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Analysis of gene regulatory networks allows the identification of master transcriptional 
factors that control specific groups of genes. In this work, we inferred a gene regulatory 
network from a large dataset of breast cancer samples to identify the master transcriptional 
factors that control the genes within signal transduction pathways. The focus in a particular 
subset of relevant genes constitutes an extension of the original Master Regulator 
Inference Algorithm (MARINa) analysis. This modified version of MARINa utilizes a 
restricted molecular signature containing genes from the 25 human pathways in KEGG's 
signal transduction category. Our breast cancer RNAseq expression dataset consists of 
881 samples comprising tumors and normal mammary gland tissue. The top 10 master 
transcriptional factors found to regulate signal transduction pathways in breast cancer we 
identified are: TSHZ2, HOXA2, MEIS2, HOXA3, HAND2, HOXA5, TBX18, PEG3, GLI2, 
and CLOCK. The functional enrichment of the regulons of these master transcriptional 
factors showed an important proportion of processes related to morphogenesis. Our 
results suggest that, as part of the aberrant regulation of signaling pathways in breast 
cancer, pathways similar to the regulation of cell differentiation, cardiovascular system 
development, and vasculature development may be dysregulated and co-opted in favor 
of tumor development through the action of these transcription factors.

Keywords: breast cancer, master regulator, signaling pathways, transcription factors, development

INTRODUCTION
Breast cancers originate from healthy cells that are somehow reprogrammed to acquire unlimited 
proliferation and self-renewal capacity, among other properties, altogether referred to as "hallmarks 
of cancer" (Hanahan and Weinberg, 2011). These processes are the result of highly specific molecular 
interactions. In this context, it seems reasonable that cancerous cells make use of existing pathways 
through aberrant modulation mechanisms. Transcriptional regulation may play an important role 
in such altered mechanisms (Kolch et al., 2015).

Signal transduction pathways (STPs) are intricate molecular mechanisms that allow cells to sense 
specific signals, producing cellular actions in response and serve an important role in the integration 
of information (Dhanasekaran, 1998). Among these actions, the activation of transcription factors 
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through STPs can modify the expression of genes with varying 
degrees of phenotypical effect.

STPs themselves can be regulated through the action of 
transcription factors (TFs) that modulate the transcription 
of groups of genes participating in them (Carroll and Brown, 
2006; Laurent et al., 2015; Morgan and Pandha, 2017). As STPs 
are susceptible to external pharmacological modulation, an 
understanding of the regulation of the pathways may be helpful 
in the search for therapeutic targets (Steven Martin., 2003).

The analysis of the structure of a gene regulatory network 
that contains TFs and their targets, together with information 
of differential expression values, allows the identification of TFs 
with the greatest influence over the differences in expression. 
Those TFs are denominated transcriptional master regulators 
(TMRs). The Master Regulator Inference Algorithm (MARINa) 
(Lefebvre et al., 2010) can infer the TFs with greater influence 
in the transition between two conditions, as is the case with 
normal breast and breast cancer phenotype (Lefebvre et al., 2010; 
Tovar et al., 2015). In this work, we used a modified version 
of this algorithm to find the most important transcription 
factors associated with genes of known and well-curated signal 
transduction pathways obtained from the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) (Kanehisa and Goto, 2000).

In breast cancer, where multiple transcription factors with 
hundreds or even thousands of targets are simultaneously 
deregulated, an integrative approach can help us to understand 
the biology underlying this disease. Modified MARINa analysis 
is complemented with the use of statistical enrichment analysis 
to look at the possible biological functions that are affected by 
the regulons of the TMRs (García-Campos et al., 2015). The 
information of biological knowledge databases was used (KEGG 
(Kanehisa and Goto, 2000) and Gene Ontology (GO) (Ashburner 
et al., 2000). Because the breadth of gene expression in the cell, 
the focus in a particular subset of processes or pathways has the 
advantage of giving us specific and less complex information about 
relevant processes and regulation in the cancerous phenotype.

