrophil-to-lymphocyte ratio

(NLR), the ratio of the absolute neutrophil and lymphocyte

counts, which can be measured during routine hematology is a

simple and reliable method to evaluate the extent of systemic

inflammation (Zahorec, 2001). The NLR was examined as a

new prospective marker to estimate systemic inflammation and

clinical outcomes in cancer patients (Templeton et al., 2014;

Faria et al., 2016; Howard et al., 2019). A few studies have

also reported the roles of NLR in influenza virus infection. For

patients infected with avian influenza virus H7N9, the NLR

taken within 24 h after admission was found to be independently

associated with fatality (Zhang et al., 2019). Moreover, the NLR

can be used to predict swine influenza virus infection among

patients presenting with influenza like symptoms while awaiting

throat swab culture and virus isolation reports (Indavarapu and

Akinapelli, 2011). In patients with influenza virus infection,

excessive neutrophil activation was examined to predict fatal

outcome, and neutrophil-related host factors were associated

with severe disease (Tang et al., 2019). Previous studies have

observed a decline in lymphocyte count in patients infected with

influenza virus (Chen et al., 2014; Shen et al., 2014). Both host’s

inflammatory responses and immune responses played essential

roles in the likelihood of influenza virus infection and disease

severity. The NLR which conjugates two interconnected arms of

the immune system: innate immunity and adaptive immunity

is an emerging biomarker of the relationships between the

immune system and diseases. However, the relationship between

influenza susceptibility and the baseline levels of theNLR has not

been systematic investigated so far.

Digital cytometry, which quantifies cell type composition in

a sample by using computational methods, allows interpretation

of heterogeneous bulk blood or solid tissue transcriptomes at

the cellular level. CIBERSORTx is a widely used computational

method to deconvolve cell type composition and proportions

(Newman et al., 2019). Existing cell type deconvolution methods

normally require a signature matrix which is a collection of

cell type-specific gene expression profiles. The signature matrix

has been examined to determine the accuracy of deconvolution

(Vallania et al., 2018). Thus, we combined CIBERSORTx with

three well-defined immune signature matrices (Newman et al.,

2015; Vallania et al., 2018; Monaco et al., 2019), respectively, to

get reliable estimates of the NLR.

In this study, we performed a systematic investigation

of the relationship between influenza susceptibility and the

baseline NLR.Herein, we utilized digital cytometry to investigate

heterogeneity of blood immune cell populations prior to

infection. Usingmulti-cohort gene expression analysis, we found

that the baseline NLR was significantly higher in symptomatic
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infected group compared to asymptomatic uninfected group.

We then used a network analysis approach to identify

host factors which were statistically significantly associated

with the baseline NLR, and to detect several key biological

pathways that may contribute to disease susceptibility to

symptomatic influenza.

2. Results

2.1. Description of experimental human
influenza challenge cohorts

We collected 5 human influenza virus challenge cohorts

from the NCBI Gene Expression Omnibus (GEO) database.

For each influenza challenge cohort, healthy adults (aged 18–

45) were inoculated with A/Wisconsin/67/2005 (H3N2) or

A/Brisbane/59/2007 (H1N1) influenza, and genome-wide gene

expression profiles from peripheral blood collected prior to

influenza challenge and the subsequent 2–7 days were assessed.

All volunteers were selected based on low pre-existing immunity

to the challenge virus. Subjects were classified as symptomatic

or asymptomatic based on a modified Jackson score calculated

from self-reported daily symptoms (Jackson et al., 1958). The

infected and uninfected classification were determined by viral

titers from nasopharyngeal washes using virus quantitative

culture or virus quantitative PCR (Liu et al., 2016). We

only considered samples from subjects whose viral titer and

symptom status agree, i.e., those who were either asymptomatic

and uninfected (AU) or symptomatic and infected (SI). The

GSE73072 data set was profiled using Affymetrix microarrays,

and it included four challenge studies which were referred to

as DEE2 (H3N2), DEE5 (H3N2), DEE3 (H1N1), and DEE4

(H1N1). We utilized all samples taken before inoculation as

baseline samples. The baseline samples for the DEE2 cohort

were taken at −23 h post-inoculation (hpi) or immediately

prior to inoculation (0 hpi), and those for the DEE5, DEE3,

and DEE4 cohorts were taken at −30, −21 or 0, and −21

or 0 hpi, respectively. The baseline samples of DEE2 (H3N2)

and DEE5 (H3N2) challenge studies were used as discovery

cohorts, and those of the DEE3 (H1N1), DEE4 (H1N1) were

used as validation cohorts. In addition, we utilized baseline

samples of the GSE61754 cohort, which was profiled by Illumina

microarrays as a cross-platform validation cohort. Table 1

summarizes the infection data for these included influenza

challenge cohorts.

