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Glioblastomas are highly malignant brain tumours. Mathematical models and their analysis provide a tool to support the
understanding of the development of these tumours as well as the design of more effective treatment strategies. We have previously
developed amultiscalemodel of glioblastoma progression that covers processes on the cellular andmolecular scale.Here, we present
a novel nutrient-dependent multiscale sensitivity analysis of this model that helps to identify those reaction parameters of the
molecular interaction network that influence the tumour progression on the cellular scale the most. In particular, those parameters
are identified that essentially determine tumour expansion and could be therefore used as potential therapy targets. As indicators
for the success of a potential therapy target, a deceleration of the tumour expansion and a reduction of the tumour volume are
employed. From the results, it can be concluded that no single parameter variation results in a less aggressive tumour. However,
it can be shown that a few combined perturbations of two systematically selected parameters cause a slow-down of the tumour
expansion velocity accompanied with a decrease of the tumour volume.Those parameters are primarily linked to the reactions that
involve the microRNA-451 and the thereof regulated protein MO25.

1. Introduction

The glioblastoma (GB) still can be considered to be the most
aggressive primary brain tumour [1] in humans. The current
standard therapy is composed of a resection (if possible)
and a combined radio- and chemotherapy [2]. However, the
current median survival is only about 12 months [3]. Only
4.7% of all patients are still alive five years after diagnosis
[4]. Therefore, current research focuses on gaining a better
understanding of the disease and developing new treatment
options. Among others, several relevant mutations and sig-
nalling pathways for GB emergence and progression have
been identified and are one of the primary fields of research
[5]. Consequently, the efficacy ofmolecular targeted drugs for
GB treatment has been the focus of recent investigations. Yet,

in practice, none of the currently availablemolecular targeted
drugs resulted in a significant improvement of the survival
expectancy [2].

In recent years, the significance of microRNAs and the
thereof dependent signalling pathways for cancer has been
discovered [6–8]. MicroRNAs are noncoding RNAs that
influence the expression of proteins on the posttranscrip-
tional level [6]. In [9], the role of microRNA-451 (miR-451)
in glioblastoma is discussed. Godlewski et al. discovered
that, on the one hand, in glioblastoma, the extracellular
glucose concentration influences the level of miR-451. On
the other hand, miR-451 regulates the signalling of the (well-
known) LKB1-AMPK-mTOR pathway (LKB1: liver kinase
B1, AMPK: AMP activated kinase, and mTOR: mammalian
target of rapamycin) [10, 11]. This intracellular pathway is
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considerably involved in a cell’s decision for either amigrating
or proliferating phenotype [9]. Thus, Godlewski et al. intro-
duced a switch for the dichotomy between a migrating and
proliferating phenotype in glioblastoma that is also known as
the Go or Grow principle [12].

Mathematical modelling has evolved as a useful tool for
biology and medicine in gaining a better understanding of
diseases and biological processes [13, 14]. Consequently, one
application of mathematical models is the investigation of
existing therapies and the development of new treatment
options. This holds in particular true for models of cancer
and cancer treatment [15–17]. In general, these models can
be distinguished by the scale (macroscopic, microscopic or
molecular) that they describe [14]. While on the macroscopic
scale mainly general growth processes [18], deformation
effects [19–21], or the response to radiotherapy [22–24] are
examined, models on the microscopic scale deal among oth-
ers with the interaction of tumour cells with their microenvi-
ronment (e.g., the immune system, the extracellular matrix,
or nutrients) [25–28].Molecular scalemodels on the contrary
focus on effects of mutations and on molecular interaction
and signalling pathways [29, 30]. By definition, all models
constitute a simplification of reality. However, to obtain
a more accurate model of reality, the coupling of models
of different scales is unavoidable. In the case of cancer
modelling, a few multiscale approaches exist [31]. In [32,
33], a model for glioblastoma growth was introduced that
combines an agent based model with an EGFR (epidermal
growth factor receptor) signalling network and focuses on
the determination of the cell phenotypes “migrating” and
“proliferating.” Later, also a model for the progression of
lung cancer was developed [34] in that essentially only the
molecular interaction network was interchanged. In [35], a
model of cell-cell adhesion is presented that links intracellular
E-cadherin signalling to a lattice-free model on the cellular
scale.

All mathematical models have in common that they
contain parameters (e.g., diffusion constants, radiosensitiv-
ity parameters, absorption, secretion, mutation, or kinetic
reaction rates). These parameters might vary from patient
to patient or even from cell to cell and need to be deter-
mined/estimated from experimental or patient data in the
model development process [36]. One important problem
is to examine the dependence of the modelled system on
the model parameters, that is, to investigate how the system
behaviour changes if one or more parameters are varied.
This is realized by means of a sensitivity analysis [37, 38].
The goal of such an analysis is to identify those parameters
that considerably influence the model, that is parameters are
identified to that the system reacts sensitively. On the one
hand it is important to estimate these parameters accurately,
on the other hand these parameters indicate potential targets
for new therapies [39]. So far, sensitivity analyses have been
conducted nearly exclusively on a single scale; that is, the
parameters that are varied and the system output that is
measured belong to the samemodelling scale [40].Thismight
be sufficient for a single scale model; however, for models
covering more than one scale, such an analysis would cover
only parts of the model and is therefore nonsatisfying. In

[39, 40], an approach for a multiscale sensitivity analysis of
a multiscale growth model for lung cancer is introduced that
couples the molecular and cellular scale. For this analysis,
parameters of the molecular scale part of the model are
modified (in particular, they variegated the initial conditions
for a system of ordinary differential equations (ODEs)). The
dependence of the model on these parameters is evaluated at
the cellular scale. Thus, the sensitivity analysis lives up to the
multiscale modelling concept.

In [41], we presented a multiscale model of glioblastoma
growth. On the cellular scale, an agent based model (ABM)
represents individual cell actions and a partial differential
equation (PDE) models the diffusion of a nutrient (glucose).
Each cell is further equipped with a molecular interaction
network that implements the regulation of cell migration and
cell proliferation via the above described glucose-miR-451
signalling pathway. This interaction network is represented
by a system of nine ODEs that describe the dependence
of the nine relevant molecular species. In total, these nine
equations contain 31 reaction parameters that were either
taken from the literature or estimated to fit experimental data.
We validated our multiscale model by comparing our in silico
simulation results to in vitro experiments.

In the work at hand we analyse how the cellular scale
of our model depends on the reaction parameters of the
molecular interaction network. Motivated by the idea pre-
sented in [39, 40], parameters on the molecular scale are
modified and the effect on the cellular scale is measured.
In particular, we vary each of the 31 reaction parameters by
multiplication with factors in the range [0.01, 100] (i.e., also
very extreme changes are considered) and consider different
nutrient conditions. As a model output, we measure the total
number of tumour cells and the number of migrating and
of proliferating cells as a degree for the tumour volume and
tumour build-up, respectively. Furthermore, the number of
time steps necessary for a simulation to finish is evaluated
as a measure for the expansion velocity. This allows for
investigating which parameter changes have a significant
impact on the model and, in particular, identifying the
parameters and their respective changes that have a “positive”
effect from the therapy development view.

In the following, wewill first briefly recapitulate themajor
aspects of our multiscale model, before we introduce the
method for the multiscale sensitivity analysis. Finally, we will
present the results of the analysis and draw some conclusions
for future research.