MATeRIAlS AND MeThODS

Obtaining and Preprocessing Data
The Expression matrix was obtained from Espinal-Enriquez 
et al. (Espinal-Enríquez et al., 2017). The data corresponds to 
The Cancer Genome Atlas (TCGA) level 3 available data of the 
Illumina HiSeq RNA-Seq platform, and it consists of 881 samples 
(Supplementary Datasheet 1), of which 780 are from breast 
cancer tissue and 101 from adjacent healthy mammary tissue. 
Quality control and batch effect removal were performed with 
NOISeq (Tarazona et al., 2011) and EDASeq (Risso et al., 2011) R 
libraries, respectively (Espinal-Enríquez et al., 2017).

Pathway Deregulation Analysis
To determine if signal transduction pathways are deregulated at 
the level of gene expression in our dataset of breast cancer, we 
estimated the degree of deregulation of KEGG Signal Transduction 
pathways by using the Pathifier algorithm (Drier et al., 2013). 

Pathifier assigns a score, denominated pathway deregulation 
score (PDS) for each pathway in a sample. For this, the expression 
status of the genes in the pathway is evaluated with reference to 
its expression in normal tissues of the same origin. In brief, for 
a given pathway, a multidimensional space is defined where each 
dimension represents the expression level of a gene. All samples are 
positioned in this space according to the expression levels of all the 
genes in the pathway. Then, a principal curve (a smoothed curve 
of minimal distance to all points) is calculated and all samples 
are projected into it. The score corresponds to the distance of the 
sample projection measured over the principal curve with respect 
to the projection of the normal tissue samples (Drier et al., 2013).

The Master Regulator Inference Algorithm
TMRs were inferred using the MARINa (Lefebvre et al., 2010). 
MARINa identifies TMRs through an enrichment of TF regulons 
(a TF with its targets) with differentially expressed genes between 
the two phenotypes (breast cancer vs. adjacent healthy mammary 
tissue). TMR inference with MARINa requires as input a network 
of regulons, a gene expression, molecular signature, and a null 
model (Lefebvre et al., 2010) (Figure 1). The construction of 
these elements is described below.

Generation of the Regulons Network
A regulon is defined here as a directed network where interactions 
describe regulatory interactions from a transcription factor to 
its transcriptional targets (TF Target). A regulons network is a 
regulon set, which is formed by the union of many regulons.

To obtain a regulon set from the data, we used the expression 
matrix of the tumor samples and a list of transcription factors 
in the TFCheckpoint curated database (Tripathi et al., 2013). 
From this database we selected those TFs that had experimental 
evidence for TF activity. A total of 771 of these TFs were 
expressed in breast cancer samples and present in the expression 
matrix (Supplementary Datasheet 2).

As a first step, transcription factors are associated with other 
genes expressed in the tissue. We used the mutual information-
based algorithm ARACNe (Margolin et al., 2006) which 
calculates the pairwise mutual information for a pair of genes 
using the empirical probability distributions of their expression 
levels. For this network all possible interactions between TFs 
and genes in the expression matrix were calculated and kept if 
itspvalue was below 0.005.

Mutual information can detect both indirect and direct 
relationships. ARACNe constrains the number of indirect 
interactions applying the data processing inequality theorem (DPI), 
which considers that, in a triangle of interactions, the weakest one 
has a greater probability of being indirect if its difference is large 
with respect to the other two interactions (Hernández-Lemus 
and Siqueiros-García, 2013). We applied a DPI value of 0.2 as 
recommended in Margolin et al., 2006 (Margolin et al., 2006), 
which means that the weakest interactions of the triangles in the 
network were eliminated without introducing an excessive number 
of false positives.

The type of association (activation or repression) of 
the transcription factors is determined from the Spearman 
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correlation of the TF with the levels of expression of all its 
targets (Lefebvre et al., 2010). This calculation was performed 
by the aracne2regulon function in the viper R package 
(Alvarez et al., 2016). This function transforms the undirected 
MI network from ARACNE into a regulons network that 
is directed.