2.2. Dissecting immune cell composition
from whole blood samples

To explore the relationship across all samples prior

to inoculation, we performed clustering analyses on the

batch corrected profiles in the GSE73072 H3N2 and H1N1

cohorts, respectively (Figures 1A,B). We conducted hierarchical

clustering on samples based on similarities in the top 5,000

gene expressions with the highest variance. This preliminary

examination indicated that expression profiles differed between

the SI and AU groups prior to inoculation (Figures 1C,D).

We next performed digital cytometry to investigate

heterogeneity of blood immune cell populations prior to

inoculation (Figure 2A). To accurately dissect immune cell

composition of whole blood samples from healthy subjects

inoculated with live H1N1 or H3N2 influenza, we applied

CIBERSORTx to expression profiles of whole blood samples by

using a well-defined signature matrix named as sigmatrixMicro

from a previous study (Monaco et al., 2019; see Section 4

for details). Among 11 immune cell populations dissected

from whole blood samples, we observed that neutrophils were

consistently dominant across five challenge cohorts, followed by

T cells, monocytes, B cells, and NK cells (Figure 2B).

2.3. Variation in baseline NLR

Neutrophils and lymphocytes were the two most common

leukocytes in the blood. We therefore performed comparable

analyses for the estimated lymphocyte and neutrophil

proportions between the SI and AU groups in baseline samples.

We found that proportions of lymphocytes were significantly

lower (p < 0.01; Figure 3A) whereas proportions of neutrophils

were significantly higher (p < 0.05; Figure 3A) at baseline

in the SI group compared to the AU group in the GSE73072

cohort for H3N2 influenza. We also observed significantly

lower lymphocyte (p < 0.05; Figure 3B) but higher neutrophil

proportions (p < 0.01; Figure 3B) at baseline in the SI group

in the GSE73072 cohort inoculated for H1N1 influenza. For

the GSE61754 cohort, we observed the same trend, though

these differences were not statistically significant (p ≥ 0.05;

Figure 3C).

The ratio of neutrophils to lymphocytes (NLR) were

assessed, which was defined as the ratio of the estimated

neutrophil and lymphocyte proportions. We found that the SI

group had significantly higher baseline NLR than the AU group

(p = 0.004; Figure 4A) in the discovery cohort. Higher baseline

NLR in the SI group was also validated in the GSE73072 (H1N1)

cohort (p = 0.0065; Figure 4B) and GSE61754 cohort (p = 0.28;

Figure 4C). Although the difference in the GSE61754 cohort was

not statistically significant, the baseline NLR was also higher

in the SI group. In the GSE61754 cohort, 7 of 15 volunteers

were vaccinated with a novel influenza vaccine MVA-NP+M1

30 days prior to influenza challenge (Davenport et al., 2015).

The MVA-NP+M1 was designed to boost cross-reactive T-cell

responses to antigens that were conserved across all subtypes

(Lillie et al., 2012). Correspondingly, a markedly elevated

memory T cell proportion was detected In the GSE61754 cohort
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TABLE 1 Characteristics of included influenza challenge cohorts taken as baseline.

Challenge Group Virus Tissue No. of subjects No. of AU samples No. of SI samples

GSE73072(DEE2) Discovery H3N2 Whole blood 15 11 18

GSE73072(DEE5) Discovery H3N2 Whole blood 14 6 8

GSE73072(DEE3) Validation H1N1 Whole blood 15 12 17

GSE73072(DEE4) Validation H1N1 Whole blood 9 6 12

GSE61754 Validation H3N2 Whole blood 15 8 7

All volunteers included in the challenge studies were healthy and aged 18–45 years. They were challenged with influenza A/Wisconsin/67/2005 (H3N2) or A/Brisbane/59/2007 (H1N1).

All volunteers were selected based on low pre-existing immunity to the challenge virus.

(Figure 2B). Two of seven vaccinees developed laboratory-

confirmed influenza (symptomatic infection) after challenge.

We analyzed the baseline NLR between the SI and AU groups

with pre-existing elevated memory T cells. The baseline NLR

was still higher in the SI group, but not reached statistical

significance because of the small sample size (p = 0.19;

Figure 4D).

We further performed a multi-cohort meta-analysis to

evaluate the differences in baseline NLR between the SI and

AU groups. A forest plot of estimated differences on all five

challenge cohorts indicated the baseline NLR was significantly

higher in the SI group (Hedges’g = 0.96, 95% CI = 0.54–1.38, p <

0.0001; Figure 5A). Robust in silico quantification of immune

cell populations from peripheral blood requires a signature

matrix and a deconvolution method, and the deconvolution

accuracy is largely determined by a signature matrix but not

a deconvolution method (Vallania et al., 2018). Therefore,

two additional signature matrices of immunoStates and LM22

were tested. Differences in estimated baseline NLR were also

validated by combining CIBERSORTx with immunoStates and

LM22, respectively. We observed that the baseline NLR was

still significantly higher in the SI group by using immunoStates

(Hedges’g = 0.83, 95% CI = 0.42–1.24, p < 0.0001; Figure 5B)

or LM22 (Hedges’g = 0.86, 95% CI = 0.32–1.40, p = 0.002;

Figure 5C) as a signature matrix.

