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ABSTRACT
A lot of vegetation-related data have been collected as an ordered plant cover class
that can be determined visually. However, they are difficult to analyze numerically
as they are in an ordinal scale and have uncertainty in their classification. Here,
I constructed a state-space model to estimate unobserved plant cover proportions
(ranging from zero to one) from such cover class data. Themodel assumed that the data
were measured longitudinally, so that the autocorrelations in the time-series could be
utilized to estimate the unobserved cover proportion. The model also assumed that the
quadrats where the data were collected were arranged sequentially, so that the spatial
autocorrelations also could be utilized to estimate the proportion. Assuming a beta
distribution as the probability distribution of the cover proportion, the model was
implemented with a regularized incomplete beta function, which is the cumulative
density function of the beta distribution. A simulated dataset and real datasets, with
one-dimensional spatial structure and longitudinal survey, were fit to the model, and
the parameters were estimated using theMarkov chainMonte Carlo method. Then, the
validity was examined using posterior predictive checks. As a result of the fitting, the
Markov chain successfully converged to the stationary distribution, and the posterior
predictive checks did not show large discrepancies. For the simulated dataset, the
estimated values were close to the values used for the data generation. The estimated
values for the real datasets also seemed to be reasonable. These results suggest that
the proposed state-space model was able to successfully estimate the unobserved cover
proportion. The present model is applicable to similar types of plant cover class data,
and has the possibility to be expanded, for example, to incorporate a two-dimensional
spatial structure and/or zero-inflation.

Subjects Ecology, Plant Science, Statistics
Keywords Plant cover class, State-space model, Bayesian inference, Beta distribution, Ordinal
cover class, Statistical modeling, Spatial structure, Time series data

INTRODUCTION
There is a vast amount of historical data regarding plant abundance that were recorded as
plant abundances in an ordered cover class, e.g., the Braun-Blanquet classification (Podani,
2006; Irvine & Rodhouse, 2010; Damgaard, 2014), much of which was determined visually.
In many cases, such data are difficult to treat numerically; they are typically recorded in an
‘‘ordinal scale’’ so that standard arithmetic operations, such as addition or subtraction, are
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not applicable (Dale, 1989; Podani, 2006). In addition, the uncertainty derived from the
visual classification of such data tends to be ignored in analyses.

However, attempts to estimate unobserved ‘‘true’’ plant cover (the proportion in
a unit area) from the ordered class data have been developed along with progress in
statistical methods in the field of ecology (Irvine & Rodhouse, 2010; Damgaard, 2014;
Herpigny & Gosselin, 2015; Irvine, Rodhouse & Keren, 2016; Irvine et al., 2019; Damgaard &
Irvine, 2019). Ordered class data are typically modeled using ordered logit (cumulative
logit) models, but the interpretation of the models has been known to be rather
complicated (Herpigny & Gosselin, 2015; Irvine, Rodhouse & Keren, 2016).

However, some attempts have beenmade tomodel the plant cover proportion, assuming
that this proportion follows the beta distribution (Chen et al., 2008; Irvine & Rodhouse,
2010; Damgaard, 2014; Irvine, Rodhouse & Keren, 2016; Irvine et al., 2019; Damgaard &
Irvine, 2019). For example, Damgaard (2014) modeled the plant cover class as determined
visually using the incomplete beta function based on the beta distributions of the plant
cover. Herpigny & Gosselin (2015) incorporated zero-inflation, accounting for the excess
zeros in the class data, into the model. Irvine et al. (2019) have proposed a Bayesian
hierarchical framework accounting for true and false zeros in the class data as well as
misclassification of the classes. Damgaard & Irvine (2019) comprehensively discussed this
subject.