2. A Cross-Scale Model of Tumour Growth

To model the progression of GB in a region of a few square
millimetres (to be exact 3mm × 3mm), a cross-scale model
bridging the molecular and cellular scale has been previously
developed [41, 42]. In this model, an intracellular molecular
interaction network (represented by a system of ODEs) is
coupled with an agent based model. Each agent represents a
single tumour cell as is described below.

2.1. Molecular Interaction Model. The molecular interaction
model describes the influence of the extracellular glucose
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Figure 1: The molecular interaction network. Different arrow types pointing from one molecular species (given by the variable notation 𝑥
𝑖

and the biological term) to another indicate different kinds of reactions (see legend in figure for more details). The labels next to the reaction
arrows denote the reaction parameters that are involved in the respective reactions. Adapted from [41]. Adapted with permission.

level on the proliferating versus migrating phenotype emer-
gence of GB cells. The glucose level controls the concentra-
tion of miR-451 that in turn regulates the concentration of
the active LKB1-MO25-STRAD complex [9]. This complex
catalyses the phosphorylation of AMPK that influences cell
proliferation via the mTORC1 pathway [10] and cell polarity
through further signalling cascades [43]. The interaction
model is depicted in Figure 1.

Themolecular interactions aremodelled bymass-balance
reactions and Michaelis-Menten equations for the enzyme
kinetics. In total, the concentration development of the nine
molecular species is mathematically represented by a nondi-
mensionalised system of nine nonlinear ODEs. These ODEs
involve 31 reaction parameters which are given together with
the details on the system of ODEs in [41]. The ODEs and the
reaction parameters are also summarized in the appendix.

2.2. Cellular andMicroenvironmentModel. Tomodel cellular
processes (in terms of migration and proliferation) and the
influence of environmental factors (in terms of the available
nutrient concentration) on a tumour cell, an agent based
modelling (ABM) approach is employed. In this model, each
agent represents a single tumour cell.

Comparable to in vitro experiments in a petri dish, in
this computational model, tumour growth is investigated in
a two-dimensional region. The region of interest (3mm ×
3mm) is represented by a regular grid of 200 × 200 grid
points. Each of these grid points either can hold a tumour cell
(the grid spacing of 1.5 × 101 𝜇m × 1.5 × 101 𝜇m corresponds
to the average size of a GB cell [44]) or is empty.

Furthermore, each grid point holds information on the
local nutrient level, in particular on the concentration of glu-
cose. Initially, the glucose concentration (𝑥

10
(0)) is assumed

to be either constant or randomly distributed across the
whole 3mm × 3mm region. Throughout the simulation,
glucose is consumed by the tumour cells, cannot pass through
the boundaries of the grid, and diffuses across the grid. The
last is modelled by the use of a PDE of the form

𝜕𝑥
10

𝜕𝑡
= 𝛼𝐷∇

2
𝑥
10
, (1)

where𝐷 is the diffusion coefficient for glucose and 𝛼 a factor
that realizes slower diffusion in case a grid point is occupied
by a tumour cell.

Tumour cells can migrate on the grid by moving to an
empty neighbouring site or proliferate by placing a daughter
cell on an empty neighbouring site. Migration and prolifer-
ation are governed by chemotaxis; that is, the movement is
directed along a chemotactic gradient (here, glucose acts as
the chemotactic agent).

2.3. Bridging the Modelling Scales. To incorporate informa-
tion from the gene and protein scale into the cellular level,
each cell/agent on the grid (as described in Section 2.2) is
provided with a molecular interaction network (as given
in Section 2.1). In each time step, each cell is provided
with information on the local glucose level. Based on this
information, the system of ODEs is evaluated independently
for each individual cell. Then, the new phenotype of each
cell (migrating, proliferating, or quiescent) is determined on
basis of the concentration of AMPK (𝑥

6
) and mTORC1 (𝑥

9
).
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Figure 2: General model setup. The scheme shows how the different scales are combined. From the cellular grid on which the model is
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with a system of ODEs describing the molecular interaction network. After simulating this system of ODEs, the cell’s phenotype (migrating,
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Figure 3: The spatiotemporal tumour development for four different initial glucose concentrations (from top to bottom: 3 × 10−1 gL−1,
1.125 gL−1, 2.25 gL−1, and 4.5 gL−1). Black denotes quiescent, dark gray migrating, and light gray proliferating tumour cells. Adapted from
[41]. Adapted with permission.

According to this phenotype, the cells are moved to a new
location, a daughter cell is placed at a neighbouring site
(after a certain delay to incorporate different time scales of
migration and proliferation), or no interaction takes place.

The general model setup is depicted in Figure 2. Repre-
sentative simulation results are shown in Figure 3. In these
simulations, a constant initial glucose concentration 𝑥

10
(0) ∈

{3 × 10−1 gL−1, 1.125 gL−1, 2.25 gL−1, 4.5 gL−1} is assumed (a
setting comparable to in vitro experiments). Initially, 797 cells
are placed in a circular shape in the center of the grid. All
simulations were run until the first cell reached the boundary.
As could be seen in [41], these simulation results are in good
agreement with results from in vitro experiments.

3. Sensitivity Analysis

In total, 31 parameters determine the behaviour of the tumour
growth model by regulating nine ODEs. One important
question one should consider is whether there exist one or
more parameters that have a crucial influence on the whole

system. In particular, when considering novel targets for
therapeutic interventions, one searches for parameters that
slow down the tumour expansion and decrease the tumour
volume.

Sensitivity analyses are a tool to investigate the depen-
dence of a system (e.g., a specificmodel outcome) on individ-
ual model parameters. The general procedure is to vary one
or more parameters and measure the impact on the system.
This allows identifying parameters that significantly influence
the whole system. Generally, local sensitivity analyses (LSAs)
and global sensitivity analyses (GSAs) can be distinguished
[37]. In an LSA, all parameters are varied independently
and, for each single variation, the impact on the system is
measured. This allows for a rather simple and fast realization
of the whole analysis. In contrast, a GSA implies that several
parameter variations are combined (up to the exhaustion of
all possible combinations) and the impact of these combined
simultaneous perturbations is measured.This involves rather
complex calculations and is computationally expensive. For
the purpose of this study, it was sufficient to conduct an LSA
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and to further analyse the impact of the combined variation
of two parameters at a time.

The general idea of this sensitivity analysis was to inves-
tigate the effects of changes in the intracellular setting of the
tumour cells on the cell behaviour and overall tumour expan-
sion. If, for example, a certain parameter significantly slowed
down the tumour expansion, the respective reaction could be
an indicator for future therapy targets. To accommodate for
such an analysis across different spatial scales, we followed the
idea introduced in [40]. The parameters were varied on the
subcellular scale; that is, the reaction parameters of the system
of ODEs that represents the molecular interaction network
were altered. However, the system output was measured on
the cellular level; that is, values that embody the tumour
expansion were recorded. These values were then compared
to the original standard setting to allow for an assessment of
the influence of the parameter.