In addition, area under the receiver operating characteristic

curve (AUC) analysis showed that the baseline NLR predicted

influenza susceptibility (SI/AU) in both the challenge cohorts for

H3N2 (AUC 0.724, 95% CI: 0.593–0.854; Figure 6A) and H1N1

(AUC 0.736, 95% CI: 0.593–0.878; Figure 6B) influenza.

2.4. NLR increases in peripheral blood
after influenza virus infection

To examine concordance between proportions of

neutrophil/lymphocyte measured through standard laboratory

workout and the deconvolution estimates, we correlated the

laboratory measurements with deconvolution estimates in

the SI group of influenza H3N2. We collected the laboratory

measurements of neutrophil/lymphocyte proportions from

Table S6 of a previous published study (Huang et al., 2011),

in which they involved the same volunteers included in

the GSE73072 H3N2 cohort. The laboratory measurements

of neutrophil/lymphocyte proportions were obtained daily

from day 1 to 7 including baseline (prior to inoculation).

In the SI group of GSE73072 H3N2 cohort, the mean

estimated proportions of neutrophil/lymphocyte were strongly

positively correlated with the laboratory measurements

(Neutrophil: R = 0.93, p = 0.00079, Figure 7A; Lymphocyte:

R = 0.95, p = 0.00035, Figure 7B). These data further

validate the deconvolution approach can correctly estimate

the proportions of neutrophil and lymphocyte, as well as

the NLR.

We further investigated the temporal alterations of the

neutrophil/lymphocyte proportions by influenza virus infection.

In the GSE73072 H3N2 cohort, we observed that subjects

in the AU group demonstrated no significant changes in

the neutrophil/lymphocyte proportions at any time post-

inoculation (Figures 8A,B). However, subjects in the SI group

underwent a slightly drop in the neutrophil proportion by

12 hpi in the early stage and then a significantly rise by

day 2 post-inoculation, while experience a concomitant rise

and fall in the lymphocyte proportions (Figures 8A,B). The

temporal changes in the neutrophil/lymphocyte proportions

we estimated using digital cytometry method were consistent

with the changes detected using white blood cell counts in

laboratory measurements (Figures 7A,B) (Douglas et al., 1966;

Huang et al., 2011; McClain et al., 2013). Our findings parallel

the observation of a relative lymphopenia/neutrophilia in

influenza virus infection, caused by a leukocyte redistribution

between blood, lymph nodes, and tissues. This redistribution

is usually transient and profound changes appear on day 2

post-infection (Music et al., 2016).

For the temporal alterations of the NLR by influenza virus

infection, in both the discovery (Figure 8C) and validation

cohorts (Figures 8D,E), we observed that subjects in the

AU group demonstrated no significant changes at any time

post-inoculation, while those in the SI group underwent

a significantly rise by days 2–3 post-inoculation and then

gradually returned to baseline by day 7 post-inoculation as

symptoms resolved.
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FIGURE 1

Clustering analyses on the batch corrected profiles in the GSE73072 H3N2 and H1N1 cohorts. PCA analyses of GSE73072 H3N2 (A) and H1N1

(B) cohorts before and after batch e�ect correction. Clustering on the samples prior to inoculation in GSE73072 H3N2 (C) and H1N1 (D) cohorts.
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FIGURE 2

Deconvolution of immune cell populations from gene expression data. (A) Deconvolution of immune cell populations reveals di�erence in NLR

between SI and AU groups. (B) The relative abundance of 11 immune cell populations.

In the GSE111368 data set, samples of 94 adult patients

hospitalized with A(H1N1)pdm09 influenza virus infection

were collected at three time points T1 (recruitment), T2 (∼2

days after T1), and T3 (at least 4 weeks after T1) covering

the periods of influenza illness and clinical recovery. We

observed that infected patients developed a significant increase

in the NLR (Figure 9A) and neutrophil proportion (Figure 9B)

compared to healthy control subjects (HC) during the period of

influenza illness (T1 and T2), whereas there was no significant

difference in the NLR compared to HC once the patients had

clinically recovered (T3). An opposite alteration in lymphocyte

proportion was detected (Figure 9C). The temporal changes in
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FIGURE 3

Di�erences in estimated lymphocyte and neutrophil proportions at baseline between SI and AU groups in the discovery (A) and validation

cohorts (B,C).

the neutrophil/lymphocyte proportions and the NLR among

patients hospitalized with influenza were consistent with the

changes detected in the influenza challenge cohorts.

