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Abstract

This study is the first to demonstrate that shizukaol D, a natural compound isolated from Chloranthus japonicus, can
activate AMP- activated protein kinase (AMPK), a key sensor and regulator of intracellular energy metabolism,
leading to a decrease in triglyceride and cholesterol levels in HepG2 cells. Furthermore, we found that shizukaol D
induces mitochondrial dysfunction by depolarizing the mitochondrial membrane and suppressing energy production,
which may result in AMPK activation. Our results provide a possible link between mitochondrial dysfunction and
AMPK activation and suggest that shizukaol D might be used to treat metabolic syndrome.
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Introduction

AMPK is an efficient sensor of cellular energy states and is a
downstream target of many kinases [1-3]. It is activated in
response to a variety of metabolic stresses such as hypoxia
and nutrient deprivation [4-7]. Once AMPK is activated, it
orchestrates a variety of metabolic processes to increase ATP
production and to decrease ATP consumption [8—10]. AMPK
activation results in the phosphorylation of acetyl-CoA
carboxylase (ACC), a direct AMPK substrate, at Ser 79
[11-13], leading to decreased conversion from acetyl-CoA to
malonyl-CoA, which is important for fatty acid synthesis [14,15].
AMPK activation also results in the phosphorylation and
activation of malonyl-CoA decarboxylase (MCD), which leads
to a further decrease in malonyl-CoA levels [16,17]. Malonyl-
CoA inhibits carnitine-palmitoyl-CoA transferase 1 (CPT 1), an
enzyme responsible for transporting long-chain fatty acids into
mitochondria to be oxidized [17,18]. Overall, AMPK activation
decreases fatty acid synthesis and induces fatty acid oxidation,
leading to decreased lipid accumulation in vitro and in vivo
[8,19].
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A number of anti-diabetic drugs such as metformin and the
thiazolidinediones (TZDs) regulate AMPK activity [20,21].
Metformin increases AMPK phosphorylation and mediates fatty
acid oxidation and synthesis [22,23]. Thiazolidinediones
increase the cellular AMP/ATP ratio, which leads to AMPK
activation [24,25]. In addition, several natural products with
reported anti-obesity or anti-diabetes properties also affect
AMPK activation. For example, arctigenin activates AMPK via
the inhibition of mitochondria complex | and ameliorates
metabolic disorders in ob/ob mice [26], and the small molecule
A-769662 activates AMPK and ameliorates metabolic
syndrome in ob/ob mice [27].

Given the importance of AMPK in metabolic disorders [8,14],
we conducted a systematical analysis for AMPK activation in
HepG2 cells treated with natural compounds isolated from
Chloranthus Japonicus. Chloranthus Japonicus
(Chloranthaceae) is widely used in ftraditional Chinese
medicine for the treatment of traumatic injuries, rheumatic
arthralgia, bone fractures, pulmonary tuberculosis, and
neurasthenia [28,29]. The main chemical components of this
plant are sesquiterpenoid dimers and trimers [30-32].
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Lindenane sesquiterpenoids and disesquiterpenoids are
chemotaxonomic characteristics of Chloranthus species. These
terpenoids are derived from the enzymatic Diels-Alder
cycloaddition of two lindenane-type sesquiterpenoids forming
C-15-C-9' and C-6C-8' linkages based on the cis and endo
rules. This class of highly complex compounds exhibits a wide
spectrum of biological activities. The disesquiterpenoids
shizukaol B, shizukaol F, and cycloshizukaol A inhibit the
expression of cell adhesion molecules [33], and shizukaol B,
shizukaol C, shizukaol F, and shizukaol H exhibit anti-HIV
activity [34]. In addition, shizukaol D shows significant anti-
inflammatory activity [35].

Our results show that shizukaol D, which has not been
previously shown to have metabolic activities, activates AMPK
and reduces the lipid content in HepG2 cells via an AMPK-
dependent mechanism. We further show that the activation of
AMPK by shizukaol D may be caused by mitochondrial
dysfunction.