Molecular Signature Generation of Signal 
Transduction Pathways
In the standard MARINa workflow, the molecular signature is 
built by comparing the expression level distributions of all genes 
between two conditions (e.g., healthy and diseased). For this work 

we built a molecular signature using only those genes annotated 
within the signal transduction pathways category in the KEGG 
database (Kanehisa and Goto, 2000). For the human species, this 
category contains 25 curated pathways. The total number of genes 
present in this subset is 1,700, of which 1,395 are included in the 
expression matrix (Supplementary Datasheet 3). The purpose of 
this filtering is to focus our search on those transcription factors 
that regulate the activity of these signal transduction pathways 
in breast cancer. The molecular signature was built by applying a 
t-test to each gene of the expression matrix, between tumors and 
adjacent healthy mammary tissue. The results of this test wereZ-
score normalized to allow comparability (Lefebvre et al., 2010).

FIGURe 1 | Customized MARINa pipeline. RNAseq data from TCGA's 780 invasive mammary carcinomas and 101 adjacent tissue samples was processed to 
obtain an expression matrix (orange cylinder). The expression matrix and a list of transcription factors from the TFCheckpoint database (pink cylinder) served as 
input to infer a transcriptional regulatory network with ARACNe. A regulon network was obtained associating the expression level of the targets of all transcription 
factors using the aracne2regulon function from viper (left side). For the generation of the molecular signature, we considered genes in the expression matrix in 
KEGG's "signal transduction" category (blue cylinder). Finally, a null model was generated by permuting sample labels and recalculating the molecular signature 
(right). These three elements are the input to MARINa for the inference of the transcriptional master regulators (TMRs) of the signal transduction pathways.
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Null Model Generation
To estimate the probability that a gene set enrichment score 
depends on the biological context and thus is not merely 
random, a null model was generated by random permutation 
between cases and control samples and recalculating differential 
expression values (Lefebvre et al., 2010).

Inferring the Master Regulators of Signal 
Transduction Pathways
With the molecular signature, the regulon network and the null 
model, MARINa estimated the top regulons that enrich the most 
differentially expressed genes in the molecular signature through 
a gene set enrichment analysis (Subramanian et al., 2005). An 
additional constraint was to consider only TFs with 20 or more 
targets in the molecular signature (Lefebvre et al., 2010). A p value 
for each regulon was estimated by evaluating the enrichment 
score (ES) with reference to the distribution of scores of the null 
model (Lefebvre et al., 2010). For TMR inference we used viper 
package (Alvarez et al., 2016), an R implementation of MARINa 
available via Bioconductor.

The difference of this work with respect to MARINa lies in 
the use of a specific set of genes (signal transduction signature) 
which produces a ranking of the regulons for this specific subset. 
It is important to note that the regulons network used as input is 
the same as in regular MARINa, but the ranking is focused on 
the specific gene signature. The set of genes that constitute each 
regulon may include genes that are not in the molecular signature 
and can be part of a more diverse range of biological functions 
than signal transduction. This is the reason why we performed a 
subsequent enrichment analysis of the regulons with all KEGG 
human pathways.

Functional enrichment of the Top 10 
Regulons Network With KeGG Pathways
An overrepresented pathway is defined as one for which we 
found significantly more genes within a test set than the number 
expected from a random sampling (García-Campos et al., 2015) 
hence, we say this set is enriched with genes of the pathway—
this may in turn suggest biological relevance. The statistical 
significance of an enrichment can be assessed by means of an 
hypergeometric test. In order to know if the combined regulons 
of our top 10 transcription master regulators are enriched for 
biological pathways, an overrepresentation enrichment analysis 
(ORA) was performed using the WebGestalt web platform (Zhang 
et al., 2005) with KEGG as the functional reference database 
(Kanehisa and Goto, 2000). Statistical significance threshold was 
set top = 0.05 after false discovery rate (FDR) correction.