Initially, the simulation is performed with the original
parameter setting and the model output𝑀 is recorded. Next,
we multiplied each reaction parameter 𝑘

𝑙
(𝑘
𝑙
∈ {𝑘
1
, . . . , 𝑘

𝑚

18
})

with different factors 𝑏
𝑛
∈ R. For each of these combinations,

𝑘
𝑏
𝑛

𝑙
:= 𝑘
𝑙
⋅ 𝑏
𝑛
of a parameter 𝑘

𝑙
and a factor 𝑏

𝑛
separate

simulations are performed and the model output 𝑀
𝑘
𝑙
,𝑏
𝑛

is
recorded. For each parameter-factor setting, the simulation
is run three times and the mean of the model output is
calculated to account for the random elements of the model.
Finally based on the model outputs and the parameter
changes sensitivity coefficient 𝑆

𝑘
𝑙
,𝑏
𝑛

are calculated as follows
(see [37]):

𝑆
𝑘
𝑙
,𝑏
𝑛

:=
Δ𝑀
𝑘
𝑙
,𝑏
𝑛

/𝑀

Δ𝑘
𝑏
𝑛

𝑙
/𝑘
𝑙

=
(𝑀
𝑘
𝑙
,𝑏
𝑛

−𝑀) /𝑀

(𝑘
𝑙
⋅ 𝑏
𝑛
− 𝑘
𝑙
) /𝑘
𝑙

=
𝑀
𝑘
𝑙
,𝑏
𝑛

/𝑀 − 1

𝑏
𝑛
− 1

(2)

with Δ𝑀
𝑘
𝑙
,𝑏
𝑛

:= 𝑀
𝑘
𝑙
,𝑏
𝑛

− 𝑀 and Δ𝑘𝑏𝑛
𝑙
= 𝑘
𝑙
⋅ 𝑏
𝑛
− 𝑘
𝑙
. These

sensitivity coefficients facilitate the evaluation of the model
outcome relative to the responsible parameter change.

Following this definition, the undermentioned observa-
tions can be made regarding the properties of the sensitivity
coefficients 𝑆

𝑘
𝑙
,𝑏
𝑛

.

(1) If 𝑏
𝑛
< 1 (i.e., the parameter 𝑘

𝑙
is decreased) and

𝑀
𝑘
𝑙
,𝑏
𝑛

< 𝑀 (i.e., the model output is decreased
as well), then the respective sensitivity coefficient is
positive (i.e., 𝑆

𝑘
𝑙
,𝑏
𝑛

> 0). The same holds true if 𝑏
𝑛
> 1

and 𝑀
𝑘
𝑙
,𝑏
𝑛

> 𝑀. If, on the other hand, 𝑏
𝑛
< 1 and

𝑀
𝑘
𝑙
,𝑏
𝑛

> 𝑀 or 𝑏
𝑛
> 1 and𝑀

𝑘
𝑙
,𝑏
𝑛

< 𝑀, this results in a
negative sensitivity coefficient (i.e., 𝑆

𝑘
𝑙
,𝑏
𝑛

< 0).
(2) If the same parameter 𝑘

𝑙
is separately multiplied with

two different factors 𝑏
1
and 𝑏
2
for which 𝑏

1
−1 = 1−𝑏

2

and if additionally the resulting outcomes𝑀
𝑘
𝑙
,𝑏
1

and
𝑀
𝑘
𝑙
,𝑏
2

do not differ (i.e., 𝑀
𝑘
𝑙
,𝑏
1

= 𝑀
𝑘
𝑙
,𝑏
2

), then the
resulting sensitivity coefficients are the same except
for the sign (i.e., 𝑆

𝑘
𝑙
,𝑏
1

= −𝑆
𝑘
𝑙
,𝑏
2

).
(3) If the same parameter 𝑘

𝑙
is separately multiplied

with two different factors 𝑏
1
and 𝑏

2
that result in

the same simulation outcome 𝑀
𝑘
𝑙
,𝑏
1

= 𝑀
𝑘
𝑙
,𝑏
2

, then
the smaller factor results in the larger respective

sensitivity coefficient (i.e., 𝑏
1
< 𝑏
2
⇒ 𝑆
𝑘
𝑙
,𝑏
1

> 𝑆
𝑘
𝑙
,𝑏
2

and vice versa).

For the model output 𝑀𝑒
𝑘
𝑙
,𝑏
𝑛

, we choose four different
endpoints 𝑒 that are representative for the respective tumour
expansions and tumour characteristics. As a measure for
the tumour expansion velocity, we recorded the number of
simulation time steps 𝑀time

𝑘
𝑙
,𝑏
𝑛

necessary for the first tumour
cell to reach the boundary of the simulation region. A high
expansion velocity corresponds to a short time until the first
cell reaches the boundary (i.e., a small𝑀time

𝑘
𝑙
,𝑏
𝑛

) and vice versa.
The final tumour volume is estimated by the number of
cells in the last time step 𝑀total

𝑘
𝑙
,𝑏
𝑛

. A large tumour volume is
associated with a large number of tumour cells and a small
volume with a small number of tumour cells. To further get
a better understanding of the tumour build-up, additionally,
the number of migrating cells in the last time step𝑀mig

𝑘
𝑙
,𝑏
𝑛

and
the number of proliferating cells in the last time step𝑀prolif

𝑘
𝑙
,𝑏
𝑛

were documented. For all these four model outputs 𝑀𝑒
𝑘
𝑙
,𝑏
𝑛

,
the corresponding sensitivity coefficients were calculated and
were named accordingly 𝑆time

𝑘
𝑙
,𝑏
𝑛

, 𝑆
total
𝑘
𝑙
,𝑏
𝑛

, 𝑆
mig
𝑘
𝑙
,𝑏
𝑛

, and 𝑆prolif
𝑘
𝑙
,𝑏
𝑛

.
This setup allows for the assessment of the effects of

changes in the reaction parameters on the overall behaviour
of the tumour (tumour expansion and tumour build-up) as
well in absolute as in relative terms.

4. Results

The model is implemented in C++. For the sensitivity
analysis, each of the 31 reaction parameters of the molecular
interaction model was separately multiplied with the factors
0.01, 0.1, 0.5, 0.8, 0.9, 0.95, 0.98, 0.99, 1.01, 1.02, 1.05, 1.1, 1.2, 1.5,
1.9, 1.99, 5, 10, 50, and 100.

As could be seen in Figure 3, the tumour growth behaves
very different in different glucose environments. Therefore,
the sensitivity analysis was also carried out for tumours
growing under different initial glucose conditions 𝑥

10
(0).

In particular, for each parameter-factor combination, the
tumour growth simulation was run three times for each of
the four initial glucose settings (3 × 10−1 gL−1, 1.125 gL−1,
2.25 gL−1, and 4.5 gL−1). Thus, in total, simulations for 2480
different settings were carried out.

Each simulation was run until the first cell reached the
boundary, the necessary number of time steps𝑀time

𝑘
𝑙
,𝑏
𝑛

(𝑥
10
(0)),

the final number of all tumour cells 𝑀total
𝑘
𝑙
,𝑏
𝑛

(𝑥
10
(0)), and

the number of migrating 𝑀mig
𝑘
𝑙
,𝑏
𝑛

(𝑥
10
(0)) and proliferating

𝑀
prolif
𝑘
𝑙
,𝑏
𝑛

(𝑥
10
(0)) cells in the last time step were recorded,

and the respective sensitivity coefficients 𝑆𝑒
𝑘
𝑙
,𝑏
𝑛

(𝑥
10
(0)) were

calculated for all four endpoints 𝑒. For the ease of notation,
the reference to the parameter 𝑘

𝑙
, the factor 𝑏

𝑛
, and the initial

glucose concentration 𝑥
10
(0)will be omitted in the following,

if the sensitivity coefficients are discussed in general; that is,
they will be referred to as 𝑆𝑒.