Materials and Methods

Materials

1, 1-dimethylbiguanide (metformin); 5-aminoimidazole-4-
carboxamide-1-D-ribofurano-side (AICAR); 5,5, 6,6-
tetrachloro-1; 1, 3,3'-tetraethyl-imidacarbocyanine iodide
(JC-1); carbonyl cyanide m-chlorophenylhydrazone (CCCP);
rosiglitazone; adenosine 5'-triphosphate (ATP) disodium salt
hydrate; adenosine 5'-diphosphate sodium salt (ADP); 8-
bromoadenosine 3’,5’-cyclic monophosphate (AMP); the
mitochondria isolation kit for profiling cultured cells; Free
Glycerol Reagent; and Triglyceride Reagent were purchased
from Sigma Aldrich (St. Louis, MO, USA). 6-(4-(2-piperidin-1-
ylethoxy) phenyl)-3-pyridin-4-ylpyrazolo (1, 5-a) pyrimidine
(compound C) was purchased from Merck Millipore
(Darmstadt, Germany). LabAssay Triglyceride and LabAssay
Cholesterol kits were purchased from Wako, Japan. Antibodies
against AMPKa, AMPKa1, phospho-AMPKa (Thr172), Acetyl-
CoA Carboxylase (ACC), phospho-ACC (Ser79) were
purchased from Cell Signaling Technology (Beverly, MA, USA).
AMPKa1 siRNA and RNiIMAX were purchased from Ambion,
Life Technologies (NY, USA). Free fatty acids quantification kit
was purchased from Biovision (CA, USA). The RIPA buffer,
Bradford protein assay kit, and MTT cell proliferation and
cytotoxicity assay kit were obtained from the Beyotime Institute
of Biotechnology (JiangSu, China). The lactate assay kit was
obtained from the Nanjing Jiancheng Bioengineering Institute
(JiangSu, China).

Shizukaol D Preparation and Structural Identification
Chloranthus japonicus is widely distributed in eastern Asia,
including mainland China, Korea, and Japan, and is not an
endangered or protected species in China. Furthermore, this
plant is used in traditional medicine to treat traumatic injuries,
rheumatic arthralgia, fractures, pulmonary tuberculosis, and
neurasthenia. The plant materials in our experiment were
purchased from the Chinese medicinal material market
in Panshi, Jilin Province, China. The air-dried and powdered
Chloranthus japonicus plants (10 kg) were extracted three
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Table 1. NMR data for shizukaol D.

Positiond, oS¢ Position &, OS¢
1 2.06 (m) 256 (d) 3 1.10 (m) 21.7 (d)
1.58 (dd, J=13.4,5.6
2a 1.0 (m) 158 (t) 4' 42.9 (d)
Hz)
2B 0.30 (m) & 1.83 (m) 59.1 (d)
3 1.86 (m) 247 (d) 6'a 2.45 (m) 25.0 (t)
4 142.4 (s) 68 2.47 (m)
5 1316 (s) 7' 168.6 (s)
3.91(d,J=3.5
6 40.6 (d) 8 93.3 (s)
Hz)
1.92(dd, J=5.9,1.5
7 1316 (s) 9 54.5 (d)
Hz)
200.6 (s) 10' 44.0 (s)
9 4.06 (s) 79.9(d) 11" 126.6 (s)
10 51.0(s) 12' 172.4 (s)
11 1471 (s) 13'a 4.33(d, J=13.6 Hz) 54.9 (t)
12 171.0(s) 138 4.39(d, J=13.6 Hz
13 1.90 (s) 20.5(q) 14 0.66 (s) 24.0 (q)
3.78 (dd, J=11.5,8.3
14 1.02 (s) 15.3(q) 15'a 66.2 (t)
Hz)
2.77 (dd, J = 3.98 (dd, J=11.5,6.5
15a 255(t) 158
16.2, 1.5 Hz) Hz)
158 2.61 (m) CH,CO 2.08 (s) 20.8 (q)
1" 1.45 (m) 243 (d) CH,CO 171.1 (s)
2'a 0.77 (m) 16.6 () OMe  3.79(s) 52.7 (q)
28 0.83 (m)