In recent decades, state-space models have been applied to many subjects in ecology,
such as population dynamics (Clark & Bjørnstad, 2004; Damgaard, 2012; Iijima, Nagaike
& Honda, 2013), metapopulation dynamics (Harrison, Hanski & Ovaskainen, 2011), and
tree growth (Shimatani & Kubota, 2011; Hiura, Go & Iijima, 2019). The state-space model
consists of two types of sub-model, the observationmodel and the systemmodel; the former
describes the relationships that exist between the observed data and unobserved systems,
and the latter describes the processes in the unobserved latent system, such as the temporal
changes of the system. Notably, this class of models has a hierarchical structure and can
explicitly describe the observation processes and the latent systemprocesses separately (Kéry
& Schaub, 2011; Irvine et al., 2019). In addition, by using state-space modeling, latent states
can be estimated even if there are missing observations (Durbin & Koopman, 2012).

The state-space model has also been used for dealing with time-series pin-point cover
data (Damgaard, 2012). However, the cover class data treated in the present study typically
have less information than pin-point cover data. Few studies have applied state-space
modeling to cover class data, but if the class data were collected longitudinally, we would
be able to utilize the information; i.e., the value of the latent state at a survey occasion
should be similar to those at temporally adjacent occasions. In addition, if the class data
were surveyed in quadrats that are arranged sequentially, we could also utilize information
from the spatial autocorrelation.

In this study, a state-spacemodel was constructed to estimate the unobserved proportion
of plant cover from ordered class data using the incomplete beta function, combining
information from temporal and spatial autocorrelations. This type of model would help to
utilize visually determined plant cover data with temporal and spatial autocorrelation.
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METHODS
Statistical model
Model basis
The beta distribution has been used to describe statistical variations in plant cover, because
the distribution has a boundary from zero to one, and because it can describe various
shapes (Chen et al., 2008; Irvine & Rodhouse, 2010; Eskelson et al., 2011; Damgaard, 2012;
Damgaard, 2013;Damgaard, 2014;Herpigny & Gosselin, 2015;Wright et al., 2017; Takarabe
& Iijima, 2019). In this approach, the proportion of cover p (0< p< 1) is assumed to
follow the beta distribution:

p∼Beta(α,β),

where α (> 0) and β (> 0) are the parameters. Another parameterization using the mean
of the proportion µ (0<µ< 1) as a parameter is available (Irvine et al., 2019),

p∼Beta(µφ,(1−µ)φ),

or

p∼Beta
(
µ

δ
−µ,

(1−µ)(1−δ)
δ

)
,

where φ(> 0) and δ (0 < δ < 1) are the parameters that control the dispersion
(φ = (1− δ)/δ). The parameter δ is also defined as the intra-quadrat correlation of
the plant distribution (Damgaard, 2012; Damgaard, 2013; Damgaard, 2014), and it can
be regarded as representing the uncertainty of the observation of the cover proportion
when it is rather small (Fig. 1). In the case of µ= 0.5, the distribution stays unimodal
when δ is smaller than 1/3. In contrast, when δ becomes larger, the distribution tends to
become bimodal (zero and one), or unimodal at zero or one (depending on µ). In the
parameterization set using δ, the variance was given as δµ(1−µ).
The probability that p falls between x0 and x1 (0< x0,x1< 1, and x0< x1) can be described
as follows:

Pr(x0< p< x1|α,β)=B(x1,α,β)−B(x0,α,β),

or

Pr(x0< p< x1|µ,δ)=B
(
x1,
µ

δ
−µ,

(1−µ)(1−δ)
δ

)
−B

(
x0,
µ

δ
−µ,

(1−µ)(1−δ)
δ

)
,

where B(x,α,β) is the cumulative density function of the beta distribution, which is
identical to the regularized incomplete beta function Ix(α,β). Note that B(0,α,β)= 0 and
B(1,α,β)= 1.

Figure 2 shows the relationship between the mean proportion (µ) and the proportion
of the beta distribution with a given µ and δ that is classified into each class. When the
value of δ is small, the realized value of the cover class would directly correspond to the
mean value. In contrast, the larger δ becomes, classes other than those corresponding to
the mean tend to be chosen more frequently. For simplicity, this formulation does not
explicitly account for the measurement or the detection process, though Irvine et al. (2019)
have developed a model that explicitly incorporates a process in which the non-detection
of plants and misidentification of the cover class may occur.
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Figure 1 Probability densities of beta distributions corresponding to the cover proportion with a fixed
mean (µ= 0.6) and varying the value of δ (0.001, 0.01, 0.1, 0.2, and 0.4).