2.5. Network analysis identified four
disease modules associated with baseline
NLR

To investigate disease modules associated with the baseline

NLR, we performed gene co-expression network analysis in the

discovery cohort using WGCNA (Zhang and Horvath, 2005;

Figure 10). WGCNA constructs a network based on the pairwise

correlations between gene expression profiles. It has been

demonstrated that batch effects can lead to false correlations

between gene expression profiles, thus introduced false edge

connections or lose true edge connections (Parsana et al., 2019).

Principal component analysis (PCA) revealed that both the

discovery and validation cohorts included two sample batches

(Figures 1A,B), therefore we regressed out the batch effects using

linear models and constructed co-expression networks using

batch corrected profiles (see Section 4 for details).

The WGCNA method found clusters (modules) of genes

with highly correlated expression profiles and interconnectivity

across samples. Using WGCNA, we build a gene dendrogram

by using the topological overlap measure (TOM) as a proximity

measure. We identified modules using dynamic tree cut

approach and those closely related modules whose correlations

of module eigengenes larger than 0.75 were merged. We

then detected 22 distinct gene modules from the dendrogram

(Figure 11A). To identify modules associated with the NLR,

we calculated Pearson’s correlation coefficient between the

module eigengenes and the NLR. Of these 22 identified

modules, 12 modules were statistically significant (p < 0.05)

when correlated with the NLR for H3N2 (Figure 11B). In the

GSE73072 cohort for H1N1, we observed the same direction of

the correlation value in 10 of these 12 modules (Figure 11B).

Furthermore, significant differential expressions between the

SI and AU groups were detected in 4 of these 12 modules

(Figure 11C). Three modules (steelblue, darkslateblue, salmon)

were negatively correlated with the NLR and significantly down-

regulated in the SI group, while the blue module was positively

correlated with the NLR and significantly up-regulated in

the SI group (Figure 11C). All four modules also shown

significant difference in the validation cohort (GSE73072 H1N1;

Figure 11D). Hence, these four modules were identified as

significant disease modules associated with the NLR: module

steelblue with 70 genes, module darkslateblue with 1,296 genes,

module salmon with 1,526 genes, and module blue with 2,388

genes in total.

2.6. Functional enrichment analysis in
four disease modules associated with
baseline NLR

To investigate the biological functions of the four disease

modules, the enrichment of Gene Ontology (GO) Biological

Process and Reactome ontologies in each module were

analyzed and the top terms of each category are shown in

Figures 12A,B. The GO enrichment results revealed that

the steelblue module was significantly enriched in B cell
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FIGURE 4

Di�erences in estimated baseline NLR between AU and SI groups in the discovery (A) and validation cohorts (B–D).

activation, proliferation and differentiation, and humoral

immune response. The Reactome enrichment results revealed

that this module was mainly enriched in B cell activation and

B cell receptor signaling pathways. Both GO and Reactome

enriched terms indicated that genes in the steelblue module

played critical roles in B cell-mediated immune responses.

For the darkslateblue module, the genes were significantly

enriched in GO terms of RNA catabolic and metabolic

processes, RNA processing, translational initiation, viral

gene expression and transcription, and cellular respiration,

and were significantly enriched in Reactome terms of rRNA

processing and translation, that implied genes in this module

were mainly involved in the cellular metabolism. The genes in

the salmon module were significantly enriched in GO terms
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FIGURE 5

Forest plot for the baseline NLR di�erences between SI and AU groups in five challenge cohorts. (A) SigmatrixMicro. (B) ImmunoStates. (C) LM22.

of RNA localization, RNA transport and DNA biosynthetic

process, and were significantly enriched in Reactome terms

of SUMOylation, DNA damage response and DNA repair,

that indicated genes in this module were mainly involved

in regulating the cell cycle. The GO enrichment results

revealed that genes in the blue module were significantly

enriched in regulation of membrane potential, pattern

specification process, G protein-coupled receptor (GPCR)

signaling pathway and regulation of ion transmembrane

transport. The Reactome enrichment results revealed that
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FIGURE 6

Receiver operating characteristic curve showing the performance of the baseline NLR for predicting influenza susceptibility on the H3N2 (A) and

H1N1 (B) cohorts.

FIGURE 7

Correlation between laboratory measured and estimated proportions of neutrophil (A) and lymphocyte (B) in SI group of influenza H3N2. Data

points are labeled by the day post inoculation. Baseline represents prior to inoculation and day 1 represents the day of inoculation.

genes in this module were significantly enriched in GPCR

ligand binding, peptide ligand-binding receptors and

anti-inflammatory cytokines production pathways. Both

functional enrichment analyses indicated that genes in the

blue module were mainly involved in the cellular signal

transduction pathways.

2.7. Host factors contribute to
susceptibility of symptomatic influenza

Influenza viruses depend on the host’s cellular machinery to

replicate, produce, and spread progeny virus particles. Further

examination of the four disease modules identified a certain
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FIGURE 8

Temporal changes in white blood cell proportions among volunteers after inoculation with influenza virus. (A,B) Temporal changes in

neutrophil/lymphocyte proportions in the GSE73072 H3N2 cohort. (C–E) Temporal changes in NLR among individuals in three cohorts.

number of genes encoding host factors that could contribute to

individual viral susceptibility. Of the three modules significantly

down-regulated in the SI group compared to the AU group,

the steelblue module showed the biggest decrease in modular

expression, followed by the darkslateblue and salmon modules.