times with 95% EtOH (3 x 40 L) under reflux conditions. The
filtrate was evaporated under reduced pressure, yielding a
residue (740 g) that was dissolved in H,O and extracted with
AcOEt and then n-BuOH. The AcOEt extract (380 g) was
passed through a MCI gel CHP20P column and eluted with a
MeOH-H,O gradient (3:7 — 55 — 7:3 — 1: 0). The 70%
MeOH fraction (110 g) was subjected to chromatography over
a silica gel column (CHCI;-MeOH, 100:1 — 80:1 — 60:1 —
40:1) to yield six fractions, A-F. Fraction C (20 g) was
separated on an Rp-18 column and eluted with a MeOH-H,O
gradient (35%, 40%, 45%, 50%, and 55%) to obtain eight
fractions, C,—Cg. Fraction C, was separated by silica gel
column chromatography (CHCIl,-MeOH, 100:1 — 80:1 — 60:1)
and then purified on a Sephadex LH-20 (MeOH) column to
yield shizukaol D (20 mg; yield: 0.0002%; purity > 98%). The
structure of the purified shizukaol D was confirmed by electron
spray mass spectrometry (ESIMS) and 'H and "*C-NMR
spectrometry: ESI-MS m/z: 601 [M+Na]* (C43H350,) (Table 1).

Cell culture

HepG2 cells (American Type Culture Collection, Manassas,
VA, USA) were cultured in Dulbecco’s modified Eagle medium
(DMEM) (GIBCO, Life Technologies, NY, USA) supplemented
with 10% FBS, 5.5 mM glucose, and 100 units/mL penicillin
and streptomycin at 37° C in 5% CO..
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Determination of triglyceride and cholesterol content

HepG2 cells cultured in 100-mm dishes and grown to 80%
confluence were cultured in serum-free medium overnight and
then incubated with medium containing either normal or high
glucose in the absence or presence of shizukaol D (or
metformin) for the indicated times. The treated cells were lysed
in RIPA buffer on ice for 45 min. The triglyceride and
cholesterol content of the cell lysates were determined using a
colorimetric assay kit from Sigma Aldrich and Wako as
described previously [8,14].

Transfection with small interfering RNAs

HepG2 cells were transfected with small interfering RNAs
(siRNAs) (AMPKa1: 5-GGAUCCAUCAUAUAGUUCALt-3’, 5'-
CGGGAUCAGUUAGCAACUALt-3') using RNIMAX (Invitrogen,
Life Technologies, NY, USA). Before transfection, the medium
was changed to antibiotic-free DMEM. After 24 hours of
transfection, shizukaol D or metformin was added. The cells
were then lysed for further analysis.

Western blotting analysis

The cells were harvested and lysed in loading buffer. To
measure the total protein concentration by Lowry method [36],
the cellular proteins of the cell lysates were precipitated by
using 25% TCA; and then re-dissolved in a buffer containing
2% NaOH and 0.1% SDS. Equal amounts of the protein
samples (25 pg) were subjected to 8% SDS-PAGE and
transferred to polyvinylidene difluoride membranes (Millipore,
Bedford, MA, USA). The membranes were then blotted with
primary antibodies against AMPKa, phosphor-AMPKa (Thr
172), acetyl-CoA carboxylase (ACC), phosphor-ACC (Ser 79),
and beta-actin. Followed by incubation with the secondary
antibody (goat anti-rabbit IgG-HRP, Santa Cruz Biotechnology,
USA), the proteins were detected using a FUJIFLIM western
blotting detection system (LAS-4000, FUJIFLIM, Japan) and
quantified by densitometry (FUJIFLIM Multi Gauge Version
3.0).

Mitochondrial membrane potential assay

The mitochondrial membrane potential assay was performed
as described previously [14,26]. Briefly, HepG2 cells were
seeded into black 96-well optical-bottom plates (Corning,
Costar, USA). The cells were incubated with shizukaol D or
CCCP at 37° C for 10 min, and then 100 pl of fresh medium
containing 0.2 pg JC-1 was added to each well. The plates
were incubated at 37° C for another 20 min, followed by
washing three times with 200 pl of Krebs-Ringer phosphate
HEPES buffer. The fluorescence was measured at 530 nm/580
nm (red) excitation and emission (ex/em) wavelengths and
then at 485 nm/530 nm (green) ex/em wavelengths. The ratio
of red to green fluorescence reflects the mitochondrial
membrane potential (Aym).