The interrogation of the network for overrepresented 
pathways can evidence which of the original signal transduction 
pathways are being regulated. The genetic composition of the 
regulons is determined by the statistical dependencies between 
expression levels of the transcription factor genes and all other 
genes expressed in the tissue. Although we know the identity of 
the TFs, there is no guarantee that all transcription factor genes 
and the gene signature will be present in the network. This means 
that the clustering of the genes is not known a priori or imposed 

from a biological knowledge database like KEGG or GO. The 
co-expression of genes belonging to a function or pathway in 
different network modules has been previously observed (Alcalá-
Corona et al., 2018).

Regulon enrichment of Gene Ontology 
Biological Processes
To gain insight on how our top 10 TMRs may contribute to this 
phenotype, we performed an ORA for each of the individual 
regulons with GO (Ashburner et al., 2000) biological process 
categories. GO was used because this database considers 
processes with various degrees of specificity, from very general 
processes expected in all cells to very specific subsets of a process 
(i.e., positive and negative regulation) and provides a reference 
that is independent from our original KEGG gene lists. GO 
biological process enrichments were calculated with WebGestalt 
(Zhang et al., 2005). Statistical significance threshold after FDR 
correction was set to p ≤ 0.05.

ReSUlTS AND DISCUSSION

Pathway Deregulation Analysis
Pathifier's pathway deregulation score is a measure of global 
difference in the expression levels of a set of genes compared to 
a reference. To determine if signal transduction pathways are 
deregulated at the level of gene expression in the breast cancer 
phenotype, we used the Pathifier algorithm (Drier et al., 2013). 
PDS are calculated for each sample and for each pathway. The 
deregulation analysis results show that all 25 signal STPs have 
a distinctive pattern in breast tumors with respect to normal 
breast tissue. This can be seen in the non-supervised clustering 
dendrogram at the top of Figure 2 in the two major branches that 
early separate between both groups.

Transcriptional Master Regulators of 
Signal Transduction Pathways
The regulons network contains 765 TFs. From the TFs in the 
network, 338 met the requirement of having at least 20 targets in 
the molecular signature (Supplementary Datasheet 4). The output 
from MARINa contains a ranking of these regulons based on the 
integration of the regulons network structure and the differential 
expression of tumors with respect to normal tissue. In the ranking 
of the 338 TMRs, the top 10 TMRs regulate approximately 30% 
of the genes that belong to the set of the molecular signature 
(Figure  3). The top 10 master regulators of signaling pathways 
in breast cancer are: GLI Family Zinc Finger 2 (GLI2), Paternally 
Expressed 3 (PEG3), T Box 18 (TBX18), Homeobox A5 (HOXA5), 
Heart and Neural Crest Derivatives Expressed 2 (HAND2), 
Homeobox A3 (HOXA3), Meis Homeobox 2 (MEIS2), Homeobox 
A2 (HOXA2), Teashirt Zinc Finger Homeobox 2 (TSHZ2), and 
Clock Circadian Regulator (CLOCK) (Figure 4).

The results of the MARINa analysis show that, with the exception 
of CLOCK, the activity of these transcription factors over their targets 
is repression (Act column on the right side of Figure 4, negative 
values of NES in Table 1, and red links in Figure 5). Regulatory 
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interactions in regulons are defined as activation if a target is 
overexpressed or inhibition if the target is unexpressed. The top 
10 regulon network (Supplementary Datasheet 5) shows a higher 
proportion of repression interactions over their target genes (Figure 
5). In this network, GLI2 is the only TMR interacting with more 
than one TMR (PEG3, TBX18, HAND2, HOXA3 HOXA2, and 
HOXA5). These genes, together with TSHZ2 and MEIS2, have been 
cited as transcription factors involved in morphogenetic processes 
like embryonic development and adult tissue remodeling like wound 
healing (Kuroiwa et al., 1996; Srivastava, 1999; Ruiz i Altaba et al., 
2007; Melvin et al.,  2013; Takeichi et al., 2013; Chojnowski et al., 
2014; Amin et al., 2015; Machon et al., 2015; Jeannotte et al., 2016).