4.1. Sensitivity Coefficients. Here, only the results of the
sensitivity coefficient calculations for one parameter (𝑘

1
) are
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Figure 4: The sensitivity coefficients for parameter 𝑘
1
for the tested factors 𝑏

𝑛
in the interval ]0; 2[ for all four tested initial glucose levels 3

× 10−1 gL−1, 1.125 gL−1, 2.25 gL−1, and 4.5 gL−1. (a) The sensitivity coefficients for the number of time steps necessary for the first cell to reach
the boundary, (b) the sensitivity coefficients for the total number of cells in this last time step, (c) the sensitivity coefficients for the number of
migrating cells, and (d) the sensitivity coefficient for the number of proliferating cells, respectively. Each marker represents the mean result
of three simulations with the same parameter scaling with the same initial level of glucose. In all these figures, the black crosses (×) represent
the data for an initial glucose level of 3 × 10−1 gL−1, the blue circles (e) for an initial glucose concentration of 1.125 gL−1, and the red diamond
(X) and the yellow plus sign (+) for an initial glucose level of 2.25 gL−1 and 4.5 gL−1, respectively.

shown in detail (see Figure 4). Results for the other param-
eters are summarized in Table 1 and in the electronic sup-
plementary material (see Figures S2–S13 in Supplementary
Material available online at http://dx.doi.org/10.1155/2014/
437094).

In Figure 4, the sensitivity coefficients for the four glucose
settings are shown for the parameter 𝑘

1
. The range of the

factors shown in Figure 4 is limited to factors 𝑏
𝑛
< 2.

By this means, an equal number of factors are shown that
decrease and increase the original parameter 𝑘

1
by the same

intervals, respectively. Furthermore, multiplication of the
original parameter with a high factor (5, 10, 50, and 100) tends
to result in rather low sensitivity coefficients (compare the
definition of 𝑆

𝑘
𝑙
,𝑏
𝑛

and the observations made in Section 3).
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Table 1:Themaximal absolute sensitivity coefficients.This table summarizes for each parameter 𝑘
𝑙
the maximum of the absolute values (m𝑒

𝑘
𝑙

)
of the four different sensitivity coefficients (𝑆time

, 𝑆
total
, 𝑆

mig, and 𝑆prolif) among all factors 𝑏
𝑛
and all tested initial glucose values (𝑥

10
(0)). The

max(| ⋅ |) values are dimensionless (d.u.) and the initial glucose concentration values 𝑥
10
(0) are given in g L−1.

𝑘
𝑙

𝑆
time

𝑆
total

𝑆
mig

𝑆
prolif

mtime
𝑘
𝑙

𝑥
10
(0) mtotal

𝑘
𝑙

𝑥
10
(0) m

mig
𝑘
𝑙

𝑥
10
(0) m

prolif
𝑘
𝑙

𝑥
10
(0)

d.u. [g L−1] d.u. [g L−1] d.u. [g L−1] d.u. [g L−1]
𝑘
1

5.98 0.3 11.91 0.3 12.28 0.3 11.13 0.3
𝑘
𝑖

1
6.60 0.3 14.88 0.3 17.38 0.3 13.06 0.3

𝑘
2

13.20 0.3 21.69 0.3 22.99 0.3 20.78 0.3
𝑘
3

11.75 0.3 21.53 0.3 22.49 0.3 21.61 0.3
𝑘
4

17.94 0.3 38.42 0.3 43.66 0.3 34.89 0.3
𝑘
5

6.80 0.3 13.55 0.3 16.12 0.3 11.37 0.3
𝑘
6

6.80 0.3 9.88 0.3 10.55 0.3 9.56 0.3
𝑘
7

11.18 0.3 15.95 1.125 17.10 1.125 15.08 1.125
𝑘
8

5.57 0.3 13.63 2.25 15.01 2.25 12.92 2.25
𝑘
9

11.14 0.3 11.14 2.25 12.16 2.25 10.59 2.25
𝑘
10

8.25 0.3 13.76 0.3 14.77 0.3 13.16 0.3
𝑘
𝑚1

11
5.58 1.125 12.54 1.125 13.45 1.125 11.71 1.125

𝑘
𝑐1

11
3.71 0.3 11.33 2.25 11.95 2.25 10.95 2.25

𝑘
𝑚2

11
7.73 0.3 14.87 0.3 16.39 0.3 14.91 0.3

𝑘
𝑐2

11
12.43 0.3 14.21 0.3 16.55 0.3 12.31 0.3

𝑘
𝑖

12
8.66 0.3 18.44 0.3 20.67 0.3 16.93 0.3

𝑘
12

8.25 0.3 15.22 0.3 17.52 0.3 13.79 0.3
𝑘
𝑚1

13
10.93 0.3 21.62 0.3 23.88 0.3 19.88 0.3

𝑘
𝑐1

13
5.36 0.3 10.57 0.3 10.65 0.3 10.56 0.3

𝑘
𝑚2

13
11.96 0.3 19.50 0.3 19.63 0.3 19.31 0.3

𝑘
𝑐2

13
7.01 1.125 15.41 0.3 15.51 0.3 15.46 0.3

𝑘
14

8.66 0.3 18.14 0.3 21.16 0.3 14.95 0.3
𝑘
𝑖

15
6.49 1.125 12.11 1.125 10.14 1.125 14.23 1.125

𝑘
15

14.85 0.3 32.23 0.3 36.54 0.3 29.02 0.3
𝑘
16

9.04 0.3 15.40 0.3 17.48 0.3 13.18 0.3
𝑘
𝑚1

17
7.01 0.3 13.86 0.3 15.18 0.3 12.85 0.3

𝑘
𝑐1

17
6.19 0.3 12.30 1.125 13.24 1.125 10.97 1.125

𝑘
𝑚2

17
3.92 0.3 8.52 0.3 9.44 0.3 8.54 1.125

𝑘
𝑐2

17
9.95 0.3 20.23 1.125 22.69 1.125 18.10 1.125

𝑘
𝑚

18
9.90 0.3 11.81 0.3 11.73 0.3 11.71 0.3

𝑘
𝑐

18
6.80 0.3 14.18 0.3 15.80 0.3 12.30 0.3

Figure 4(a) shows the relative change of the number of
time steps necessary to finish a simulation. In Figure 4(b), the
sensitivity coefficients for the total number of tumour cells in
the last time step can be seen. Figures 4(c) and 4(d) display
the sensitivity coefficients for the number of migrating and
proliferating cells in the last time step of the simulation,
respectively. In all these figures, the crosses (×) represent the
data for an initial glucose level of 3 × 10−1 gL−1, the circles
(e) for an initial glucose concentration of 1.125 gL−1, and the
diamond (X) and the plus sign (+) for an initial glucose level
of 2.25 gL−1 and 4.5 gL−1, respectively.