Adenine nucleotide extraction and measurement

HepG2 cells were cultured in 60-mm dishes with shizukaol D
or CCCP for the indicated period of time. The samples for
cellular adenine nucleotide measurement were prepared and
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analyzed as previously described [37,38]. Briefly, the cells were
washed with PBS buffer (140 mM NaCl, 2.7 mM KCI, 10 mM
Na, HPO,, 1.8 mM KH,PO,) and trypsinized. Next, the cells
were suspended in 4% (vol/vol) perchloric acid and incubated
on ice for 30 min. The pH of the lysates was adjusted to
between 6 and 8 with 2 mol/L KOH and 0.3 mol/L MOPS. The
precipitated salt was separated from the liquid phase by
centrifugation at 13200 rpm at 4° C for 15 min. Adenine
nucleotide measurements were conducted by HPLC (Agilent
1200 series) using a C18 column. The flow rate was 1.0 mL/
min. The order of eluted nucleotides was ATP, ADP, and AMP.
Standards (7.5 uM ATP, ADP, and AMP in ddH,0) were used
to quantify the samples. The HPLC buffer contained 20 mM
KH,PO, and 3.5 mM K,HPO, 3H,0 at pH 6.1.

Isolation of mitochondria from HepG2 cells

We isolated the mitochondria from HepG2 cells using a kit
from Sigma Aldrich. 10 x 150 mm dish of cultured HepG2 cells
was trypsinized, and the cells were centrifuged at 600 xg for 5
min. The cells were then washed twice with ice-cold PBS,
centrifuging at 600 xg at 4° C for each wash. Next, 25 mL of
extraction buffer A was added. The cells were incubated on ice
for 15 min and homogenized for 30 strokes using a WHEATON
homogenizer and then centrifuged at 600 xg at 4° C for 10 min
to remove the nuclei and cell debris. The supernatant was
centrifuged at 11,000 xg for 10 min at 4° C. The pellet was
washed and centrifuged at 11,000 xg for 10 min at 4° C. The
resulting pellet containing the mitochondria was re-suspended
in respiration medium. The protein content of the isolated
mitochondria was measured using the Bradford method.

Measurement of respiration in HepG2 cells and
mitochondria isolated from HepG2 cells

Respiration measurements in both HepG2 cells and
mitochondria isolated from HepG2 cells were performed using
a 782 two-channel oxygen system (Strathkelvin Instruments,
Motherwell, Scotland) as previously described [26]. Briefly,
HepG2 cells or mitochondria were transferred to the electrode
chamber and allowed to equilibrate until they attained a steady
rate of oxygen consumption. Shizukaol D was then added to
the chamber, and the oxygen consumption was recorded. The
respiration medium used for the HepG2 cells consisted of 25
mM glucose, 1 mM pyruvate, and 2% (wt/vol) BSA in PBS, pH
7.4. For the mitochondria, the respiration medium contained
225 mM mannitol, 75 mM sucrose, 10 mM Tris-HCI, 10 mM
KH,PO,, 10 mM KCI, 0.8 mM MgCl,, 0.1 mM EDTA, and 0.3%
(wt/vol) fatty acid-free BSA, pH 7.0.

Determination of lactate content

HepG2 cells were cultured in a 24-well plate and treated with
shizukaol D or 50 uM rosiglitazone (as a positive control) in
serum-free cell culture medium for 1 or 4 hours. The amount of
lactate in the medium was measured using a lactate assay kit
(Nanjing Jiancheng Bioengineering Institute, Nanjing, China).
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15'
Chemical structure of shizukaol D from

Chloranthus japonicas.
doi: 10.1371/journal.pone.0073527.g001

Figure 1.

Statistics

Results were calculated as the mean + SD, and statistical
analysis was performed with SPSS. The level of significance
for the difference between data sets was assessed using
ANOVA followed by post-hoc test. A p-value of < 0.05 was
considered significant.

Results

shizukaol D increases AMP-activated protein kinase
(AMPK) phosphorylation

To assess the potential effect of shizukaol D (Figure 1) on
metabolism, we first analyzed the cytotoxicity of shizukaol D in
HepG2 cells; we found that shizukaol D had no effect on the
cell viability at various doses (maximum 50 uM) for up to 48
hours (Figure S1). We then treated HepG2 cells with shizukaol
D at the indicated concentrations for 1 h, using 2 mM
metformin as a positive control. The AMPK activity was
analyzed by western blotting with an antibody specific for
phosphorylated AMPK (Thr 172). Our results show that
treatment with shizukaol D increased AMPKa phosphorylation
in a dose-dependent manner (Figure 2A, B). We also assessed
the phosphorylation of ACC, the downstream target of AMPK
[10]. Western blotting analysis revealed that shizukaol D
induced the phosphorylation of ACC at Ser 79 in a dose-
dependent manner (Figure 2A, C) and we calculated that 2 yM
shizukaol D induced ACC phosphorylation at a level
comparable to that induced by treatment with 2 mM metformin.
Finally, we treated HepG2 cells with 2 pM shizukaol D for
different time points (Figure 2D, E, F).
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Shizukaol D Can Lower the Lipid Content of HepG2
Cells

