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The increasingly common usage of single-cell sequencing in cancer research enables
analysis of tumor development mechanisms from a wider range of perspectives. Metabolic
disorders are closely associated with liver cancer development. In recent years, liver cancer
has been evaluated from different perspectives and classified into different subtypes to
improve targeted treatment strategies. Here, we performed an analysis of liver cancer from
the perspective of energy metabolism based on single-cell sequencing data. Single-cell
and bulk sequencing data of liver cancer patients were obtained from GEO and TCGA/
ICGC databases, respectively. Using the Seurat R package and protocols such as
consensus clustering analysis, genes associated with energy metabolism in liver
cancer were identified and validated. An energy metabolism-related score (EM score)
was established based on five identified genes. Finally, the sensitivity of patients in different
scoring groups to different chemotherapeutic agents and immune checkpoint inhibitors
was analyzed. Tumor cells from liver cancer patients were found to divide into nine clusters,
with cluster 4 having the highest energy metabolism score. Based on the marker genes of
this cluster and TCGA database data, the five most stable key genes (ADH4, AKR1B10,
CEBPZOS, ENO1, and FOXN2) were identified as energy metabolism-related genes in liver
cancer. In addition, drug sensitivity analysis showed that patients in the low EM score
group were more sensitive to immune checkpoint inhibitors and chemotherapeutic agents
AICAR, metformin, and methotrexate.
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INTRODUCTION

The new incidence of liver cancer accounted for 4.7% of all
malignant tumors, sixth among all malignancies, and deaths due
to liver cancer were nearly 830,000, accounting for 8.3% of all
cancer deaths (Siegel et al., 2020) according to the global cancer
data released by WHO International Agency for Research on
Cancer (IARC) in 2020. Since liver tumors are highly
heterogeneous, a variety of molecular typing schemes for liver
cancer based on gene mutations and the clinical characteristics of
liver cancer have been developed previously. For example,
Boyault constructed a G1-G6 typing scheme related to the
clinical and genetic characteristics of liver cancer based on
P53, PIK3CA, hepatitis B virus (HBV) copy numbers and
other indicators (Boyault et al., 2007). Hoshida constructed an
S1-S3 typing scheme according to the expression levels of MyC,
EpCAM, and other genes (Hoshida et al., 2009). There are also
differences in prognosis and sensitivity to drug treatment between
liver cancer subtypes, which may assist the development of
patient-specific treatment strategies.

Tumor metabolism has received increasing attention from
researchers in recent years. Reprogramming of energy
metabolism is a characteristic feature of tumor cells that
promotes rapid cell growth and proliferation. Tumor cells
actively ingest glucose through an unusual “anaerobic
glycolysis” process (known as the Warburg effect), which not
only provides energy for the tumor cell but also allows
intermediates to enter side pathways of anabolism to maintain
the de novo synthesis of nucleotides, lipids, and amino acids
required for cell proliferation (Peter et al., 2019). In addition,
organic acids produced due to the Warburg effect cause
acidification of the extracellular environment and thus
promote ECM degradation and facilitate invasion of tumor
cells, resulting in poor prognosis of patients (Jianrong, 2019).
However, studies have shown that tumor cells can inhibit the
function of tumor-infiltrating immune cells through competitive
uptake of nutrients, and metabolites such as lactic acid and
cholesterol can further inhibit the function of immune cells,
resulting in immune escape (Siska et al., 2020). The liver is the
largest metabolic organ in the human body, and metabolic
abnormalities are thus closely associated with the occurrence
and development of liver cancer. Research on metabolism has
also provided new directions for liver cancer diagnosis and
treatment (Satriano et al., 2019).

scRNA-seq has been widely used to identify previously
unknown tumor subtypes in recent years (Timour and James,
2017). Here, single-cell sequencing data were used to classify liver
cancer to obtain genes related to energy metabolism. Finally, a
liver cancer cell energy metabolism score (EM score) was
constructed to accurately predict the prognosis of patients.