Full-size DOI: 10.7717/peerj.9383/fig-1
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Figure 2 Relationships between the mean plant cover proportion (µ) and the proportion of the real-
ized values for givenµand δ that are classified into each class, with varying values of δ (0.001, 0.01, 0.05,
0.1, 0.2, and 0.4). Red dashed lines show cut points (inner boundaries of the classes).

Full-size DOI: 10.7717/peerj.9383/fig-2
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State-space model
Observation model. Assume that surveys on plant cover were conducted NT times in NQ

quadrats. In the present study, quadrats were assumed to be arranged on a line.
The cover class, Y , was defined as six classes corresponding with the proportion of plant

cover as follows:

Y =



1 if 0≤ cover≤ 0.01,
2 if 0.01< cover≤ 0.1,
3 if 0.1< cover≤ 0.25,
4 if 0.25< cover≤ 0.5,
5 if 0.5< cover≤ 0.75,
6 if 0.75< cover≤ 1.

In reality, Y would be typically determined with visual measurements.
In this study, estimating the cover proportion of a particular species was the primary

purpose rather than the presence/absence of the species. Thus, for simplicity, the model did
not distinguish the absence of the species (or more precisely, the absence of the detection of
the species) from the smallest plant cover class. When the plant species richness of the area
is the study purpose, both states should bemodeled separately. In those cases, incorporating
zero-inflation (Herpigny & Gosselin, 2015) and the correction of false-negative errors (Chen
et al., 2009; Chen et al., 2013) into the model is required. Irvine et al. (2019) have explicitly
modeled this observation process to estimate latent cover proportions and detection errors.

The relationship between the observation Yt ,q, the cover class at time t ∈ {1,2,...,NT}

and in quadrat q∈ {1,2,...,NQ}, and µt ,q, the mean proportion of plant cover at time t in
quadrat q, was defined after Irvine et al. (2019) as follows:

Pr(Yt ,q=Y |µt ,q,δ)= FBETA(dY ,µt ,q,δ)−FBETA(dY−1,µt ,q,δ)

where FBETA(dY ,µt ,q,δ) denotes the regularized incomplete beta function

B
(
dY ,

µt ,q
δ
−µt ,q,

(1−µt ,q)(1−δ)
δ

)
and dY denotes the cut points. In this study, dY were

defined as {0.01,0.1,0.25,0.5,0.75} for Y ∈ {1,2,...,5}, corresponding to the definition of
Y . In addition, d0 and d6 were defined to be 0 and 1, respectively, so that FBETA(d0,µ,δ)= 0
and FBETA(d6,µ,δ)= 1.

The mean proportion of plant cover µt ,q was defined by incorporating the latent state
θt at time t ∈ {1,2,...,NT},

µt ,q= logit−1(θt + rt ,q),

where rt ,q denotes the spatial random effect incorporating spatial autocorrelation.

System model. The latent state θt at time t denotes the states related to themean proportion
of plant cover, and the expected mean proportion of plant cover at time t for the overall
plots, φt , is given as

φt = logit−1(θt ).

The transition of the latent state θt was defined using second-order differences with
normal error as follows:

θt −θt−1= θt−1−θt−2+εT for t ∈ {3,4,...,NT}
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εT∼Normal(0,σ 2
T),

therefore,

θt |θt−1,θt−2,σT∼Normal(2θt−1−θt−2,σ 2
T),

where σT denotes the standard deviations. This formulation is equivalent to the second-
order autoregressive (AR(2)) model, θt = c + a1θt−1+ a2θt−2+ εT with c = 0, a1 = 2,
a2=−1.

Priors of the latent states at time t ∈ {1,2} were defined as weakly informative (Gelman,
Simpson & Betancourt, 2017) so that they would be effective for model identifiability but
not strongly restrict the range of the posterior distributions; they should be wide enough
for the logit-scaled parameters (in case θ = 5, φ is 0.99),

θt ∼Normal(0,2.52) for t ∈ {1,2}.