Several studies have shown that the phosphorylation of ACC
at Ser 79 leads to a reduced biosynthesis of malonyl-CoA
[10,16,39], which serves as the initial substrate for fatty acid
biosynthesis, and decreased carnitine palmitoyltransferase |
activity, which increases mitochondrial fatty acid oxidation
[17,18]. Therefore, ACC phosphorylation results in a decrease
in lipid accumulation [8,9,14]. To determine whether shizukaol
D can reduce lipid content, we measured the concentrations of
triglycerides and cholesterol in HepG2 cells (see Materials and
methods) that were starved in serum-free medium overnight
and then treated with the indicated concentrations of shizukaol
D for 24 h. As shown in Figure 3A, under these conditions,
shizukaol D phosphorylated AMPKa (Thr172) and ACC (Ser79)
as efficiently as metformin. In addition, treatment with shizukaol
D significantly reduced the levels of both triglyceride and
cholesterol in the HepG2 cells (Figure 3B, C).

Previous studies have shown that exposing HepG2 cells to
high glucose levels (30 mM) for 24 h can induce an insulin-
resistant state (Figure S2) and lipid accumulation [8,19]. To test
whether shizukaol D treatment under conditions of high
glucose concentrations mimics the activity of metformin, we
analyzed the lipid content of shizukaol D-treated HepG2 cells
exposed to medium 30 mM glucose. Our results showed that
exposure to high glucose levels suppressed AMPK and ACC
phosphorylation, whereas shizukaol D restored the high levels
of phosphorylated AMPK and ACC, as metformin did, in the
presence of high glucose levels (Figure 3D). Importantly,
shizukaol D significantly reduced the high triglyceride content in
HepG2 cells, which had been up-regulated due to the
treatment with high glucose (Figure 3E). Interestingly, although
high glucose treatment had no influence on the cholesterol
level in HepG2 cells (Figure 3F), in agreement with previous
studies [8,19], shizukaol D also decreased the cholesterol
levels of HepG2 cells grown in high glucose medium (Figure
3F). Taken together, these results suggest that shizukaol D,
like metformin, can reduce lipid accumulation in liver cells.

The effect of shizukaol D on lipid metabolism is
dependent on the AMPK-ACC signaling pathway

To further confirm the relationship between AMPK activation
and the suppression of lipid accumulation in response to
treatment with shizukaol D, we inhibited AMPKa activity using
an siRNA approach or with a chemical inhibitor and then
detected the lipid contents of the HepG2 cells. We first
transferred 50 uM siRNA into HepG2 cells to down-regulate
AMPKa1 expression (Figure 4A) and then treated the cells with
shizukaol D or metformin (see Materials and methods). As
expected, the down-regulation of AMPKa1 expression
mediated by the AMPKa1-siRNA resulted in a significant
reduction in the levels phosphorylated AMPK and ACC induced
by drug treatment (Figure 4A). Furthermore the siRNA
treatment significantly reversed the shizukaol D-induced
suppression of the triglyceride and cholesterol levels (Figure
4B, C).

Next, we inhibited AMPK with the chemical inhibitor
compound C [40]. HepG2 cells were pre-treated with 20 uM
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Figure 2. Shizukaol D increases AMPK and ACC phosphorylation in HepG2 cells. Western blotting analysis showing the
levels of phosphorylated AMPK and ACC in HepG2 cells treated with shizukaol D. (A) HepG2 cells were treated with shizukaol D at
the indicated concentrations for 1 h. Metformin (2 mM) was used as a positive control. (D) The cells were treated with 2 uM
shizukaol D for the indicated time points. (B) (C), (E) and (F) the levels of phosphorylated AMPK and ACC were quantified from
three independent experiments. *, p<0.05; **, p<0.01 compared to treatment with DMSO (one-way ANOVA).

doi: 10.1371/journal.pone.0073527.g002

compound C and then treated with 2 pM shizukaol D.
Treatment of the HepG2 cells with compound C significantly
inhibited the shizukaol-D-induced AMPK and ACC
phosphorylation (Figure 4D). Importantly, the down-regulation
of the triglyceride and cholesterol levels in HepG2 cells induced
by shizukaol D was blocked by compound C (Figure 4E, F).
Taken together, these results strongly support the conclusion
that shizukaol D can suppress triglyceride and cholesterol
levels in HepG2 cells in an AMPK-dependent manner.