Examination of differentially expressed genes (DEGs) within the

steelblue module revealed a broad downregulation (Figure 13A).

This downregulation included signaling components (CD79A,

CD79B, CD19, CD22, CD40, MS4A1, BLK, and BLNK) involved

in humoral immune response, driving B cell activation,

proliferation, and differentiation. CD79A and CD79B are two

important components of the B-cell receptor. CD19 and CD22

are typical B-cell activationmarkers. POU2AF1 is a transcription

factor which is vital for the response of B cells to antigens
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FIGURE 9

Temporal changes in NLR (A), neutrophil (B), and lymphocyte (C) proportions among patients hospitalized with influenza.

FIGURE 10

Network analysis reveals four disease modules associated with

the baseline NLR and also di�erentially expressed between the

SI and AU groups.

and required for the formation of germinal centers (Teitell,

2003). These results indicated that the DEGs within the

steelblue module were typical B cell markers and transcription

factors associated with B cell activation and differentiation.

Downregulation of gene expression in the SI group was also

observed in genes within the darkslateblue module (Figure 13B).

This downregulation included genes involved in cellular

metabolism, such as genes encoding the ribosomal proteins

(Figure 14A) involved in viral gene expression and transcription,

RNA catabolic process, translational initiation and protein

targeting to ER, and genes encoding the mitochondrial complex

I (NADH: ubiquinone oxidoreductase) subunits (Figure 14B)

involved in cellular respiration, as well as genes IMP3, NOP56,

NOP2, QTRT1 involved in ncRNA and rRNA metabolic

processes, ribonucleoprotein complex biogenesis, and ribosome

biogenesis. For the salmon module involved in regulating cell

cycle, the DEGs still displayed a broad downregulation in the

SI group (Figure 13C). For the blue module involved in cellular

signal transduction, the DEGs displayed an opposite trend

of expression with an increased expression in the SI group

(Figure 13D).

3. Discussion

In the present study, a systematic analysis of the relationship

between influenza susceptibility and the baseline level of the

NLR was developed. We examined five independent influenza

challenge cohorts at the cellular level and found that individuals

in the SI group had significantly higher baseline NLR than

those in the AU group. The NLR achieved an AUC of 0.724

on the H3N2 data, and 0.736 on the external H1N1 data in

predicting disease susceptibility to symptomatic influenza. The

mechanisms underlying the association of the higher baseline

NLR and the increased susceptibility to symptomatic influenza

are poorly understood. The NLR is a biomarker conjugates two

interconnected arms of the immune system: innate immunity

and adaptive immunity. Neutrophils are the first line of innate

immune defense against viral infection (Kaufmann, 2008). They

migrate to infection sites for eliminating infectious particles,

but also provide signals to other innate and adaptive immune
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FIGURE 11

Network analysis identified four disease modules associated with the NLR. (A) Gene dendrogram and co-expressed modules obtained by

WGCNA. (B) Statistically significant modules correlated with the NLR. (C,D) Di�erential expression (DE) of SI group compared to AU group in

each module in the discovery and validation cohorts (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

cells about an invading foreign threat (Mantovani et al., 2011).

The adaptive immunity is orchestrated mainly via T, B, and

NK lymphocytes which provide antigen-specific responses. Prior

studies revealed that the NLR was a particularly attractive

measure of systemic inflammation (Zahorec, 2001). Neutrophils

are crucial for innate immunity and are one of the main cell

types involved in the inflammatory responses. The host innate

immunity is activated by the inflammatory responses to control

pathogen infection. Lymphocytes generate adaptive immune

responses to eliminate specific pathogens. It is well established

that the systemic inflammatory response is typically associated

with decline in circulating lymphocyte count and increase in

neutrophil count. Neutrophilia and lymphocytopenia are typical

phenomena during systemic inflammation (de Jager et al., 2010;

Templeton et al., 2014; Qun et al., 2020). Continuous infiltration

of neutrophils at the site of infection raising an immune response

produces exaggerated cytokines and chemokine that might

result in the cytokine storm and contribute to severe disease
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FIGURE 12

Functional enriched terms in four disease modules. (A) Top 15 enriched GO terms for biological processes in four disease modules. (B) Top 10

enrichment of Reactome ontologies in four disease modules.