The spatial random effect rt ,q at time t of quadrat q was defined as follows:

rt ,q− rt ,q−1|σR∼Normal(0,σ 2
R) for q∈ {2,3,...,NQ}

rt ,1∼Normal(0,2.52),

where σR denotes the standard deviation among the spatial random effects. The value of
the random effect rt ,q was assumed to be affected by those of the adjacent quadrats. This
formulation was equivalent to a process model of a state-space model with a first-order
difference in the state changes. Then, the values were updated so that their sum should be
zero for each survey time to avoid affecting the overall intercept and the identifiability of
the model.

rt ,q← rt ,q−
1
NQ

NQ∑
j=1

rt ,j .

Priors for standard deviation parameters σR and σT were defined as weakly informative
for the same reason as for θ1 and θ2, as follows:

σ ∼HalfNormal(0,2.52).

Application to simulated data
Generation of simulated data
Assume that there were NT= 10 quadrats that settled sequentially, and plant cover classes
were surveyed for NQ = 15 times in each quadrat. A simulated dataset was generated
according to this assumption. In the simulated data, the parameter θt , which denotes the
latent state at time t , was generated following the relationship below:

θ1=−6

θt ∼Normal(θt−1+0.3,0.52) for t ∈ {2,3,...,NT}.

The latent state θt (t ∈ {2,3,...,NT}) was randomly generated following the above normal
distribution. Note that the first-order difference was used in this data generation, for
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simplicity, while the second-order difference was adopted in the model defined above.
The spatial random effects rq(1∈ {2,3,...,NQ}) were also generated randomly, with the
assumption of following the above normal distribution. In this simulation, the spatial
random effects were assumed to be invariant through time.

r1= 0

rq∼Normal(rq−1,0.52).

Proportions of plant cover pwere generated according to the model defined in the previous
subsection:

pt ,q= logit−1(θt + rq).

Then, the plant cover classes were generated with an uncertainty δ. In this simulation, the
value of δ was set to 0.05. The parameter δ can be defined as the intra-quadrat correlation of
plant distribution in the pin-point cover data (Damgaard, 2012), but, in this simulated data,
it was decoupled from the parameter σQ, which control the similarity between neighboring
quadrats.

The cover classes adopted in this simulated data were as follows: 1 (for proportion
0–0.01, including 0), 2 (0.01–0.1), 3 (0.1–0.25), 4 (0.25–0.5), 5 (0.5–0.75), and 6 (0.75–1).
The generated data are shown in Fig. 3. The data generation code is available at the GitHub
repository (https://github.com/ito4303/ssmcover).

Fitting to the model
The generated data were fit to the Bayesian state-space model defined in the above
subsection, and the posterior distributions of each parameter were estimated using the
Markov chain Monte Carlo (MCMC) method. The model was implemented using Stan
version 2.21.0 (Carpenter et al., 2017) with the re-parameterization of the model for the
stability and efficiency of the Hamiltonian Monte Carlo algorithm, which was adopted in
the Stan software. The Stan model code is also available at the GitHub repository. Posterior
samples were drawn from 1,000 iterations after 1,000 warm-up (burn-in) iterations from
each of 4 chains, and the posterior distributions of the parameters were estimated. Then,
posterior predictive checks were conducted to evaluate the fitting to the model using
the ‘bayesplot’ package (Gabry et al., 2019) in the statistical software R version 3.6.2 (R
Core Team, 2019). In the posterior predictive check, the data drawn from the posterior
predictive distribution that was calculated under the model were compared to the observed
data using the rootogram (Kleiber & Zeileis, 2016), which plots the expected values under
the model on the histogram of the observed data with a square-root-scaled Y -axis. If there
are considerable discrepancies between them, it indicates that the model poorly explains
the observed data.