Shizukaol D decreases mitochondrial membrane
potential and increases the AMP/ATP ratio

As several studies have shown that AMPK-activating drugs
such as metformin and TZDs influence mitochondrial function
[24,41], we next investigated whether shizukaol D affects the
mitochondrial membrane potential (Awm) or the AMP/ATP
ratio. Using a fluorescence detection assay (see Materials and
methods), we observed that shizukaol D depolarized the
mitochondrial membrane potential of HepG2 cells in a dose-
dependent manner (Figure 5A), although the mitochondrial
dysfunction induced by shizukaol D treatment was not as
strong as that induced by the mitochondrial uncoupling drug
CCCP (Figure 5A) [14,42,43]. ATP generation mainly occurs in
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mitochondria, and the inhibition of Aym may lead to a
reduction in ATP production or an increase in the AMP/ATP
ratio [14]. We therefore determined the AMP/ATP ratio in
HepG2 cells treated with shizukaol D by HPLC. Our results
show that shizukaol D significantly increases the AMP/ATP
ratio in HepG2 cells in a dose-dependent manner (Figure 5B).
A time-course experiment also showed that shizukaol D
increases the AMP/ATP ratio (Figure 5C). Taken together,
these results suggest that shizukaol D may activate AMPK
through the induction of mitochondrial dysfunction, such as the
depolarization of the mitochondrial membrane and energy
depletion.

Shizukaol D inhibits cellular respiration

To determine whether the change in the AMP/ATP ratio was
due to an effect on cellular respiration (as is the case with
AMPK activators such as metformin and TZDs [26,44]), we
examined oxygen consumption in HepG2 cells in the presence
of shizukaol D (see Materials and methods). Rosiglitazone was
used as a positive control (Figure S3A) [41,45]. Treatment with
shizukaol D resulted in a dose-dependent inhibition of aerobic
respiration in HepG2 cells (Figure 6A). We next investigated
whether shizukaol D specifically inhibits mitochondrial
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Figure 3. Shizukaol D inhibits lipid accumulation in HepG2 cells. HepG2 cells were starved in serum-free medium overnight
and then treated with shizukaol D at the indicated concentrations for 24 h. Metformin (2 mM) was used as a positive control.
Western blotting analysis showing phosphorylated AMPK and ACC (A). The triglyceride content (B) and cholesterol content (C)
were measured (Results correspond to the mean + SD of six independent experiments, statistical analysis was performed using
one-way ANOVA followed by post- hoc test. *, p<0.05; **, p<0.01 versus the DMSO control). The cells were starved in serum-free
medium overnight and then treated with shizukaol D at the indicated concentrations in the presence of 5.5 mM or 30 mM glucose for
an additional 24 hours. The expression of AMPK and ACC was detected by western blotting (D), and the triglyceride content (E) and
cholesterol content (F) were measured (graphics represent the mean + SD from six independent experiments. *, p<0.05; **, p<0.01
versus the DMSO control).

doi: 10.1371/journal.pone.0073527.g003

respiration by a mechanism similar to metformin and aerobic respiration induced by shizukaol D results in the up-

rosiglitazone [41,45]. ADP-stimulated respiration was analyzed
in the presence of complex | (glutamate + malate) or complex Il
(succinate) substrates in mitochondria isolated from HepG2
cells (see Materials and methods). Rosiglitazone was used as
a control for the specific inhibition of complex | (Figure S3B)
[41]. We observed that shizukaol D did not inhibit mitochondrial
respiration using either substrate (Figure 6B).

Previous reports have shown an elevation in anaerobic
respiration to compensate for the suppression of aerobic
respiration [14,26,46]. Therefore, we analyzed whether
shizukaol D modulates lactate release, which is a marker of
cellular anaerobic respiration. HepG2 cells were treated with
shizukaol D for 1 h and 4 h, and the lactate concentration was
measured (see Materials and methods). Elevated levels of
lactate were found in HepG2 cells treated with shizukaol D
(Figure 6C, D). This finding suggests that the suppression of
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regulation of anaerobic respiration to meet the energy
requirement of the cells.