during influenza virus infection (Bordon et al., 2013; Gu et al.,

2019). Neutrophil extracellular traps (NETs) are released by

neutrophils to contain infections. However, when not properly

regulated, NETs have the potential to propagate inflammation

(Porto and Stein, 2016; Twaddell et al., 2019). Beside this,

more and more evidence has supported that neutrophils can

significantly suppressed activation of CD4+ and CD8+ T cells,

and further suppressed the immune responses (Pillay et al.,

2013; Zemans, 2018). On the other side, lymphocytes are

required for maintaining an effective immune response. The

causes of lymphocytopenia as the marker of a depressed cell-

mediated immunity, have been extensively studied (Cunha et al.,

2011; Shen et al., 2014; Zhou and Ye, 2021). Lymphocytopenia

also render the host susceptible to severe hyperinflammation

(Chen et al., 2010). Thus, a healthy partnership between

neutrophils and lymphocytes plays a very important role in

the onset and resolution of inflammation which has a vital

role in maintaining the health and integrity of an individual

organism toward invading pathogens (Trammell and Toth,

2008; Buonacera et al., 2022). The condition of baseline NLR

are indicative of the balance between the activation of host

inflammatory responses and immune responses, therefore, it is

a potential biomarker for predicting susceptibility to influenza

virus infection. Hence, understanding of main NLR-related host
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FIGURE 13

Heatmaps of DEGs in four disease modules (gray = SI; black = AU): (A) steelblue, (B) darkslateblue, (C) salmon and (D) blue. The top 50 genes

with the smallest FDR-adjusted p-value of di�erential expression are presented in these heatmaps.
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FIGURE 14

Heatmaps of genes encoding ribosomal proteins (A) and mitochondrial complex I subunits (B) in darkslateblue module (gray = SI; black = AU).

factors associated with baseline systemic inflammatory status

and influenza susceptibility may open doors for preventing

influenza virus infection.

Despite many genomic and transcriptomic studies being

conducted to identify host factors that are crucial for influenza

susceptibility, the contribution of NLR-related host factors has

not been fully explored. Using weighted gene co-expression

network analysis (WGCNA), we identified four modules of

the NLR-related systemic host factors associated with influenza

susceptibility. In the discovery cohort for H3N2 influenza,

we found that these four modules were not only significantly

correlated with the baseline NLR, but also differentially

expressed between the SI and AU groups. The reproducibility

of these relationships was validated in an independent cohort

for H1N1 influenza. Functional enrichment analyses revealed

that these four modules were mainly involved in B cell-mediated

immune responses, cellular metabolism, cell cycle, and cellular

signal transduction, respectively.

Three of the four modules (i.e., modules involved in B cell-

mediated immune responses, cellular metabolism, cell cycle)

were significantly down-regulated in the SI group. Humoral

immunity and cell-mediated immunity are two arms of adaptive

immune responses. B cells play a major role in the humoral

immune response (Marshall et al., 2018). Antigen binding to B

cell receptor initiates B cell activation. The humoral immune

system produces antigen-specific antibodies that can protect

against primary and secondary infection. Antibodies against

the hemagglutinin of influenza virus could prevent viral entry

and replication (Wu and Wilson, 2020). Beside this, rapid B

cell responses contribute to efficient viral clearance through

neutralizing the virus and reducing virus spread (Gerhard et al.,

1997; Rothaeusler and Baumgarth, 2010). The overall immune

status at baseline, including the composition of B cell subsets and

the up- or down-expression of genes related to B cell receptor

signaling have been found to predict post-vaccination responses

(Tsang et al., 2014; Fourati et al., 2016; HIPC-CHI Signatures

Project Team and HIPC-I Consortium, 2017; Parvandeh et al.,

2019). These studies implicated the pre-vaccination status of

B cell signaling as important indicators of immune state that

influenced the antibody response as well as vaccination outcome.

Our study identified several B cell signaling pathways and

transcription factors (POU2AF1 and E2F5) that regulated B

cell activation and differentiation were significantly down-

regulated in the SI group compared to the AU group. These

results indicated the status of B cell signaling at baseline

can be a useful predictor of influenza symptomatic infection.

Moreover, influenza virus infection usually reprograms host

cell’s metabolism to assist virus replication. Influenza viruses

require host cell ribosomes for expression of viral proteins.

Ribosomal proteins (RPs) are major components of ribosomes.

Recent studies revealed that RPs possessed antiviral function.

Some RPs can interact with viral proteins to inhibit virus

transcription (Abbas et al., 2012; Li et al., 2016). The ribosomal

protein RPL10 was identified as a downstream effector of
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the NIK (NSP-interacting kinase)-mediated antiviral signaling

pathway (Rocha et al., 2008). Beside this, the ribosomal protein

RPL13A was reported as an innate immune factor for antiviral

defense (Mazumder et al., 2014). Previous work reported

that influenza virus suppressed host cellular respiration which

was related to mitochondrial dysfunction (Derakhshan et al.,

2006), but the molecular mechanism by which influenza virus

alters cellular respiration is still unclear. Viruses deeply rely

on host post-translational modifications for their replication.