For all of the four initial glucose settings, factors close
to one cause the largest deviation of the four sensitivity
coefficients 𝑆𝑒

𝑘
1
,𝑏
𝑛

from zero. However, if the parameter 𝑘
1
is

multiplied with factors 𝑏
𝑛
close to zero or two, this results in

low sensitivity coefficients. The absolute maximum value of
all sensitivity coefficients 𝑆𝑒

𝑘
1
,𝑏
𝑛

m
𝑒

𝑘
1

= max
𝑏
𝑛
,𝑥
10
(0)

󵄨󵄨󵄨󵄨󵄨
𝑆
𝑒

𝑘
1
,𝑏
𝑛

(𝑥
10 (0))
󵄨󵄨󵄨󵄨󵄨 (3)

is reached for a low initial glucose concentration of 3
× 10−1 gL−1. With an increasing initial glucose level, the
amplitudes of the sensitivity coefficients tend to decrease.

The graphs of the sensitivity coefficients for the other
parameters look similar to the ones explained above. The
main differences affect the range of the sensitivity coefficients
and the initial glucose concentration for which themaximum
m𝑒
𝑘
𝑙

is taken. Therefore, Table 1 provides the maximal abso-
lute sensitivity coefficients m𝑒

𝑘
𝑙

together with the respective
glucose values 𝑥

10
(0) that result in these maximal values for
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all parameters. In contrast to Figure 4, all factors from 0.01
to 100 were explored. The complete results for all reaction
parameters and all glucose settings are given in the electronic
supplementary material (Figures S2–S13).

From the table, it can be seen that, for all sensitivity
coefficients 𝑆𝑒

𝑘
𝑙
,𝑏
𝑛

, the maxima of the absolute values m𝑒
𝑘
𝑙

are
primarily reached for the lowest glucose level of 𝑥

10
(0) =

3 × 10
−1 gL−1 for all parameters. Only a few parameters exist

for the absolute maximum m𝑒
𝑘
𝑙

for a medium glucose level
(1.125 gL−1 or 2.25 gL−1). The absolute maxima vary between
3.71–17.94 and 8.52–38.42 for 𝑆time and 𝑆total, respectively. For
𝑆
mig, the absolutemaxima are in the range 9.44–43.66 and the
sensitivity coefficients for the number of proliferating cells
in the last time step 𝑆prolif take maximum values between
8.54 and 34.89. The maximum over all parameters of all
maximal sensitivity coefficientsm𝑒

𝑘
𝑙

(max
𝑘
𝑙

(m𝑒
𝑘
𝑙

)) is taken for
the parameter 𝑘

4
. Except for the endpoint 𝑒 = time, the

parameter 𝑘𝑚2
17

results in the lowestm𝑒
𝑘
𝑙

.

4.2. Correlation between Changes in𝑀time and𝑀total. Besides
investigating the sensitivity coefficients 𝑆time

, 𝑆
total
, 𝑆

mig, and
𝑆
prolif, we also analysed the correlation between changes in
𝑀

time and𝑀total. Thus, we examined the correlation between
tumour expansion velocity and tumour volume for different
parameter variations. This is motivated by the fact that the
number of time steps necessary for the first tumour cell to
reach the boundary𝑀time can be considered as a measure for
the velocity of the tumour expansion and the total number of
tumour cells in the last time step𝑀total is a direct measure for
the tumour volume.

We define

𝛿𝑀
𝑗

𝑘
𝑙
,𝑏
𝑛

:=
Δ𝑀
𝑗

𝑘
𝑙
,𝑏
𝑛

𝑀𝑗
=
𝑀
𝑗

𝑘
𝑙
,𝑏
𝑛

𝑀𝑗
− 1, 𝑗 ∈ {time, total} (4)

withΔ𝑀𝑗
𝑘
𝑙
,𝑏
𝑛

and𝑀 as in Section 3. If the total number of cells
decreases for a certain parameter variation, we can observe
that this corresponds to 𝛿𝑀total

𝑘
𝑙
,𝑏
𝑛

< 0. Furthermore, if the
variation of parameter 𝑘

𝑙
by multiplication with a factor 𝑏

𝑛

causes an increase in the number of time steps necessary for a
simulation to terminate, this comes alongwith 𝛿𝑀time

𝑘
𝑙
,𝑏
𝑛

> 0. In
general, 𝛿𝑀𝑗

𝑘
𝑙
,𝑏
𝑛

= 𝑎 can be translated into𝑀𝑗
𝑘
𝑙
,𝑏
𝑛

= (𝑎+1)⋅𝑀.
Figure 5 shows the correlation of the number of time

steps and the number of tumour cells with 𝛿𝑀total
𝑘
𝑙
,𝑏
𝑛

on the 𝑥-
axis and 𝛿𝑀time

𝑘
𝑙
,𝑏
𝑛

on the 𝑦-axis. Each marker corresponds to
a simulation with a different parameter scaling. As before,
the simulations were run for four different glucose settings
and the crosses (×, in black) represent the data for an initial
glucose level of 3 × 10−1 gL−1, the circles (e, in blue) for an
initial glucose concentration of 1.125 gL−1, and the diamond
(X, in red) and the plus sign (+, in yellow) for an initial
glucose level of 2.25 gL−1 and 4.5 gL−1, respectively.

For each glucose setting, an increase in the number of
time steps comes along with an increase in the number of
tumour cells. A decrease of𝑀time corresponds to a decrease
of𝑀total. The increases are most prominent for a low initial
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Figure 5: The correlation between the changes in the number of
time steps necessary for a simulation to complete and the number of
tumour cells in this last time step for all tested parameter scalings.
Each marker represents the mean result of three simulations with
the same parameter scaling andwith the same initial level of glucose.
The black crosses (×) represent the data for an initial glucose level of
3 × 10−1 gL−1, the blue circles (e) for an initial glucose concentration
of 1.125 gL−1, and the red diamond (X) and the yellow plus sign (+)
for an initial glucose level of 2.25 gL−1 and 4.5 gL−1, respectively.

glucose level of 3 × 10−1 gL−1. For medium glucose levels
(1.125 gL−1 and 2.25 gL−1), one mainly observes an increase
in the number of time steps (for a slight increase of 𝑀total)
and a decrease of the number of tumour cells (along with
a slight decrease of 𝑀time). Assuming a high glucose level
(4.5 gL−1), primarily a decrease of the number of time steps
and a decrease of the final total number of tumour cells
become apparent. None of the parameter scalings results in a
significant decrease of the final total number of tumour cells
at the same timewith an increase in the number of time steps.

4.3. Combined Parameter Changes. The goal of therapies
should be to reduce the tumour expansion velocity and to
reduce the tumour volume at the same time (i.e., in Figure 5,
it would be desirable to end up in the upper left quadrant).
Therefore, we identified the parameter-factor combinations
whose corresponding simulations resulted in 𝛿𝑀time

> 9

for an initial glucose value of 3 × 10−1 gL−1 (i.e., the marker
group in the upper right of Figure 5). Furthermore, we
determined the parameter-factor combinations that result in
simulations with 𝛿𝑀time

< −0.8 assuming an initial glucose
level of 4.5 gL−1. The goal is to combine two of these different
variations at a time to allow for a semiglobal sensitivity
analysis.

The respective parameters and factors are given inTable 2.
The column Factor+ includes those factors whosemultiplica-
tion with a given parameter resulted in 𝛿𝑀time

> 9 (for 3 ×
10−1 gL−1 glucose concentration), and Factor− refers to those
factors whose multiplication with a given parameter resulted
in 𝛿𝑀total

< −0.8 (for 4.5 gL−1 glucose concentration). It can
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Table 2: Parameters and corresponding scaling factors that result in
a high number of time steps for a low glucose value (Factor+) or a
low number of total cells for a high glucose value (Factor−).