MATERIALS AND METHODS

Data Collection
Single-cell RNA sequencing data (scRNA-seq) of liver cancer
patients were downloaded from the GEO database (https://www.

ncbi.nlm.nih.gov/geo/, accession number GSE146115). Avereps
function in R package Limma was used to average the expression
data of the same gene names. Data for liver cancer patients were
obtained from the TCGA database (https://portal.gdc.cancer.gov/
), including the transcriptome data [RNA-seq; in fragments per
kilobase million (FPKM)] and other relevant clinical information.
RNA-seq and related clinical data of liver cancer patients were
obtained from the ICGC database (https://dcc.icgc.org/), and
used as the validation set.

Identification of Liver Cancer Cell Subtypes
From scRNA-Seq Data
The scRNA-seq data were analyzed using the Seurat R package.
Samples with mitochondrial gene percentages greater than five
were excluded. The NormalizeData function was used to
standardize the data and extract 1,500 genes with a high
coefficient of variation between cells. PCAP was then
performed, and p values of each principal component were
computed. Principal components with p values less than 0.05
were selected for the subsequent t-SNE analysis, where cells were
divided into different clusters. The SingleR R package was used to
annotate the cell types of the obtained cell clusters, and a liver cell
expression matrix was extracted for further analysis (Aran et al.,
2019). The Seurat package was used to perform the same analysis
on the liver cell expression matrix, and the liver cancer cells were
divided into different clusters. To analyze the differences between
different cluster genes, the genes with p values less than 0.05, and
log2 |FC| greater than 1 were considered markers of the cluster.
Time-series (trajectory) analysis of liver cancer cells was
performed using monocle R package to determine the
differentiation direction of liver cancer cells.

Determination of Energy Metabolism Score
in Different Subtypes of Liver Cancer Cells
Annotated gene information on human energy metabolism
pathways was downloaded from the Reactome database
(https://reactome.org/). ssGSEA analysis was then performed
on the scRNA-seq of liver cancer cells using the annotated
gene information, and the scores of each cell in different
energy metabolism pathways were obtained. Heat maps were
constructed using the pheatmap R package, and cluster
assignments were added to reflect the metabolic status of
different clusters on the heatmaps. Marker genes of the cluster
with the highest metabolic score were then selected for further
analysis.

Identification of Key Genes From the
TCGA-LIHC RNA-Seq Data
Differential expression analysis of marker genes (Normal tissue
vs. Tumor tissue) in the TCGA-LIHC RNA-seq data was
performed using the following criteria to determine
differentially expressed genes: p < 0.05, and log2 |FC|>1. A
univariate Cox analysis was also performed to analyze
prognosis-associated marker genes. The intersection of the two
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gene lists obtained from these procedures was determined, and
genes with expression levels inconsistent with the prognosis were
removed. TCGA FPKM data were converted to TPM format, and
the ConsensusclusterPlus package was used to perform consistent
cluster analysis for genes within the intersection. TCGA-LIHC
patients were thus divided into different clusters, and K-M
survival analysis was used to determine the difference in
survival times between the different clusters. Subsequently,
1,000 times lasso analyses were conducted to screen out the
most stable genes as key genes, and consistency cluster
analysis was conducted once again for the selected genes to
determine the survival differences among different clusters.

Validation of Selected Key Genes
PCA was applied to verify the results of the consistency analysis
and demonstrate that the identified key genes corresponded to
different groups of liver cancer patients. Gene annotations of
25 metabolism-related pathways in the KEGG database (https://
www.genome.jp/kegg/) were downloaded, and ssGSEA was used
to calculate TCGA-LIHC patient-related scores to analyze the
different metabolic pathway scores between clusters. Then, liver
cancer patient data was selected from the ICGC database to verify
the key gene-based grouping and prognostic correlation.

Determination of High and Low Score
Groups Based on Energy Metabolism Score
Calculation
According to the previous typing results, if the typing value was
found to increase with decreasing gene expression, the gene was
classified as “signal A” gene. Vice versa, if gene expression was
found to increase with increasing typing values, the gene was
classified as “signal B” gene. PCA was used to calculate the energy
metabolism score (EM score) of each sample using the following
equation:

EMScore � ∑PC1A −∑PC1B

Used the SURv_cutpoint function to filter the best truncation
value, and the patients were divided into high-and low-score
groups. The difference in survival between the high-and low-
score groups was subsequently analyzed.