Discussion

In this study, we have shown that shizukaol D reduces
triglyceride and cholesterol levels in HepG2 cells grown at a
normal concentration of glucose (5.5 mM; Figure 3B, C). The
reduction of lipid content induced by shizukaol D may be a
result of ACC phosphorylation and/or the activity of other
enzymes such as fatty acid synthase (FAS), sterol regulatory
element-binding protein 1 (SREBP1), and 3-hydroxy-3-
methylglutarl-coenzyme A reductase [47-49]. However, neither
shizukaol D nor metformin could alter cellular palmitic acids
content after 12 hours incubation (Figure S4). The exposure of
HepG2 cells to high glucose (30 mM) for 24 h induces an
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Figure 4. Shizukaol D inhibits lipid accumulation in HepG2 cells in an AMPK-dependent manner.

HepG2 cells were

transfected with AMPK siRNA or a control siRNA for 24 h followed by incubation with 2 uM shizukaol D or 2 mM metformin for an
additional 24 h. AMPK and ACC phosphorylation was analyzed by western blotting (A), and the triglyceride content (B) and
cholesterol content (C) were measured (n = 3). (D) The cells were pretreated with 20 yM compound C (an AMPK inhibitor) followed
by treatment with 2 yM shizukaol D. AMPK and ACC phosphorylation was analyzed by western blotting (D), and the triglyceride
content (E) and cholesterol content (F) were measured (n = 3). Statistical analysis was performed using two-way ANOVA followed

by Tukey’ post-hoc test *, p<0.05; **, p<0.01.
doi: 10.1371/journal.pone.0073527.g004

insulin-resistant state (Figure S2) [8,50,51] and a decrease in
both AMPK and ACC phosphorylation (Figure 3D) [8,52]. In
addition, our results agree with previously published studies
showing that high glucose concentrations dramatically increase
the triglyceride content in HepG2 cells but do not dramatically
increase the cholesterol content [8,19] (Figure 3E, F).
Furthermore, shizukaol D restored the levels of both AMPK and
ACC phosphorylation that had been reduced by high glucose
concentrations (Figure 3D). Because treatment with shizukaol
D inhibits the triglyceride and cholesterol content in HepG2
cells in the presence of either low glucose (Figure 3B, C) or
high glucose (Figure 3E, F), we propose that shizukaol D can
lower the lipid content in HepG2 cells in both normal and
insulin-resistant states.

To confirm the significance of AMPK in the activity of
shizukaol D, we inhibited AMPK using an AMPKa1 siRNA and

PLOS ONE | www.plosone.org

the AMPK inhibitor compound C. AMPKa1 siRNA knocks down
the expression of AMPKa1, an important subunit of AMPK that
has a phosphorylation site on a conserved loop at Thr 172. A
previous study showed that AMPKa1 knockdown inhibited the
ability of metformin to activate AMPK and down-regulate lipid
content [8]. Compound C causes a remarkable inhibition of
AMPK activity [40]. Here, we observed that both AMPKa1
siRNA and compound C decreased the shizukaol D-mediated
phosphorylation of AMPK and abrogated the ability of shizukaol
D to reduce lipid levels. This finding suggests that the
modulation of lipid metabolism by shizukaol D is largely
dependent on the AMPK-ACC signaling pathway.

A number of AMPK activators, such as metformin, TZDs, and
berberine, are known to generate mitochondrial dysfunction in
cells [41,45]. Here, we show that shizukaol D also decreased
the mitochondrial membrane potential of HepG2 cells (Figure
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1204
1104
100+
90 4
80 4
70 -
60 4
50

(% of control)

DMS00.250.51 2 4 8 1 3 10

Mitochondrial Membrane Potential

0

Shizukaol D (uM)  CCCP(uM)

AMP:ATP ratio
(fold of control)

0 15 30 60 120

Time (min)

Shizukaol D Inhibits AMPK-Dependent Lipids Content

B

144

12

~ 9
£ 3
© =
- C
e 3

< G 4
0o o
= ©
< =

2

04

DMSO 0.5 1 2 4
Shizukaol D (uM)

CCCP

Figure 5. Shizukaol D inhibits the mitochondrial membrane potential and increases the AMP/ATP ratio in HepG2 cells. (A)
HepG2 cells were incubated with shizukaol D for 10 min, and the mitochondrial membrane potential was measured. Treatment with
CCCP was used as a positive control (n = 4). (B) HepG2 cells were treated with shizukaol D at the indicated concentrations for 1 h,
and then the AMP/ATP ratio was measured (n = 3). (C) The cells were treated with 2 yM shizukaol D for the indicated time-points,
and then the AMP/ATP ratio was measured (n = 3). *, p<0.05; **, p<0.01 compared to the DMSO control (one-way ANOVA).