Parameter Factor+ Factor−
𝑘
1

10, 50, 100 0.01
𝑘
𝑖

1
— 0.01

𝑘
2

10, 50, 100 0.01
𝑘
3

0.01, 0.1 50, 100
𝑘
4

0.01, 0.1 50, 100
𝑘
7

0.01, 0.1 50, 100
𝑘
8

10, 50, 100 —
𝑘
9

0.01, 0.1 50, 100
𝑘
10

10, 50, 100 0.01
𝑘
𝑐1

11
— 10, 50, 100

𝑘
𝑚2

11
50, 100 —

𝑘
𝑐2

11
0.01, 0.1 5, 10, 50, 100

𝑘
𝑖

12
— 0.01, 0.1

𝑘
12

5, 10, 50, 100 0.01, 0.1

be noted that Table 2 lists 14 out of the 31 reaction parameters.
The variation of 9 out of these 14 parameters resulted in
𝛿𝑀

time
> 9 (for 3 × 10−1 gL−1 glucose concentration) and

𝛿𝑀
total
< −0.8 (for 4.5 gL−1 glucose concentration) by

multiplication with different factors. Out of all 20 factors
(from 0.01 to 100), the highest and lowest scaling factors (0.01,
0.1, 10, 50, and 100) predominantly resulted in a high number
of time steps for a low glucose value or a low total number of
cells for a high glucose value. No factors close to one appear
in Table 2.

Next, we explore all possible combinations of two
parameter-factor pairs (that are listed in Table 2) at a time;
that is, simulations are run in which two parameters 𝑘

𝑙1
, 𝑘
𝑙2

are modified: one parameter (𝑘
𝑙1
) with an associated factor

(𝑏
𝑛1
) from the Factor+ group and another parameter (𝑘

𝑙2
)

with a corresponding factor (𝑏
𝑛2
) out of the Factor− group.

Obviously, there are some parameter-factor pairs that cannot
be combined, since, for example, it is impossible to vary
parameter 𝑘

1
at the same time by the factors 10 and 0.01. In

total, 603 combinations are possible and, for each of these
combinations, three simulations are carried out for each of
the four glucose settings. For each of the simulations, the
necessary number of time steps for the first cell to reach the
boundary and the total number of cells in the last time step
are evaluated and 𝛿𝑀time and 𝛿𝑀total are calculated based
on the mean values. The results are shown in Figure 6 in the
same manner as the correlation between 𝑀time and 𝑀total

was previously presented in Figure 5 for just one parameter
change.

For a low initial glucose concentration (3 × 10−1 gL−1),
most variations resulted in a significant increase of the
number of time steps (𝛿𝑀time

> 0) and of the number of
tumour cells (𝛿𝑀total

> 0). For the medium and high glucose
levels (1.125 gL−1, 2.25 gL−1, and 4.5 gL−1), some combined
parameter variations exist that yield a positive 𝛿𝑀time

> 0
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Figure 6: The correlation between the changes in the number of
time steps necessary for a simulation to complete and the number
of tumour cells in this last time step for all tested combined
parameter scalings. Each marker represents the mean result of three
simulations with the same combination of parameter scalings with
the same initial level of glucose. The black crosses (×) represent the
data for an initial glucose level of 3 × 10−1 gL−1, the blue circles
(e) for an initial glucose concentration of 1.125 gL−1, and the red
diamond (X) and the yellow plus sign (+) for an initial glucose level
of 2.25 gL−1 and 4.5 gL−1, respectively.

and at the same time a negative 𝛿𝑀total
< 0. These

combined parameter variations, therefore, cause a decrease
of the tumour expansion velocity and of the tumour volume.
For the low initial glucose concentration (3 × 10−1 gL−1), no
such combination of parameter changes exists.

For initial glucose levels of 1.125 gL−1, 2.25 gL−1, and
4.5 gL−1, Table 3 lists the combinations of parameter scalings
(𝑘
𝑙1
⋅ 𝑏
𝑛1
combined with 𝑘

𝑙2
⋅ 𝑏
𝑛2
) that resulted in an increase

of the number of time steps (𝛿𝑀time
> 0.01) along with

a decrease of the total number of tumour cells (𝛿𝑀total
<

−0.01). Instead of using exactly zero as the threshold, an
additional margin of 0.01 is applied. Thus, combinations are
excluded that influence the system output only very slightly.

A few combined parameter scalings result in a decrease
of the tumour expansion velocity and the tumour volume for
all medium and high glucose levels (1.125 gL−1, 2.25 gL−1, and
4.5 gL−1), in particular, as follows:

(i) 𝑘
2
⋅ 50 combined with 𝑘

9
⋅ 100 or 𝑘

10
⋅ 0.01,

(ii) 𝑘𝑐2
11
⋅ 50 combined with 𝑘

8
⋅ 100.

On the one hand, some of the parameter scalings caused a
decrease of the tumour expansion velocity and the tumour
volume only in combination with a few (1–3) other parameter
modifications across all initial glucose concentrations. On the
other hand, four parameter scalings (𝑘

1
⋅ 50, 𝑘

2
⋅ 50, 𝑘

4
⋅ 50,

and 𝑘𝑐2
11
⋅ 50) could be combined with a quite large selection of

other parameter variations (≥5 combinations across all initial
glucose settings).
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Table 3:The parameter scalings whose combinations result in a decrease of the tumour expansion velocity and the tumour volume.The first
and second column list the parameters (𝑘

𝑙1
) and factors (𝑏

𝑛1
) whose corresponding variations (𝑘

𝑙1
⋅ 𝑏
𝑛1
) combined with the second parameter

scalings (𝑘
𝑙2
⋅ 𝑏
𝑛2
) (given for different initial glucose concentrations in the third (1.125 gL−1), fourth (2.25 gL−1), and fifth (4.5 gL−1) column)

resulted in 𝛿𝑀time
> 0.01 and 𝛿𝑀total

< −0.01.