Analysis of the Association Between Energy
Metabolism Score and Immune Cells/
Functions
The annotated gene information for 16 types of immune cells and
13 types of immune functions was downloaded from the GSEA
database (http://www.gsea-msigdb.org/). The scores of immune
cells and immune function of patients in the different evaluation
groups were calculated using ssGSEA, and the differences in
ssGSEA scores between the high and low EM score groups were
analyzed. Additionally, immune cell and stromal cell scores in
TCGA-LIHC patients were calculated using the Estimate
package, and the correlation between the EM score and the
estimated immune score was calculated using Spearman’s

correlation coefficient. Expression data of immune checkpoint
genes were extracted from patients, and the differences in
immune checkpoint levels between the high-and low-score
groups were calculated. Statistical significance was set at p < 0.05.

Determination of the Sensitivity of Patients
in High and Low Groups to Tumor
Treatment Drugs
pRRophetic is an R package created from gene expression and
drug sensitivity data of cell lines from the Cancer Genome Project
to predict clinical chemotherapy response from the perspective of
tumor gene expression levels (Geeleher et al., 2017). Sensitivity to
metabolism-related chemotherapeutic agents in patients with
liver cancer was assessed using this package, and differences in
sensitivity between the groups were analyzed (p < 0.05 was
considered statistically significant). The sensitivity differences
of TCGA-LIHC patients to PD-1 and CTLA4 inhibitors were
analyzed using immunotherapy sensitivity data from the Cancer
Immunochromatographic Database (TCIA) (https://tcia.at/).

RESULTS

Data Collection
The scRNA-seq data used in this study was obtained from 3,200
cells of four liver cancer patients. Bulk RNA-Seq was obtained
from TCGA and ICGC databases. The TCGA database contains
374 tumor samples and 50 paracancer normal tissue samples. The
ICGC database contains gene expression data and clinical
information for 231 patients with liver cancer. Patient
information related to TCGA and ICGC is shown in Table 1.

Identification of Liver Cancer Cell Subtypes
The Seurat R package was used to analyze scRNA-seq liver
cancer cells. The FindVariableFeatures function of Seurat was

TABLE 1 | Clinical characteristics of the liver cancer patients used in this study.

TCGA ICGC

Survival status
Alive 245 189
Dead 132 42

Gender
Male 255 170
Female 122 61

Age(median, range) 61 (16–90) 69 (31–89)
Stage
I 175 36
II 87 105
III 86 71
IV 5 19
Uknown 24 0

Grade
1 55 NA
2 180 NA
3 124 NA
4 13 NA
Uknown 5 NA
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used to extract the top 1,500 genes with the largest coefficients
of variation for PCA. The p values of the top 20 principal
components are shown in Figure 1A. The identified top 20
principal components were incorporated into the t-SNE
analysis, where 3,200 cells were divided into 14 clusters
(cluster 0–13, Figure 1B). Subsequently, the differentially
expressed genes within each cluster were identified (p <
0.05). These differentially expressed genes were defined as
marker genes for the corresponding clusters
(Supplementary Table S1). To investigate the
characteristics of the cells within each cluster, cell type
annotations were obtained using the SingleR R package. The
results revealed 14 clusters which included four cell types, with
cells in cluster 5 containing monocytes, cells in clusters 6, 7,
and 9 T cells, cells in cluster 13 NK cells, and cells in the
remaining clusters hepatocytes (Figure 1C). GSEA analysis of
differentially expressed genes yielded higher and lower
metabolism- and immune system-related scores in
hepatocyte cells, respectively. On the other hand, the
opposite was observed for immune cells (Supplementary
Figure S1), which highlighted changes in metabolism of
liver cancer cells. To further explore liver cancer cell
subtypes, we extracted the gene expression matrix of
hepatocyte cells (in total 2,302 cells), and performed the
same analysis as before using the Seurat package. PCA
revealed a total of 15 principal components with p-values
less than 0.05 (Figure 1D). These principal components
were incorporated into the t-SNE analysis (Figure 1E).
Accordingly, the hepatocytes were divided into nine clusters

(0–8), and the marker genes of each cluster are shown in
Supplementary Table S2. The monocle R package was used to
perform a time-series analysis of the these hepatocytes to
explore their differentiation directions. The results showed
that hepatocytes gradually followed three differentiation
directions, which are termed Branch 1, Branch 2 and
Branch 3 (Figure 1F). The differentiation directions of
hepatocytes were combined with the cluster information,
and calculated for the major components in different
Branch clusters. Figure 1G shows that the cells that account
for the major component in Branch 1 stemmed from cluster 0
(688/809), those in Branch2 from cluster 4 (352/537), and
those in Branch 3 mainly from cluster 5 (138/214).