doi: 10.1371/journal.pone.0073527.g005

5A), although we did not detect the expression of any apoptotic
markers in response to the drug treatment (data not shown).
AMPK activation is a direct result of alterations in the
AMP/ATP ratio [44,53-55]. Here, we found that treatment with
shizukaol D increased the AMP/ATP ratio (Figure 5B, C).
Furthermore, shizukaol D inhibited cellular respiration, similar
to metformin and rosiglitazone (Figure 6A) [41]. We further
investigated whether shizukaol D inhibits respiration in
mitochondria isolated from HepG2 cells (the mitochondrial
purity was approximately 60-70%, as shown in Figure S5) [56].
Surprisingly, we found that shizukaol D did not inhibit
mitochondrial respiration using either complex | (glutamate and
malate) or complex Il (succinate) (Figure 6B). This finding
suggests that other factor(s) may regulate aerobic respiration,

PLOS ONE | www.plosone.org

such as the supply of electron donors (e.g., NADH) [14,54,57].
The inhibition of these factors may lead to the inhibition of
aerobic respiration in cells, which would not be apparent in
assays measuring the respiration of isolated mitochondria.
Previous reports have shown that indomethacin, an anti-
inflammatory drug, suppresses glucose oxidation without
affecting pyruvate oxidation in mitochondria [58,59].
Furthermore, the compound C1 inhibits aerobic respiration but
does not affect the activity of complex | or complex Il in
mitochondrial respiration [14]. Our findings highlight the
potential value of shizukaol D as a promising compound for the
treatment of metabolic diseases by activating AMPK.
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Figure 6. Shizukaol D inhibits cellular respiration. (A) Dose-dependent inhibition of HepG2 cell respiration by treatment with
shizukaol D at the indicated concentrations (n = 4). (B) Effect of shizukaol D on the respiration of mitochondria isolated from HepG2
cells (n = 3). Shizukaol D did not inhibit mitochondrial respiration either in the presence of complex | (glutamate + malate) or
complex Il (succinate) substrates. (C) And (D) Lactate concentrations were measured in HepG2 cells treated with shizukaol D as

indicated time (1 h and 4 h) (n = 3). ¥, p<0.05; **, p<0.01 compared to the DMSO control (one-way ANOVA).
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Supporting Information Figure S2. High glucose medium-induced insulin

resistance of HepG2 cells. After incubation in normal (5 mM)

Figure S1. Survival analysis of shizukaol D-treated HepG2
cells. The viability of HepG2 cells treated with shizukaol D at
the indicated concentrations for different time-points was
analyzed by MTT assay. The results were normalized to the
viability of DMSO-treated cells, which was set as 100%. Error
bars represent the SD. from three independent experiments.
(TIF)

PLOS ONE | www.plosone.org

or high (30 mM) glucose medium for 24 hours, HepG2 cells
were incubated with 100 nM insulin for 10 min. Two
components of the insulin signaling pathway were detected by
western blotting.

(TIF)
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Figure S3. Analysis of respiration in HepG2 cells and
mitochondria isolated from HepG2 cells. (A) Rosiglitazone
was set as control in HepG2 cellular respiration analysis (n=4).
(B) Analysis of ADP-stimulated respiration in the presence of
complex | (glutamate + malate) or complex Il (succinate)
substrates in mitochondria isolated from HepG2 cells.
Rosiglitazone was used as specific inhibitor for complex |
(n=3). *, p<0.05; **, p<0.01 versus control (one-way ANOVA).
(TIF)

Figure S4. Shizukaol D doesn’t alter the free fatty acids
(palmitic acid) in HepG2 cells. HepG2 cells were starved in
serum-free DMEM overnight and incubated with shizukaol D for
12 hours. The cells were then lysed in chloroform (1% Triton-X
100) for 30 min, and the level of fatty acids (palmitic acid) was
detected (n = 3).

(TIF)

Figure S5. Assessment of mitochondrial purity by western
blotting. Mitochondria were isolated from HepG2 cells. The
purity was then assayed using a panel of marker proteins
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