Application to real data
Real data to be fitted to the model were taken from long-term vegetation monitoring
following a catastrophic windthrow (Itô et al., 2018). The data were collected during the
period of 1957 to 2017 in the headwater region of the Ishikari River, Hokkaido, northern
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Figure 3 Simulated data that were generated for 10 sequential quadrats and 15 survey times. Classes
denoted as follows, 1: 0–0.01 (including 0), 2: 0.01–0.1, 3: 0.1–0.25, 4: 0.25–0.5, 5: 0.5–0.75. Class 6 (0.75–
1) was absent from these data.

Full-size DOI: 10.7717/peerj.9383/fig-3

Japan. Six plots (No. 27, 30, 34, 35, 46 and 54) were settled in the region in 1955. Quadrats
sized two meters × two meters were settled sequentially, and the number was 15–25 for
each plot. The visually determined cover classes were recorded for species that occurred in
each quadrat.

The classes used in the surveys were as follows: + (proportion: 0–0.01, excluding zero),
1 (0.01–0.1), 2 (0.1–0.25), 3 (0.25–0.5), 4 (0.5–0.75), and 5 (0.75–1). Species that were
not detected (i.e., the cover was 0) did not appear in the dataset. However, in the analysis,
the notation was changed to be identical to the simulated data shown above for the sake
of simplicity in numerical treatments so that the absence (more precisely, non-detection)
was added to class 1 (0–0.01, including zero). The dataset is also available at the GitHub
repository since it was published under the license CC BY 4.0.

From this dataset, cover classes of a species of dwarf bamboo, Sasa senanensis, in the
shrub layer of six plots were used as the real data to be fit to the Bayesian state-space model.
The data of the species had a wide variation in the cover class measurements and were
suitable for model evaluation. The plots had 19–25 quadrats, and the survey was conducted
20 times (in 1957–1968, 1972, 1976, 1980, 1984, 1988, 2002, 2009, and 2017). Though the
measurements were not conducted in all years during the period (1957–2017), the latent
state could be estimated using the state-space model (Durbin & Koopman, 2012). Figure 4
shows the changes in cover classes.

The posterior distributions were estimated using the MCMC method. Stan was also
used for the estimation, and the posterior samples were drawn from 2,000 iterations after
2,000 warm-up (burn-in) iterations from each of 4 chains. Then, the posterior predictive
checks were conducted using the ‘bayesplot’ package.
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Figure 4 Changes in plant cover classes of Sasa senanensis following a catastrophic windthrow for six
plots in Hokkaido, Japan. Classes are denoted as follows, 0: 0, 1: 0–0.01 (excluding 0), 2: 0.01–0.1, 3: 0.1–
0.25, 4: 0.25–0.5, 5: 0.5–0.75, 6 0.75–1. In the model fitting, class 0 was incorporated into class 1 because
the model did not distinguish between these classes.

Full-size DOI: 10.7717/peerj.9383/fig-4

RESULTS
Simulated data
Gelman–Rubin statistics, R̂, (Gelman & Rubin, 1992; Brooks & Gelman, 1998) were smaller
than 1.1 for all the parameters, suggesting that the Markov chain successfully converged to
the stationary distribution.

Table 1 shows the summary of the posteriors for the parameters δ, σT, and σR. The
posterior means (and 95% credible intervals) of these parameters were estimated as 0.06
(0.03–0.09) for δ, 0.34 (0.08–0.62) for σR, and 0.75 (0.32–1.43) for σT (Table 1). The values
used for the data generation were 0.05, 0.5, and 0.5, respectively.

Figure 5 shows the overall cover proportion (φ = logit−1(θ)) calculated from the
posterior median (the red line) and the 95% credible intervals (the red region) as well as
the cover classes in the simulated data (black dots) and the cover proportion averaged for
each time (black curve). The posterior predictive check showed no conflicts between the
observed value and the predicted distribution for each time. Figure 6 shows the result at
time 15.
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Table 1 Summary of the posteriors of the parameters δ, σR, and σT for the simulated data.