Identification of Hepatocyte Cancer Cell
Subtypes With High Energy Metabolism
Based on the annotated genes of the 11 energy metabolism-
related pathways downloaded from the Reactome database
(see Table 2 for details), ssGSEA analysis was performed to
obtain the score of each cell in these pathways. Combining this
scoring and cluster information of each cell, the pheatmap R
package was used to plot a heat map that shows the scoring
status of different clusters. As shown in Figure 2A, clusters 4
and 5 yielded the highest and lowest energy metabolism related
scores, respectively. Cluster 0, the largest cluster, yielded a
moderate metabolism score. Taken together with the results of
the time-series analysis in the previous section, liver cancer
cells were concluded to eventually differentiate into three

FIGURE 1 | Screening of high-energy metabolism hepatocellular carcinoma subtypes using scRNA-seq data. (A) Principal component analysis of all cells and
p-value of each principal component. (B) tSNE algorithm divides cells into 14 clusters. (C) Cell types of different clusters. (D) Principal component analysis of
hepatocellular carcinoma cells and the p-value of each principal component. (E) tSNE algorithm divides hepatocellular carcinoma cells into 9 clusters. (F) Proposed time
series analysis of hepatocellular carcinoma cells. (G) Proposed time series analysis of different clusters of hepatocellular carcinoma cells.
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different states of subtypes in terms of energy metabolism:
high, medium and low, with Branch 2 showing the highest level
of energy metabolism.

Identification of a TCGA-LIHC High-Energy
Metabolic Subtype
Marker gene expression data of cluster 4 were extracted from
TCGA-LIHC data, and analyzed to determine differentially
expressed genes between cancerous and normal tissues. A total
of 101 differentially expressed genes were obtained. Univariate

Cox regression analysis was performed in combination with the
overall survival time of patients, and a total of 48 genes associated
with OS were obtained (Figure 2B). The intersection of
differentially expressed and prognosis-related genes was
determined. A gene was excluded if its expression level in the
tumor was found to be inconsistent with prognosis as described in
Methods section. As a result, a total of 45 genes were identified
from the initial intersection list (Figure 2C).

Based on the expression data of these 45 genes, a clustering
analyses was performed. Based on the cumulative distribution
function (CDF), we chose k = 2 as the optimal clustering

TABLE 2 | Metabolic pathways.

Metabolic pathway PathwayID Gene count

Biological oxidations R-HSA-211859 221
Citric acid cycle (TCA cycle) R-HSA-71403 22
Glucose metabolism R-HSA-70326 92
Glycogen breakdown (glycogenolysis) R-HSA-70221 15
Glycogen metabolism R-HSA-8982491 27
Glycogen synthesis R-HSA-3322077 16
Glycolysis R-HSA-70171 72
Metabolism of carbohydrates R-HSA-71387 292
Mitochondrial fatty acid beta-oxidation R-HSA-77289 38
Pyruvate metabolism R-HSA-70268 31
Pyruvate metabolism and citric acid (TCA) cycle R-HSA-71406 55

FIGURE 2 | Screening of genes related to high energy metabolism. (A) Energy metabolism scores of differentcluster hepatocellular carcinoma cells. (B) Marker
genes associated with survival in high energy metabolism cluster hepatocellular carcinoma cells. (C) Intersection of prognosis-related marker genes and differentially
expressed marker genes.
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parameter that yielded consistent results, and thus divided
TCGA-LIHC patients into two clusters named cluster A and
cluster B (Figure 3A). Survival analysis revealed that the OS of
patients in clusters A and B were significantly different (p = 0.002,

Figure 3B). Thus, we inferred that these 45 genes could influence
the OS of liver cancer patients by affecting their metabolic status.
Furthermore, 1000 lasso analysis also identified five genes
(Figure 3C): ADH4, AKR1B10, CEBPZOS, ENO1, and FOXN2,

FIGURE 3 | Identification of TCGA-LIHC energy metabolism subtypes. (A)Typing of TCGA-LIHC based on 45 intersecting genes. (B) Survival of TCGA-LIHC
patients within different subtypes based on 45 intersecting genes. (C) Lasso analysis to screen for the most stable energy metabolism-related genes. (D) TCGA-LIHC
typing based on the five most stable energy metabolism-related genes. (E) Survival of TCGA-LIHC patients within different subtypes based on five key genes.