𝑘
𝑙1

𝑏
𝑛1

𝑘
𝑙2
∗ 𝑏
𝑛2

1.125 g L−1 2.25 g L−1 4.5 g L−1

𝑘
1

0.01 — — 𝑘
7
⋅ 100

10 — 𝑘
𝑐2

11
⋅ 5 —

50 𝑘
10
⋅ 0.01 𝑘

9
⋅ 100; 𝑘𝑐2

11
⋅ 10 𝑘

𝑖

1
⋅ 0.01; 𝑘

9
⋅ {50, 100}; 𝑘

10
⋅ 0.01

𝑘
𝑖

1
0.01 — 𝑘

8
⋅ 50 𝑘

8
⋅ 50

𝑘
2

0.01 — — 𝑘
4
⋅ 0.01; 𝑘

7
⋅ 0.01

50 𝑘
𝑖

1
⋅ 0.01; 𝑘

9
⋅ 100; 𝑘

10
⋅ 0.01 𝑘

𝑖

1
⋅ 0.01; 𝑘

9
⋅ 100; 𝑘

10
⋅ 0.01 𝑘

9
⋅ 100; 𝑘

10
⋅ 0.01; 𝑘𝑐2

11
⋅ 10

𝑘
4

50 𝑘
2
⋅ 100; 𝑘

3
⋅ 0.01; 𝑘

10
⋅ 100 𝑘

9
⋅ 0.01 𝑘

8
⋅ 100

𝑘
7

50 — — 𝑘
8
⋅ 100; 𝑘

9
⋅ 0.01

𝑘
𝑐2

11

5 𝑘
8
⋅ 10; 𝑘

9
⋅ 0.1; 𝑘

3
⋅ 0.01; 𝑘

4
⋅ 0.1; 𝑘

8
⋅ 10; 𝑘

9
⋅ 0.1

𝑘
10
⋅ 10; 𝑘

12
⋅ 5 𝑘

7
⋅ 0.1; 𝑘

10
⋅ 50

10 𝑘
12
⋅ 10 — —

50 𝑘
8
⋅ 100; 𝑘

9
⋅ 0.01 𝑘

8
⋅ 100; 𝑘

12
⋅ 50 𝑘

8
⋅ 100; 𝑘

9
⋅ 0.01; 𝑘

10
⋅ 100; 𝑘

12
⋅ 50

100 — 𝑘
12
⋅ 100 —

5. Discussion and Conclusion

Molecular targeted therapies are theoretically a promising
approach for glioblastoma treatment. However, so far, none
of the existing agents could significantly improve the overall
survival [2]. Therefore, further research is inevitable: already
well-known signaling networks as well as newly discovered
ones need to be examined further for their therapeutic poten-
tial. For this purpose, mathematical modelling is a useful
tool. In the work at hand, we have presented an approach
for identifying influential parameters in a cross-scale model
of glioblastoma growth. This previously developed model
[41] describes the relevant cellular processes (migration and
proliferation) in combination with an intracellular molecular
interaction network. A multiscale sensitivity analysis allows
us to measure the effect on the tumour growth if reaction
parameters on the molecular scale are perturbed. Parameter
variations that “positively” influence the tumour progression
(i.e., slower expansion velocity and smaller tumour volume)
indicate potential targets for new therapeutic interventions.
So far, only sensitivity analyses that cover processes on a
single scale or that solely variegate the initial conditions
for a lung cancer model have been presented [39, 40]. To
our knowledge, here, we have presented for the first time
a multiscale sensitivity analysis for a model of glioblastoma
growth that not only accounts for a systematic variation of
all reaction parameters but also considers different nutrient
conditions. We could restrict the analysis to an LSA since
for therapeutic purposes it is impossible to modify too many
parts of a signaling network.

Godlewski et al. [9] discovered that microRNA-451 plays
an essential role for the nutrient level depending decision
of glioma cells to either migrate or proliferate. This miR-
451 directly regulates the expression level of the protein
MO25 that is relevant for further downstream signaling.
Therefore, it was to be expected that those parameters that

control the miR-451 and MO25 concentration will have a
significant influence on the whole system. Indeed, Table 1
supports this presumption. For all four sensitivity coefficients
under examination (𝑆time as a measure for the expansion
velocity, 𝑆total as a measure for the tumour volume, and 𝑆mig

and 𝑆prolif as indicators for the build-up of the tumour), the
maximum values among all parameter variations are taken
for parameters that are relevant for the control of the level of
miR-451 and MO25 (𝑘

1
, 𝑘
2
, and 𝑘

4
).

In general, it can be observed (see Figure 4 and Figures
S2–S13) that, measured in relative terms (cf. the definition
of 𝑆
𝑘
𝑙
,𝑏
𝑛

, (2)), small parameter perturbations cause the largest
changes for all parameters. For the same parameter-factor
combination as well positive as negative sensitivity coeffi-
cients can be taken, depending on the initial glucose concen-
tration. Furthermore, since the graphs for all parameters have
a very similar structure (no parameter sets itself noticeably
apart from the others), further conclusions on the effects
of a parameter variation by means of these plots are hardly
possible.

Nevertheless, on the basis of Table 1, it can be observed
that the sensitivity coefficients primarily take their absolute
maximum values (maximum over all 20 factors and 4
initial glucose values) for a low initial glucose concentration
(3 × 10−1 gL−1). Since tumours growing in a low glucose
environment expand very fast (which corresponds to a small
number of time steps until the first cell reaches the boundary),
any changes that only slightly slow down or speed up the
expansion are considerably noticeable. The same holds true
for the dependence of the tumour volume (corresponding to
the number of tumour cells) on the parameter variations.

If one does not consider the relative but the absolute
changes in the model output (cf. Figure 5), the first general
observation is that an increase of the number of time steps
(𝛿𝑀time

> 0) goes along with an increase of the total number
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Table 4: Molecular species, their variable names, and units.

Species Name Unit
𝑥
1

miR451 pmol L−1

𝑥
2

MO25 mRNA pmol L−1

𝑥
3

MO25 miRNA bound pmol L−1

𝑥
4

MO25 pmol L−1

𝑥
5

LKB1-STRAD pmol L−1

𝑥
6

AMPK phosphorylated pmol L−1

𝑥
7

TSC2 phosphorylated pmol L−1

𝑥
8

Rheb active pmol L−1

𝑥
9

mTOR C1 active pmol L−1

𝑥
10

Glucose g L−1

of tumour cells (𝛿𝑀total
> 0) and vice versa. An increase of

the number of tumour cells by a parameter variation is ulti-
mately caused by an increase of the number of proliferating
cells. Proliferation, in turn, is a process that happens much
slower than migration and therefore the tumour expansion
is slowed down. Thus, this relationship was to be expected in
a more or less explicit form. The extreme changes for a low
initial glucose condition (3 × 10−1 gL−1) are due to the fact
that, in the original setting, the tumour expands very fast and
is only very loosely packed, that is, consisting of rather few
cells. Therefore, the potential for an increase of the number
of time steps and the total number of tumour cells due to
an increase of the number of proliferating cells is very high.
Consequently, 𝛿𝑀time and 𝛿𝑀total reach high values. On the
contrary, under a high glucose level (4.5 gL−1), the number
of time steps and tumour cells is already rather high and it is
hardly possible to increase these. However, also, the decrease
due to the parameter variations turns out to be only modest.
Unfortunately, none of the parameter perturbations resulted
in a slower growing tumour that consists of fewer cells (no
markers in the upper left quadrant of Figure 5) for any of the
glucose settings. Thus, from a single parameter variation, no
indicator for a potential therapy could be identified.

The identification of those parameters that resulted in
the most extreme absolute changes (𝛿𝑀time

< −0.8 and
𝛿𝑀

time
> 9) of the model output (Table 2) yielded mainly

parameters that control the “early” parts of the network.
That is, primarily, reactions that involve miR-451 and MO25
cause these high variations. Furthermore, it can be noticed
that only the multiplication of these parameters with very
large or very small factors did change the tumour volume
and expansion velocity considerably. Thus, in relative terms,
small perturbations of the parameters cause large changes.
However, in absolute terms, large parameter modifications
are responsible for the large changes.

The combined scaling of two selected parameters (see
Table 2) resulted in an overall similar relationship of the
number of time steps and the total number of tumour cells
(see Figure 6) as for a single parameter variation: an increase
of 𝑀time coincides with an increase of 𝑀total. However, a
few pairs of parameter scalings could be identified that, for a
medium to high glucose level, cause a less aggressive tumour
expansion in the sense that the expansion velocity could be

Table 5: The reaction parameters (DC: dimensionless constant).