SUMOylation is an important post-translational modification

controlling various cellular processes. Viruses could take

advantage of the cellular SUMOylation system to facilitate viral

propagation (Pal et al., 2011; Han et al., 2014; Domingues

et al., 2015), but the SUMOylation system could also serve an

antiviral function to restrict viral replication. Recent studies

have indicated SUMOylation with a critical role in activating

host intracellular pathogen defenses (Boutell et al., 2011; Li

et al., 2012). Specifically, the SUMO pathway was revealed to

contribute to intrinsic antiviral resistance to herpes simplex

virus type-1 infection (Boutell et al., 2011). Moreover, influenza

viruses introduced DNA damage in host cells during infection

(Li et al., 2015). The DNA damage response (DDR) is a complex

signal transduction pathway that can detect DNA damage and

transduce this information to the cell to influence cellular

responses to DNA damage (Ciccia and Elledge, 2010). Prior

studies revealed that the DDR may inhibit (Lau et al., 2004)

viral replication.

We further identified the module involved in cellular

signal transduction was significantly up-regulated in the SI

group, and eigengenes of this module were positively correlated

with the baseline NLR. Within this module, we identified

several key signaling pathways contributing to the efficiency of

viral replication, including GPCR signaling and ion transport

pathways. Influenza virus infection induces activation of a

variety of cellular signaling pathways, which are required

by virus replication (Ludwig et al., 2006; Ludwig, 2009).

GPCRs contribute directly to stimulate the Raf/MEK/ERK

signaling pathway (Rozengurt, 2007), which is crucial for

influenza virus replication and has been demonstrated to

possess antiviral properties (Pleschka et al., 2001). Ion channels

expressed by host cells have emerged as key regulators of

virus entry, and ion channels drugs have attracted some

attention as suitable antiviral agents. Our findings highlighted

the potential contribution of some key pathways involved

in B cell-mediated immune responses, cellular metabolism,

cell cycle, and signal transduction to influenza susceptibility.

These identified pathways were concordant with underlying

mechanisms that had previously been reported to be associated

with host-virus interactions. The WGCNA network analysis

is an unsupervised approach, which does not use a priori

phenotype information (e.g., infection susceptibility). Thus,

it provided an integrated and global view of host factors

and allowed us to gain insights into the main host factors

contributing to a healthy partnership between neutrophils and

lymphocytes, and identify the main NLR-related host factors

associated with influenza susceptibility.

The recent coronavirus disease 2019 (COVID 19) pandemic

has resulted in significant morbidity and mortality worldwide

(World Health Organization, 2020). Influenza and COVID-

19 are both contagious respiratory illnesses, but COVID-19 is

caused by infection with a coronavirus first identified in 2019.

The NLR has recently generated a lot of interest regarding the

role of potential poor prognosis in COVID-19 patients. Many

studies have shown that the NLR was associated with disease

severity and mortality for COVID-19 patients (Chan and Rout,

2020; Kong et al., 2020; Lagunas-Rangel, 2020; Regolo et al.,

2022). A number of recently published studies have found that

an elevated NLR on admission can serve as an early warning

signal of severe COVID-19 (Feng et al., 2020; Liu J. et al.,

2020; Liu Y. et al., 2020). A recent metanalysis (Henry et al.,

2020) showed that lymphopenia and neutrophilia at hospital

admission are associated with poor outcomes in patients with

COVID-19. These studies exhibited that systemic inflammation

played a key role in the development of severe COVID-19 which

is in concordance with influenza. To our knowledge, no studies

on baseline (i.e., prior to exposure to SARS-CoV-2) NLR to

COVID-19 susceptibility have been reported. Influenza is our

best comparative model for COVID-19 (Moore et al., 2020),

hence our work can serve as a comparative model to provide

insights into the COVID-19 susceptibility.

Several limitations of this study are noteworthy. The

number of baseline samples available in the influenza challenge

studies were low. We only included symptomatic infected

and asymptomatic uninfected subjects in our study, thus

the findings reported here are restricted to individuals who

unambiguously reported health or illness, i.e., viral titer

and symptom status agree. Moreover, individuals participated

in the challenge studies were young and healthy adults,

which may limit the broad applicability of our results to

children, elderly or high-risk populations. Furthermore, as

this study focused on H3N2 and H1N1 influenza, the

association between baseline NLR and influenza susceptibility

may not be extended to other type of influenza strains

and infections.