FIGURE 4 | Validation of TCGA-LIHC typing results based on 5 key genes. (A) Differences in metabolism-related pathway scores among different subtypes. (B)
Staging results of patients with hepatocellular carcinoma in ICGC database. (C) Survival of patients within different subtypes in the ICGC database.
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as the most stable prognosis-related genes associated with energy
metabolism in liver cancer. The correlation results among the five
genes were shown in Supplementary Table S5 and
Supplementary Figure S2 (Correlations between genes greater
than 0.2 were shown in Supplementary Figure S2). The
immunohistochemical results of the expression of the above
five genes in liver cancer and normal tissues in HPA database
were shown in Supplementary Figure S3.

To explore the significance of these five genes, another
clustering analysis was performed to divide TCGA-LIHC
patients into two clusters, cluster A and cluster B (Figure 3D).
Survival analysis revealed that the OS of cluster B was
significantly lower than that of cluster A, and the difference
was statistically significant (p = 0.013, Figure 3E).

Validation of the Identified Key Genes
ssGSEA results revealed that multiple higher metabolic pathway
scores were higher in cluster B compared to cluster A
(Figure 4A). The same analysis was performed on the liver
cancer data obtained from the ICGC database to test whether
choice of the dataset affected our conclusions. Based on ICGC
data, the same five genes were able to classify liver cancer patients
into two clusters (Figure 4B), and the survival analysis between
the two groups showed a statistically significant difference with
respect to OS (Figure 4C).

Determination of Energy Metabolism
Scores
To determine an energy metabolism score for TCGA-LIHC
patients, we used principal component analysis (PCA) to
calculate PC1 for genes within gene tags A and B, and
calculated the sum of PC1 for both tags A and B (sPC1A and
sPC1B), respectively. Subsequently, the difference between
sPC1A and sPC1B was used as the energy metabolism score
(EM score). Using the best cut-off value, TCGA cohort patients
were divided into groups of high or low EM scores. Survival
analysis showed that patients in the high score group had
significantly worse survival than those in the low score group
(p < 0.001) (Figure 5A). Thus, the EM score was successfully used
to accurately classify patients based on overall survival.

The Relationship Between Energy
Metabolism Score and Immunity
There is substantial evidence in literature on competition
between tumor and immune system cells for nutrients, and
inhibition of immune cell function by tumor cell metabolites
(Xing et al., 2015). To explore the relationship between tumor
energy metabolism and immunity in liver cancer, we analyzed
16 immune cell and 13 immune function scores in TCGA-
LIHC patients by ssGSEA, and used the Wilcoxon test to

FIGURE 5 |Construction of EM score and its relationship with immunity. (A) Survival of patients within different EM score groups. (B)Correlation between EM score
and Estimate ImmuneScore. (C) Differences in immune function scores of patients within different EM score groups. (D) Differences in immune cell scores of patients
within different EM score groups.
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determine the significance of the differences in scores of high
and low EM Score groups. A total of 11 immune cell and 12
immune function scores were found to differ between the high
and low EM Score groups (Figures 5B,C), with the majority
being higher in the low EM Score group. Estimate analysis
showed a decreasing trend of ImmuneScore (R = -0.17, p =
0.001) in TCGA-LIHC patients with increasing EM Score, and
the results were statistically significant (Figure 5D). In
addition, 25 of the 38 immune checkpoints differed between
the high and low EM score groups, with most being highly
expressed in the high EM score group (Figure 6). These results
suggest that EM score can be used as an indicator of an
influence on immunity in liver cancer patients.