Parameter Value Unit
𝑘
1

1.2 × 10
−9 pmol−1 L s−1

𝑘
𝑖

1
1 pmol L−1

𝑘
2

3 × 10
−2 pmol−1 L s−1

𝑘
3

3 × 10
1 s−1

𝑘
4

1.4583 × 10
−2 s−1

𝑘
5

3.6 × 10
2 s−1

𝑘
6

1.0467 × 10
−2 s−1

𝑘
7

5.626 × 10
−3 s−1

𝑘
8

6.4167 × 10
−3 s−1

𝑘
9

6 × 10
−2 pmol−1 L s−1

𝑘
10

3.6 × 10
2 s−1

𝑘
𝑚1

11
5 × 10

2 pmol L−1

𝑘
𝑐1

11
1.8 × 10

5 pmol L−1 s−1

𝑘
𝑚2

11
5 × 10

2 pmol L−1

𝑘
𝑐2

11
1.8 × 10

6 pmol L s−1

𝑘
𝑖

12
6 × 10

−1 DC
𝑘
12

6 × 10
2 s−1

𝑘
𝑚1

13
1 × 10

2 pmol L−1

𝑘
𝑐1

13
6 × 10

2 pmol L−1 s−1

𝑘
𝑚2

13
1 × 10

2 pmol L−1

𝑘
𝑐2

13
6 × 10

4 pmol L−1 s−1

𝑘
14

3.6 × 10
2 s−1

𝑘
𝑖

15
5 pmol L−1

𝑘
15

3.6 × 10
2 s−1

𝑘
16

3.6 × 10
2 s−1

𝑘
𝑚1

17
1 × 10

2 pmol L−1

𝑘
𝑐1

17
3.6 × 10

3 pmol L−1 s−1

𝑘
𝑚2

17
1 × 10

2 pmol L−1

𝑘
𝑐2

17
3.6 × 10

5 pmol L−1 s−1

𝑘
𝑚

18
1.5104 × 10

3 pmol L−1

𝑘
𝑐

18
4.86 × 10

3 pmol L−1 s−1

𝑟 1.17 × 10
−2 mmol L−1 s−1

𝐶
1

8.571 × 10
−1 DC

𝐶
2

1.429 × 10
−1 DC

slowed down and the tumour volume could be decreased
(𝛿𝑀time

> 0.01 and 𝛿𝑀total
< −0.01). For a low initial glucose

condition (3 × 10−1 gl−1), none of the variations resulted in
the desirable effect. Table 3 further supports the key role of
the reactions that regulate the miR-451 and MO25 level for a
less aggressive tumour expansion. Most combinations listed
in this table contain at least one parameter that controls the
reactions that involve either miR-451 or MO25.

5.1. Conclusion. For a previously developedmultiscale model
of glioblastoma growth, we could identify a few combinations
of reaction parameter modifications that result in a less
aggressive tumour progression. Therefore, these parameters
can also be thought of as potential targets for therapies. The
parameters are primarily part of reactions that involve the
microRNA-451 and the thereof dependent proteinMO25 that
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are responsible for the further downstream signalling. Thus,
the analysis supports the relevance of these twomolecules for
future therapy research.

Appendix

Equations and Parameters Underlying the
Molecular Model

In the following, the ODEs are given which determine the
molecular interaction model that is shortly described in
Section 2.1. Furthermore, in Table 4, the mapping of the
variables 𝑥

1
, . . . , 𝑥

10
to the corresponding molecular species

is summarized. Finally, Table 5 lists all involved reaction
parameters with their original value and unit. More details
on the model can be found in [41]:

d𝑥
1

d𝑡
= 𝑘
1
⋅ 𝑘
𝑖

1
⋅ 𝑥
∗

10
⋅
𝐶
1
⋅ 𝑥
10
+ 𝐶
2

𝑘𝑖
1
+ 𝑥∗
5
⋅ (1 − 𝑥

5
)

− 𝑥
∗

2
⋅ 𝑘
2
⋅ 𝑥
1
⋅ 𝑥
2
− 𝑘
3
⋅ 𝑥
1
,

d𝑥
2

d𝑡
= 𝑘
4
− 𝑥
∗

1
⋅ 𝑘
2
⋅ 𝑥
1
⋅ 𝑥
2
− 𝑘
6
⋅ 𝑥
2
,

d𝑥
3

d𝑡
=
𝑥
∗

1
⋅ 𝑥
∗

2

𝑥∗
3

⋅ 𝑘
2
⋅ 𝑥
1
⋅ 𝑥
2
− 𝑘
5
⋅ 𝑥
3
,

d𝑥
4

d𝑡
= 𝑘
7
⋅ 𝑥
2
− 𝑘
8
⋅ 𝑥
4
− 𝑥
∗

5
⋅ 𝑘
9
⋅ 𝑥
4
⋅ 𝑥
5

+
𝑥
∗

5

𝑥∗
4

⋅ 𝑘
10
⋅ (1 − 𝑥

5
) ,

d𝑥
5

d𝑡
= −𝑥
∗

4
⋅ 𝑘
9
⋅ 𝑥
4
⋅ 𝑥
5
+ 𝑘
10
⋅ (1 − 𝑥

5
) ,

d𝑥
6

d𝑡
=
𝑘
𝑐1

11
⋅ 𝑥
5
⋅ (1 − 𝑥

6
)

𝑘𝑚1
11
+ 𝑥∗
6
⋅ (1 − 𝑥

6
)

+
𝑘
𝑐2

11
⋅ (1 − 𝑥

5
) ⋅ (1 − 𝑥

6
)

𝑘𝑚2
11
+ 𝑥∗
6
⋅ (1 − 𝑥

6
)
−
𝑘
𝑖

12
⋅ 𝑘
12
⋅ 𝑥
6

𝑘𝑖
12
+𝑀
,

d𝑥
7

d𝑡
=
𝑘
𝑐1

13
⋅ (1 − 𝑥

6
) ⋅ (1 − 𝑥

7
)

𝑘𝑚1
13
+ 𝑥∗
7
⋅ (1 − 𝑥

7
)

+
𝑘
𝑐2

13
⋅ 𝑥
6
⋅ (1 − 𝑥

7
)

𝑘𝑚2
13
+ 𝑥∗
7
⋅ (1 − 𝑥

7
)
− 𝑘
14
⋅ 𝑥
7
,

d𝑥
8

d𝑡
=
𝑘
𝑖

15
⋅ 𝑘
15
⋅ (1 − 𝑥

8
)

𝑘𝑖
15
+ 𝑥∗
7
⋅ 𝑥
7

− 𝑘
16
⋅ 𝑥
8
,

d𝑥
9

d𝑡
= −
𝑘
𝑐1

17
⋅ (1 − 𝑥

6
) ⋅ 𝑥
9

𝑘𝑚1
17
+ 𝑥∗
9
⋅ 𝑥
9

−
𝑘
𝑐2

17
⋅ 𝑥
6
⋅ 𝑥
9

𝑘𝑚2
17
+ 𝑥∗
9
⋅ 𝑥
9

+
𝑘
𝑐

18
⋅ 𝑥
8
⋅ (1 − 𝑥

9
)

𝑘𝑚
18
+ 𝑥∗
9
⋅ (1 − 𝑥

9
)
.
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