Most of the regulons of these TMRs are enriched with genes 
that are part of the Hedgehog Signaling pathway. Hedgehog is 
relevant during early morphogenesis and, in conjunction with 
Wnt, play a role in the self-renewal of stem cells (Reya et al., 2001). 
Both pathways have been previously described in cancer (Reya 
et al., 2001; Taipale and Beachy, 2001). Transcription factor TSHZ2 
forms a complex with GLI1, which functions in a coordinated 
manner with GLI2 and GLI3 within the Hedgehog pathway (Riku 
et al., 2016). This was recovered from the regulons network in the 
form of gene expression associations. Additionally, a relationship 
with TBX18 and the Hedgehog pathway was previously reported in 
TBX18 knockout experiments where it showed a marked decrease 
in the expression of Hedgehog pathway genes (Wu et al., 2013).

GLI2 is the only TMR that shows multiple interactions with 
other TMRs (six in total; Figure 5). GLI2, together with GLI1, 
GLI3 (Ruiz i Altaba et al., 2007), and TSHZ2 (another of our 
TMRs) (Riku et al., 2016), are effector molecules activated within 
the Hedgehog pathway that modulate dedifferentiation and 

FIGURe 3 | Percent of molecular signature genes regulated by master 
regulators. The first 10 master transcriptional regulators target about 30% 
of the genes belonging to the molecular signature. If we wanted to cover 
twice the genes belonging to the molecular signature, we would have to take 
five times more master transcriptional regulators; therefore, with 10 master 
regulators, the analysis is optimized.

FIGURe 2 | Heat map of pathway deregulation score (PDS) signal transduction pathways. In the upper bar, the control samples are shown in blue and the samples 
from breast cancer tissue in red. The color scale in the heat map represents the degree of deregulation by way of the healthy tissue samples. In the upper left is the 
color key in the values of PDS calculated from the sample by pathway.
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differentiation processes during early morphogenesis (Ruiz i Altaba 
et al., 2007; Scales and de Sauvage, 2009). This TMR is associated 
here in a context where the Hedgehog pathway is also represented.

Regulons Network enrichment of  
KeGG Pathways
The difference of this work with respect to MARINa lies in the 
use of a specific set of genes (signal transduction signature) 
which produces a ranking of the regulons for this specific subset 
of genes. The regulons network used as input is the same as in 
regular MARINa, but the ranking is constrained with the use of 
the specific gene signature. The sets of genes that constitute each 
regulon can vary in size from tens to several hundreds of genes 
and may include genes that are not in the molecular signature but 
are part of biological functions other than signal transduction. 
The statistical overrepresentation analysis allows the reduction 

FIGURe 4 | Top 10 master regulators of signal transduction pathways. These transcription factors control the genes of signal transduction pathways more 
differentially expressed in the tumor tissue. The total number of genes of signal transduction pathways (STPs) controlled by these regulons is 421, representing 
almost one third of the total genes in the molecular signature. The first column shows the enrichment p value for each regulon. The names of the master regulators 
are on the right side. The "Act" column indicates the activity of the master regulator on its STPs targets. Red color represents the over expression and the blue color 
represents the sub-expression with respect to normal tissue. Barcode column shows each gene in the molecular signature as one vertical bar. The black line on the 
blue and red vertical lines shows the walking down the ranked list of genes of the gene set enrichment analysis on the molecular signature genes.

TABle 1 | Top 10 master regulators of signal transduction pathways.

Regulon Size NeS p value FDR

CLOCK 59 3.68 2.31E−04 0.00592
TSHZ2 35 −3.7 2.13E−04 0.00592
HOXA2 54 −3.71 2.11E−04 0.00592
MEIS2 128 −3.73 1.89E−04 0.00592
HOXA3 67 −3.84 1.23E−04 0.00592
HAND2 93 −4.05 5.06E−05 0.00342
HOXA5 30 −4.07 4.66E−05 0.00342
TBX18 132 −4.12 3.80E−05 0.00342
PEG3 162 −4.18 2.88E−05 0.00342
GLI2 64 −4.36 1.30E05 0.00342

These transcription factors control the genes of signal transduction pathways 
more differentially expressed in the tumor tissue. With the exception of CLOCK, 
these regulators are commonly described within the context of embryonic 
development, and all of them have been reported in association with cancer. The 
total number of genes controlled by these regulons is 412, representing almost 
one third of the total genes in the molecular signature.
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of dimensionality from large lists of individual genes to fewer 
discernible biological functions, which is necessary given the 
large number of genes included in the network and the possibility 
of multiple annotations for each gene.