In conclusion, our work identified the NLR as a simple

and useful biomarker for predicting disease susceptibility to

symptomatic influenza. An elevated NLR was detected in

susceptible hosts, who may have defects in B cell-mediated

immunity or impaired function in cellular metabolism, cell

cycle, or signal transduction. The understanding of main

NLR-related host factors associated with baseline systemic

inflammatory status and influenza susceptibility may open

doors for preventing influenza virus infection. Further study

will be required to understand the underlying mechanism

of susceptibility to influenza virus infection, and may yield

therapeutic targets.
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4. Materials and methods

4.1. Data availability

For the GSE73072 data set, we directly downloaded its

preprocessed expression matrices from GEO, which had been

normalized using the robust multi-array (RMA) method and

log2-transformed. For the GSE61754 data set, we utilized

the expression matrix available from GEO, which had been

preprocessed using the variance stabilization and normalization

method. For the GSE111368 cohort, we obtained the expression

profiles from GEO which had been log2-transformed and

normalized with a 75th percentile-shift algorithm by the

original author. The infection and symptom status for

the GSE73072 cohort were found at the web link (https://d

rive.google.com/open?id=0B2vLBS4X1c1ENzZpT216eGY1RjQ)

provided by the original author, and those for the GSE61754

and GSE111368 cohorts were retrieved from their GEO Series

Matrix Files.

4.2. Deconvolving whole blood gene
expression samples

To quantify the proportions of human blood cell types,

we utilized a signature matrix, named sigmatrixMicro

provided in a previous study (Monaco et al., 2019), whose

transcriptomic profiles were generated by microarray. The

sigmatrixMicro consisted of 819 cell type-specific genes in 11

immune cell types. We next performed deconvolution with

support vector regression using the CIBERSORTx method

(Newman et al., 2019). Cell proportions within whole blood

samples were estimated by combining CIBERSORTx with

sigmatrixMicro in non-log linear space. All microarray data sets

were quantile normalized before running CIBERSORTx.

Bulk-mode batch correction was applied to remove

technical differences between whole blood mixtures and the

signature matrix.

To demonstrate that the differences in estimated baseline

NLR between the SI and AU groups were robust to the

signature matrix used, we quantified the proportions of

human blood cell types in the same manner as described

above except that two different signature matrices (LM22

and immunoStates) were used instead of sigmatrixMicro. The

LM22 signature matrix contains 547 genes in 22 immune

cell types and was obtained from the CIBERSORT website

(https://cibersort.stanford.edu; Newman et al., 2015). It was

built using samples from healthy subjects and profiled by

Affymetrix microarray. The immunoStates provided in a

previous study (Vallania et al., 2018) consisted of 317 cell

type-specific genes in 20 immune cell types and was built

using 6,160 samples with different disease states across 42

microarray platforms.

4.3. Application of batch correction to
GSE73072 cohorts

The discovery cohort (GSE73072 H3N2) included two

challenge studies. Principal component analysis (PCA) revealed

that the discovery cohort included two sample batches, therefore

the removeBatchEffect function provided in the limma package

was used to correct the batch effects of gene expression values

in the discovery cohort (Figure 1A). The PCA analysis was

performed again on the corrected data, and the batch effects of

the two challenge studies in the discovery cohort were basically

eliminated. The same strategy was employed to remove batch

effects in the GSE73072 H1N1 cohort (Figure 1B).

4.4. Co-expression network construction
by WGCNA

WGCNA is the most widely used approach for weighted

correlation network analysis. Co-expression networks were built

using the R package WGCNA. The analysis was performed

using the batch corrected gene expression profiles and only

genes with variances ranked in top 9,000 were used. The soft-

threshold power β was set to 10 which was selected based

on the pickSoftThreshold function. A hierarchical clustering

was performed using 1-TOM with β = 10 as the pairwise

distance and average linkage distance as the cluster distance.

We identified modules using dynamic tree cut approach with

a minimal module size of 30 and a deepsplit cutoff of 4, and

those closely related modules whose correlations of module

eigengenes larger than 0.75 were merged by setting a branch

merge cutoff height of 0.25.

4.5. Functional enrichment analysis

The pathway enrichment analyses of genes in four

disease modules were analyzed. The biological processes

from gene ontology (GO) and molecular pathways from

the Reactome database are two of the most commonly used

pathway enrichment analysis resources. GO enrichment

analyses were conducted with enrichGO function in

the R package clusterProfiler (version 3.18.1) with FDR

< 0.05, and here the background set of genes was

defined as default. Reactome enrichment analyses were

performed with enrichPathway function in the R package

ReactomePA (version 1.9.4).

4.6. Meta analysis and statistical analysis

Meta-analyses using random-effect models were performed

withmetagen function in the R package meta. Hedges’ adjusted g
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(Cooper et al., 2019) was used to standardize themean difference

in the NLR between the SI and AU groups. The pooling weights

were calculated as inverse of the effect size variance. All tests

were performed two-sided, and a p-value cutoff for statistical

significance was set as 0.05.

Wilcoxon tests were conducted to identify statistically

significant differences in estimated baseline NLR, lymphocyte,

and neutrophil proportions between the SI and AU groups.

Statistically significant changes in modular expression

between the SI and AU groups were assessed using

Student’s t-test. Statistically significances were indicated

as follows: ns, not significant; ∗p < 0.05, ∗∗p < 0.01,
∗∗∗p < 0.001, ∗∗∗∗p < 0.0001.
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