The Role of Energy Metabolism Score in
Predicting Drug Sensitivity in Cancer
Therapy
Using the pRRophetic R package, the sensitivity (IC50) of
patients to 138 chemotherapeutic agents, including AICAR,
metformin, and other metabolism-related anticancer drugs,
were determined. Accordingly, liver cancer patients in the
low EM score group had higher sensitivity (lower IC50) to
three metabolism-related anticancer drugs: AICAR (p =
2.22e-16), metformin (p = 4.3e-15), and methotrexate (p =
0.001) (Figures 7A–C). The TICA database data showed that
liver cancer patients within the low EM score group had

FIGURE 6 | Differences in immune checkpoint levels between different
EM score groups.

FIGURE 7 | Relationship between EM score and sensitivity of chemotherapy drugs and immune checkpoint inhibitors. (A–C) Differences in sensitivity to
chemotherapeutic agents AICAR, Metformin and Methotrexate among patients in different EM score groups. (D–F) Differences in sensitivity to PD1 inhibitors, CTLA-4
inhibitors and the combination of these two inhibitors in different EM score groups.
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higher sensitivity to CTLA4 inhibitors (p = 0.00015), PD-1
inhibitors (p = 0.0021), and PD-1 inhibitors combined with
CTLA4 inhibitors (p = 0.0066) (Figures 7D–F). Taken
together, these data suggest that the EM score may be
associated with response to chemotherapeutic agents in
liver cancer patients.

DISCUSSION

Liver cancer is a disease that seriously threatens human health.
The disease ranked sixth in new cases and third in deaths
among all malignant tumors in 2020. Therefore, in-depth
investigations of the mechanism of liver cancer
development has been prioritized by cancer researchers. The
liver is the largest metabolic organ in the human body, and
alterations in its metabolic profile are often closely related to
the development of a primary tumor (Pope et al., 2019). Liver
cancer cells in a hypermetabolic state are not only able to
compete with normal cells for nutrients, but their metabolites
can also affect the function of immune cells and promote
tumor metastasis (Hanahan and Weinberg, 2011; Wu, 2017).
Here, we focused on the metabolic status of different subtypes
of liver cancer, and constructed and validated an energy
metabolism (EM) score to quantify the metabolic status of
liver cancer patients based on scRNA sequencing, TCGA-
LIHC, and ICGC database data. Our findings showed that
the EM score could be used to accurately predict the prognosis
of liver cancer patients, and has potential to assist the selection
of drugs for patient-specific treatment options.

Many studies have previously shown that the development
of liver cancer is accompanied by disturbances in energy
metabolism, which not only suppresses immune response to
tumors, but also promotes tissue invasion and metastasis.
Therefore, it is highly relevant to study the genes related to
energy metabolism in liver cancer, and developed a score to
characterize the status of energy metabolism in liver cancer
patients. Here, we obtained liver cancer single-cell sequencing
data from the GEO database, clustered and annotated the cells,
and used ssGSEA to identify a subgroup of liver cancer cells
with a high energy metabolism level. Based on the marker
genes in this subgroup, we used univariate and Lasso Cox
regression analysis to screen the TCGA database data for the
most accurate prognostic biomarkers to establish an energy
metabolism-related gene signature. As a result, we obtained a
signature containing five genes: ADH4, AKR1B10, CEBPZOS,
ENO1, and FOXN2. ADH4 encodes the class II ethanol
dehydrogenase 4 subunit, which is a dimer consisting of
two subunits with high oxidative activity towards long-
chain fatty alcohols and aromatic alcohols. ADH4 has been
associated with various disorders such as alcohol dependence
(Chowdhury et al., 2020). Differential expression of ADH4
between tumor and normal tissues in patients with non-small
cell lung cancer has been observed, and can be used as a
prognostic marker in patients with esophageal cancer (Peng
et al., 2018). Wei et al. showed that ADH4 was expressed at
lower levels in the tumor tissues of liver cancer patients, and

patients with low ADH4 expression levels had significantly
shorter survival times (Wei et al., 2012).