Parameter Mean Percentile R̂
2.5% 50% 97.5%

δ 0.06 0.03 0.06 0.09 1.00
σR 0.34 0.08 0.34 0.62 1.01
σT 0.75 0.32 0.71 1.43 1.00

0.0

0.2

0.4

0.6

4 8 12
Time

C
ov

er

Figure 5 Estimated values of the cover proportion with simulated cover class data. Black curve: mean
cover proportions that were used to generate cover class simulated data (averaged within each time). Black
dots: cover classes in the simulated data (dots are on the medians of the classes and are jittered vertically).
Red curve: estimated overall cover proportion without spatial variations. Red region: 95% credible inter-
vals of the estimated cover proportion.

Full-size DOI: 10.7717/peerj.9383/fig-5

Real data
R̂ values were smaller than 1.1 for all parameters, and theMarkov chain seemed to converge
to the stationary distribution.

Table 2 shows a summary of the posteriors of the parameters δ, σT, and σR for each
plot. The posterior means of the uncertainty or intra-plot correlation parameter δ were
estimated as 0.12–0.31, those of the spatial variability parameter σR were 0.67–3.06, and
those of the temporal variability parameter σT were 0.04–0.63 (Table 2).

Figure 7 shows the estimated overall cover proportions for each year for each plot.
Figure 8 shows the results of the posterior predictive checks in 2017 for each plot. The
posterior predictive checks showed little conflict between the observed values and the
predicted distribution for each year except for a few of the predicted values such as that of
class 5 of plot 30 and that of class 4 of plot 54.

DISCUSSION
For the simulated data, the posterior means (and medians) for the three major parameters
did not differ much from the values that were used in the data generation (Table 1). The

Itô (2020), PeerJ, DOI 10.7717/peerj.9383 10/17

https://peerj.com
https://doi.org/10.7717/peerj.9383/fig-5
http://dx.doi.org/10.7717/peerj.9383


0.0

0.5

1.0

1.5

2.0

2.5

1 2 3 4 5 6
Class

C
ou

nt

Expected

Observed

Figure 6 Rootogram showing the posterior predictive check for the Bayesian inference of the simu-
lated data. The bars show the measurements for each cover class observed at time 15; the curve shows the
expected value of the posterior predictive distribution, and the dark region shows the 90% credible inter-
vals at time 15.

Full-size DOI: 10.7717/peerj.9383/fig-6

Table 2 Summary of the posteriors of the parameters δ, σR, and σT for the real data.

Plot No. Parameter Mean Percentile R̂
2.5% 50% 97.5%

27 δ 0.15 0.06 0.15 0.27 1.01
σR 3.06 2.37 3.06 3.78 1.01
σT 0.04 0.01 0.04 0.11 1.00

30 δ 0.78 0.58 0.79 0.92 1.01
σR 1.06 0.40 1.00 2.02 1.01
σT 0.25 0.03 0.20 0.81 1.00

35 δ 0.12 0.04 0.11 0.24 1.01
σR 2.60 1.93 2.60 3.24 1.01
σT 0.06 0.02 0.05 0.13 1.00

36 δ 0.24 0.16 0.24 0.32 1.01
σR 0.67 0.40 0.66 1.05 1.01
σT 0.16 0.05 0.14 0.38 1.00

46 δ 0.24 0.16 0.24 0.33 1.01
σR 1.60 1.19 1.59 2.08 1.01
σT 0.27 0.10 0.25 0.54 1.00

54 δ 0.31 0.14 0.32 0.48 1.01
σR 1.73 0.80 1.70 2.78 1.01
σT 0.63 0.26 0.60 1.18 1.00

estimated curve of the plant cover proportion was similar to that which generated the
simulated data (Fig. 5). The result of the posterior predictive check (Fig. 6) also suggests
little discrepancy between the fitted model and the simulated dataset. The differences
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Figure 7 Real data and estimated values of the plant cover proportion for each plot (A–F). Black dots:
observed cover classes in the real data (dots are on the medians of the classes and are jittered vertically).
Red curves: estimated overall cover proportion without spatial variations. Red regions: 95% credible inter-
vals of the estimated cover proportion.