The top 10 regulons contain 4,052 genes associated by 
statistical dependencies. To know which pathways are most likely 
being regulated, we performed an overrepresentation analysis for 
all human KEGG pathways. This helped us to know which of the 
signal transduction pathways are represented, as well as other 
co-regulated pathways. The pathway with the most statistically 
significant enrichment was Pathways in cancer (hsa05200) with a 
coincidence of 121 genes. This pathway was not considered in the 
construction of the gene signature, although the enrichment is to 
be expected since it is a very large pathway composed of genes 
from many other signal transduction pathways and because we 
initially constrained our analysis to regulons that contained at least 
20 genes of the molecular signature (seeMaterials and Methods).

Other pathways such as Cell cycle (hsa04110) andFocal adhesion 
(hsa04510) follow in the top 3 enrichments. Also enriched are 

signaling pathways present within our molecular signature and 
that are known to be important in the development of cancer, 
such as PI3K-AKT signaling pathway (hsa04151), Phospholipase 
D signaling pathway (hsa04072), and Hedgehog signaling pathway 
(hsa04340) (Table 2). As a whole, these pathways seem suggestive 
of coordinated signaling towards survival, proliferation, and 
differentiation, which are consistent with current knowledge of 
cancer biology. Some of the genes that are part of these regulons 
are known to take part in processes where cell growth and 
differentiation take place (i.e., morphogenetic processes). The 
functions and the possible relevance of these genes in the context 
of breast cancer are commented in the following sections.

During the processes associated with tissue remodeling, signals 
such as morphogens, cytokines, and growth factors are present 
in the cell's environment. These activate signal transduction 
pathways that in turn induce changes within the cell (Christian, 
2000). In the adult organism, tissue remodeling occurs after 
damage, or as part of very specific processes like lactation where the 
mammary gland structure changes dramatically (Hennighausen 

FIGURe 5 | Visualization of the top 10 transcriptional master regulators (TMRs) (big hexagons) and their targets (circles). TMRs show a majority of repression 
interactions of their targets (shown as blue links) and comparatively few activation interactions (shown as red links). GLI2 is the TMR with the highest enrichment 
score (ES) of the top 10. Although GLI2 maintains activation interactions with some of its targets, the majority of its interactions are inhibitory. CLOCK is the only 
TMR that maintains a greater proportion of activation interactions [image generated with Cytoscape (Shannon et al., 2003)].
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and Robinson, 2001; Macias and Hinck, 2012). This phenomena 
share a number of features, among which are cell proliferation, 
migration, and the formation of tissue structures like new blood 
and lymphatic vessels or epithelia. It is not unreasonable, though, 
that some components of the molecular machinery are similar 
between those processes and tumor development where similar 
structures are formed, although with abnormal results.

enrichment of each Regulon in  
GO Processes
The most significantly enriched processes of each TMR regulon 
are presented inTable 3. In human breast cancer cells, HOXA5 
was observed to activate the p53 tumor suppressor gene promoter 
(Raman et al., 2000). This agrees with the observation that the 
expression of HOXA5 in breast cancer cells expressing wild-type 
p53 led to apoptosis, while those lacking the p53 gene did not 
(Raman et al., 2000; Chen et al., 2004). Furthermore, the HOXA5 
promoter region was methylated in 80% of p53-negative breast 

cancer specimens. (Raman et al., 2000). This aberrant regulation 
of HOX genes in breast cancer suggests that HOX genes may be 
important components in a network of gene regulatory mechanisms 
related to adult tissue homeostasis (Bhatlekar et al., 2014).