AKR1B10 encodes a member of the aldehyde/ketone
reductase superfamily, which is overexpressed in various
solid tumors, and a potential diagnostic marker for tumors
(Endo et al., 2021). In breast cancer, this gene enhances fatty
acid utilization by tumor cells and activates ERK, Wnt, and
other pathways to promote metastasis (Qu et al., 2020). In
liver cancer, AKR1B10 mediates the proliferation of liver
cancer cells through sphingosine-1-phosphate (Jin et al.,
2016). In addition, AKR1B10 induces cellular resistance to
erythromycin and nortriptyline by reducing the C13 ketone
moiety, which leads to poor patient prognosis (Zhong et al.,
2011).

CEBPZOS is the antisense chain of CEBPZ, and is expressed in
various tissues. Only several studies have been conducted on
CEBPZOS, yet it has been shown to be a novel mitochondrial
protein (Hung et al., 2014). Due to their key role in intracellular
energy generation, mitochondria have a great impact on cell
growth, apoptosis, and maintenance of redox homeostasis. In
tumors, oxidative phosphorylation of the mitochondria is very
active, and mitochondria are thus primary sites where the
Warburg effect is strong (Wallace, 2012). The role of
CEBPZOS as a mitochondrial protein may also affect the
energy metabolism of tumor cells in liver cancer, and thereby
affect tumor development as well.

ENO1 encodes α-enolase, which is one of the three enolase
isozymes found in mammals (Zhang et al., 2020). ENO1 is
overexpressed in a variety of GI tumors, including colon,
pancreatic, and gastric cancers (Hang et al., 2018), and
promotes tumor development (Cheng et al., 2019; Xu et al.,
2019). In addition, ENO1 is highly expressed in liver cancer,
promotes glucose uptake and lactate production by tumor cells,
and is involved in tumor cell division, proliferation, apoptosis,
metastasis, immunomodulation, and chemoresistance (Qiao
et al., 2018; Jiang et al., 2020).

FOXN2 plays an important role in the development of several
tumors (Ye and Duan, 2019), including breast and cervical
cancers (Cui et al., 2019). FOXN2 has been shown to be
associated with tumor cell proliferation and invasion in liver
cancer (Liu et al., 2021).

Based on these five genes, patients were divided into two
groups, cluster A and cluster B. The prognosis of the two groups
was found to be significantly different from each other. The
energy metabolism of the patients was also analyzed using
ssGSEA, and the results yielded significant differences in the
energy metabolism-related pathway scores between the two
groups. We conclude that these five genes are associated with
the energy metabolism status of liver cancer patients, and can
affect their overall survival. In addition, an external validation set
from the ICGC database validated the accuracy of gene signatures
consisting of these five energy metabolism-related genes for
patient prognosis prediction.

Considering the variability in metabolic status among
patients, it is important to quantify the status of energy
metabolism of each patient. Identification of tumor subtypes
based on different biomarkers has been used to improve the
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accuracy of patient prognosis for various tumors, such as
breast cancer (Callari et al., 2016). Here, we used the above
mentioned key genes as potential “subtype biomarkers,” and
established an EM score to quantify the energy metabolism
status of each sample. Survival analysis showed that higher EM
scores were associated with lower survival rates.

Tumors are known to compete for glucose with immune
system cells, and thus inhibit immune cell function. The
glycolytic activities of tumor cells may also limit glucose
consumption by immune cells, and thereby lead to immune
escape (Fernández et al., 2019). In addition, metabolites
produced by tumor cells can have profound effects on
immune cells in the tumor microenvironment (TME). For
example, aberrant glycolysis in tumor cells leads to the
production of large amounts of lactic acid, resulting in an
acidic TME. The low pH of the TME was shown to favor more
aggressive tumor cells, and suppress immune response to
tumors (Terrén et al., 2019). Arachidonic acid can also
suppress immune responses by inhibiting Th1
differentiation, NK cell function, and T-cell activation
(Pidgeon et al., 2007; Juman et al., 2013). Thus, we analyzed
the differences in immune cell and immune function scores
between the high and low EM score groups using ssGSEA to
further explore the relationship between EM scores and
immunity of liver cancer patients. In total, 11 immune cell
and 12 immune function scores were found to differ between
high and low EM score groups. Among them, B, T, and NK
cells, which have anti-tumor effects, yielded higher scores in
the low EM score group. However, the scores of immune
checkpoints and immune functions with pro-cancer effects,
such as CCR, were higher in the high EM score group. In
addition, the results of the Estimate analysis showed that the
immune and stromal scores of TCGA-LIHC patients decreased
with increasing EM scores. In addition, the expression levels of
most immune checkpoints were higher in liver cancer patients
with high EM scores. These results suggest that the EM score
reflects the status of the immune systems of liver cancer
patients, with high EM scores representing lower immunity
levels.