Full-size DOI: 10.7717/peerj.9383/fig-7

between the posterior means and the original values in parameters σR and σT may be
at least partially due to variations in the randomly generated data. However, the slightly
smaller value of σR may be attributable to small variations of cover classes among quadrats
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Figure 8 Rootogram showing the posterior predictive check for the Bayesian inference of the real data
for each plot (A–F). The bars show the measurements for each cover class observed in the year 2017; the
curves show the expected values of the posterior predictive distribution, and the dark regions show the
90% credible intervals.

Full-size DOI: 10.7717/peerj.9383/fig-8
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in the first several surveys (Fig. 3). Over the period, the small value of θt overwhelmed the
value of rt . In addition, the small variations in the period would affect the narrow credible
intervals of the posteriors (Fig. 5). Also, the assumption of the second-order differences in
the system model rather than the first-order differences used in the data generation may
have affected the difference in σT.

For the real data, the estimated curves of the overall plant cover proportion seem to
be reasonable when comparing the measured cover classes for each plot (Fig. 7). Most
of the posterior predictive checks (Fig. 8) also suggest little conflict between the model
and the real datasets. Owing to the state-space modeling, the overall proportions could
be estimated including the unobserved years, but the credible intervals were considerably
wider for some plots (plots 46 and 54), especially in later years without surveys. This is
mainly because of lack of information due to the sparse survey intervals.

The posterior mean of σR was largest (3.06) in plot 27 (Table 2), although the range
did not seem strongly affected by the prior (HalfNormal(0,2.5)). This is likely due to the
somewhat more considerable variation in the measurements among the adjacent quadrats
(Fig. 4). On the other hand, the value was the smallest in plot 36 (Table 2), reflecting the
small variations among quadrats.

The estimated posterior means of δ ranged from 0.12 to 0.78 (Table 2), and these
values suggest that the uncertainty or intra-plot correlation was somewhat large (Fig. 2). In
particular, the value was largest in plot 30 (0.78), where most of the observed values were
zero (Fig. 8). This is reasonable because the intra-quadrat correlation of the plant cover
should be large when most values are zero. In this situation, it may be adequate to interpret
the value of δ as the intra-quadrat correlation rather than uncertainty. On the other hand,
the posterior mean of σR, the scale parameter of spatial variation in the logit-scale, was not
so small (1.06) compared to the simulated data (0.34). This may be because the overall
mean of the cover proportion in the logit-scale was so small that σR weakly affected the
likelihood in this case.

If the intra- and inter-quadrat distributions are related, the inter-quadrat variationwithin
a year also may correlate with the intra-quadrat correlation. An integrated evaluation of
the intra- and inter-quadrat correlation may enable us to evaluate the spatial distribution
pattern of a target plant at various scales.

The state-space modeling seems to have successfully estimated the changes in the latent
states in the years that the surveys were not conducted. These results suggest that the
present model is applicable to this type of plant cover class data.

Though the model proposed in this study is rather simple, more elaborate models can
be constructed. For example, the one-dimensional structure of the present model can be
expanded to two dimensions. To incorporate a two-dimensional spatial autocorrelation,
conditional autoregressive (CAR) models can be utilized, and they are available in Stan
(Joseph, 2016; Morris et al., 2019) Another possible expansion is to incorporate zero-
inflation. Herpigny & Gosselin (2015) and Irvine et al. (2019) have already provided
modeling of plant cover classes with zero-inflation. When incorporating this, false-negative
errors should be considered (Chen et al., 2009; Chen et al., 2013; Irvine et al., 2019). In
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addition, misclassification of the cover classes should be explicitly incorporated (Irvine et
al., 2019).

CONCLUSION
State-space modeling for plant cover class data can successfully estimate the unobserved
cover proportion by utilizing spatial and temporal autocorrelations that are contained
within the data. The present model can be applicable to similar types of plant cover class
data, and then can be expanded to deal with two-dimensional field data, or to incorporate
zero-inflation and misclassification of the cover classes.
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