Nine out of our 10 TMRs are recognized for taking part in 
morphogenetic processes (Kuroiwa et al., 1996; Srivastava, 1999; 
Ruiz i Altaba et al., 2007; Melvin et al., 2013; Takeichi et al., 2013; 
Chojnowski et al., 2014; Amin et al., 2015; Machon et al., 2015; 
Jeannotte et al., 2016). Enrichments of individual TMR regulons 
in GO biological processes recovered associations between TMR 
regulons with general morphogenetic processes.

Enriched GO biological processes are obtained from the 
molecular signature of the signal transduction pathways. The top 
places are occupied by processes associated with morphogenesis. 
These results are in line with the idea that tumors bear aberrations 
of growth, differentiation, and organization of cell populations. 
These are basic processes that are tightly coordinated and controlled 
during embryogenesis as well as in adult tissues. A similar idea 
has been previously proposed by Vinnitsky (1993), with the name 
of "oncogerminative theory of cancer development" (Vinnitsky, 
1993). It suggests that cancer arises due to aberrant expression 
of developmental genes, and where the tumwor formation is a 
dynamic self-organizing process that effectively produces new 
tissue even if in an abnormal form. The malignant transformation 
of somatic cells, which can start with gene mutations combined 
with epigenetic dysregulation, can ultimately produce somatic cells 
reprogrammed into immortal cells that mimic germline cells. These 
mimics are termed "cancer stem cells" or "oncogerminative cells" 
(Vinnitsky, 1993; Bhatlekar et al., 2014).

Enrichments of GO biological processes for each individual 
regulon in the top 10 show a recurrent theme in processes 
associated with morphogenesis (Kuroiwa et al., 1996; Srivastava, 
1999;Ruiz i Altaba et al., 2007; Melvin et al., 2013; Takeichi et al., 
2013; Chojnowski et al., 2014; Amin et al., 2015; Machon et al., 
2015; Jeannotte et al., 2016). These results are in line with the 
idea that tumors bear aberrations of growth, differentiation, and 
organization of cell populations. Although our results cannot 
assure the activity of morphogenetic processes in tumors, there is 

TABle 2 | Enrichment analysis.

enriched KeGG pathway ID FDR No. of 
genes

enrichment 
ratio

Pathways in cancer hsa05200 0.000347 121 1.48
Cell cycle hsa04110 0.00226 46 1.8
Focal adhesion hsa04510 0.00386 66 1.58
Glioma hsa05214 0.00993 27 1.98
Prostate cancer hsa05215 0.0143 33 1.8
Huntington's disease hsa05016 0.0148 60 1.51
PI3K-Akt signaling pathway hsa04151 0.0148 96 1.37
Phospholipase D signaling 
pathway

hsa04072 0.0148 47 1.58

EGFR tyrosine kinase 
inhibitor resistance

hsa01521 0.0148 30 1.8

Hedgehog signaling 
pathway

hsa04340 0.0148 20 2.06

Statistical over representation analysis of KEGG pathways for the top 10 TMR 
regulons network was performed with Web Gestalt. The statistical significance 
threshold was set top ≤ 0.05 after FDR correction.

TABle 3 | Top significant enrichments of Gene Ontology biological processes per regulon.