We also found that liver cancer patients in the low EM score
group were more sensitive to three metabolism-related
anticancer drugs, AICAR, metformin, and methotrexate,
based on the results of the pRRophetic analysis. AICAR is
an activator of AMP-activated protein kinase (AMPK) which
can permeabilize cell membranes. Animal experiments have
shown that AICAR significantly inhibits fatty acid and sterol
synthesis in mouse hepatocytes (Gao et al., 2018), whereas
cellular experiments have shown that AICAR inhibits the
proliferation of liver cancer cells, and induces cell cycle
arrest at the G1-S checkpoint (Cheng et al., 2014).
Metformin is a drug related to glucose metabolism, and
many studies have shown that metformin is not only
effective against diabetes but also has therapeutic effects on
a variety of tumors, including lung, pancreatic and breast
cancers (Rizos and Elisaf, 2013). Wang et al. showed that in
esophageal cancer, low doses of metformin reprogrammed the
tumor immune microenvironment (TIME) in an anti-cancer

direction by increasing the proportion of CD8+ cells (Wang
et al., 2020). The combination of aloin and metformin was
found to inhibit the growth and invasion of liver cancer
through the PI3K/AKT/mTOR pathway and induce
apoptosis and autophagy, thereby exerting anti-tumor
effects (Sun et al., 2020). In addition, metformin and
dichloroacetate inhibited the proliferation of liver cancer
cells by inhibiting mTOR complex 1. Methotrexate is an
anti-folate antitumor agent that inhibits the growth and
multiplication of tumor cells by hindering their synthesis,
mainly through the inhibition of dihydrofolate reductase
(Rosh, 2022). Folic acid deficiency was found to cause
defects in oxidative phosphorylation in human cells due to
impaired mitochondrial translation, and thus affect energy
metabolism (Morscher et al., 2018). Methotrexate has also
been used as a therapeutic agent against lymphoma,
osteosarcoma, and many other tumor types (Jaffe, 2009;
Gaynon et al., 2010). In this study, patients with low EM
scores showed higher sensitivity to the three chemotherapeutic
agents mentioned above, suggesting that treatment with these
three chemotherapeutic agents may be effective for patients
with this type of liver cancer.

Kimiteru et al. showed that a CLTA-4 inhibitor
(ipilimumab) was less effective in melanoma patients in a
hypermetabolic state, and lead to shorter survival after
treatment (Ito et al., 2018). In non-small cell lung cancer,
patients with a larger total metabolic tumor volume (TMTV)
have a shorter survival time after receiving immune
checkpoint inhibitors (Seban et al., 2020). This suggests that
EM scores may be related to the efficacy of immune checkpoint
inhibitors in liver cancer treatment. Therefore, we analyzed the
differences in sensitivity to PD-1 and CTLA-4 inhibitors
between patients in the high and low EM score groups
based on relevant data within the TCIA database. We found
that patients in the low EM score group had higher sensitivity
to PD-1 inhibitors, CTLA-4 inhibitors, and PD-1 inhibitors
combined with CTLA4 inhibitors. Hence, immune checkpoint
inhibition therapy may provide with a treatment option for
patients with high EM scores.

CONCULSION

In this study, we identified a class of liver cancer cells with high
energy metabolism from single-cell sequencing data, and
determined five key genes related to energy metabolism on
marker genes of this class of liver cancer cells combined with
bulk sequencing data. We then constructed an EM score based on
expression levels of these five genes to predict patient survival. In
addition, we found that these five genes may be related to the
sensitivity of liver cancer patients to chemotherapeutic drugs and
immune checkpoint inhibitors. On the other hand, our findings
are based on the exploration of public databases, and
experimental validation is necessary. Moreover, specific
mechanisms of regulation of energy metabolism in
hepatocellular carcinoma cells by these signature genes need to
be explored as well.
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