Regulon enriched GO processes ID FDR No. of genes enrichment ratio

CLOCK Mitotic cell cycle GO:0000278 1.39E−02 64 1.84
GLI2 Regulation of cell differentiation GO:0045595 1.22E−05 73 2.07
HAND2 Cardiovascular system development GO:0072358 4.31E−06 53 2.52
HAND2 Vasculature development GO:0001944 4.31E−06 52 2.51
HOXA3 Tube development GO:0035295 8.94E−05 46 2.5
HOXA5 Proximal/distal pattern formation GO:0009954 1.69E−02 6 1.98
HOXA5 Anterior/posterior pattern specification GO:0009952 1.69E−02 12 4.98
HOXA5 Skeletal system development GO:0001501 1.69E−02 19 3.28
MEIS2 Animal organ morphogenesis GO:0009887 5.29E−08 107 1.97
PEG3 Cell cycle GO:0007049 8.72E−08 225 1.53
TBX18 Tissue development GO:0009888 3.59E−05 139 1.61
TBX18 Blood vessel development GO:0001568 3.59E−05 62 2.16
TSHZ2 Regulation of cell proliferation GO:0042127 4.91E−02 45 1.92
TSHZ2 Extracellular matrix organization GO:0030198 4.91E−02 17 3.32
TSHZ2 Extracellular structure organization GO:0043062 4.91E−02 17 3.31

The top 10 regulons enrich more biological processes related to embryonic development. The statistical significance threshold was set top ≤ 0.05 after FDR correction.
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an association at the level of gene expression patterns of molecules 
canonically represented in them.

hOXA Family enriched in Regulons
In addition, our results show that 10 of the 11 members of the 
Homeobox A family are included within the top 10 TMR regulons 
(Figure 6). In humans, HOXA consists of 11 genes (HOXA1, 
HOXA2, HOXA3, HOXA4, HOXA5, HOXA6, HOXA7, HOXA9, 
HOXA10, HOXA11, and HOXA13). Although the HOXA genes 
code for proteins with transcription factor activity, these are 
not typically considered as components of signal transduction 
pathways. HOXA TFs act not only as transcriptional activators 
in cancers but also as transcriptional repressors (Ladam and 
Sagerström, 2014); thus, both upregulation and downregulation 
of the members of this family may be relevant in carcinogenesis. 
Many HOXA genes (HOXA1, A2, A3, A5, and A9) have been 
shown to have significantly lower expression levels in cancerous 
tissues compared to non-cancerous ones.

CONClUSIONS
With the generation of gene regulatory networks and a 
molecular signature centered on signal transduction pathways, 

we present a list of genes and their transcriptional regulators 
that may be modulated signal transduction pathways in breast 
cancer. This information may be helpful in the study of this 
disease where pathway analysis showed that all pathways from 
KEGG in this category are deregulated in a large dataset of 
breast cancer samples.

We identified TSHZ2, HOXA2, MEIS2, HOXA3, HAND2, 
HOXA5, TBX18, PEG3, GLI2, and CLOCK as the top 10 TMRs 
regulating signal transduction pathways in breast cancer. These 
genes regulate 30% of the genes in these pathways. CLOCK is 
the only TMR in the top 10 that shows a positive regulation of 
its predicted targets, while the other top TMRs show negative 
regulation relationships, although the molecular mechanisms by 
which those TMRs act should be explored in future studies.

The enrichment analysis of the top 10 TMR regulons recovers 
information about processes that are well recognized in cancer 
(angiogenesis, organogenesis, proliferation, survival, etc.). These 
results are reassuring in the sense that we know we are recovering 
relevant biological information from the phenotypes under study 
instead of random associations. Furthermore, the analysis of 
individual regulons allows the identification of specific molecules 
that may be playing key roles. This seems to be the case with 
genes in the HOXA family, which are within the top 10 TMRs 
and as part of regulons. Genes of this family are known for their 
role in morphogenetic processes as well as in the maintenance of 
adult tissues and with altered expression in tumors.

We present a modified version of MARINa that utilizes 
a specific gene signature with genes in KEGG's Signal 
Transduction category. The reason for this is to narrow the 
search of TMRs to those most relevant to signal transduction 
pathways. This approach, however, is not limited to a particular 
pathway or process and the molecular signature can be modified 
to reflect other research questions relative to specific pathways 
or processes.

Signal transduction pathways serve an important role as 
information integrators in the cell. Components and their 
interactions are thus of great interest and subject of a thorough 
study. Furthermore, signal transduction pathways are susceptible 
to external pharmacological modulation. An understanding of 
the regulation of the pathways may be helpful in the search for 
therapeutic targets.
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