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Abstract: Notch signaling is often aberrantly activated in solid and hematological cancers and
regulates cell fate decisions and the maintenance of cancer stem cells. In addition, increased expression
of Notch pathway components is clinically associated with poorer prognosis in several types of cancer.
Targeting Notch may have chemopreventive and anti-cancer effects, leading to reduced disease
incidence and improved survival. While therapeutic agents are currently in development to achieve
this goal, several researchers have turned their attention to dietary and natural agents for targeting
Notch signaling. Given their natural abundance from food sources, the use of diet-derived agents to
target Notch signaling offers the potential advantage of low toxicity to normal tissue. In this review,
we discuss several dietary agents including curcumin, EGCG, resveratrol, and isothiocyanates, which
modulate Notch pathway components in a context-dependent manner. Dietary agents modulate
Notch signaling in several types of cancer and concurrently decrease in vitro cell viability and in vivo
tumor growth, suggesting a potential role for their clinical use to target Notch pathway components,
either alone or in combination with current therapeutic agents.
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1. Introduction

The Notch signaling pathway is a key developmental pathway that regulates many
cellular processes, including cell proliferation, differentiation, and maintenance of cancer
stem cells (CSC) [1,2]. The Notch signaling pathway is active in embryonic development,
and aberrant Notch signaling has been identified in several types of cancer, including T-cell
acute lymphoblastic leukemia (T-ALL), breast, lung, and glioma, among others [3,4]. In
adults, Notch maintains tissue-specific stem cell populations, such as those found in the
intestinal crypts, through the process of self-renewal [5]. By extension, aberrantly activated
Notch maintains the CSC population in transformed cells [6]. Clinical data show inverse
associations between the expression of Notch pathway components and patient survival in
several types of cancer, correlating Notch activation with aggressiveness of cancer [3,7–9].
Several therapeutic agents have been designed to target the Notch pathway, although the
safety and efficacy of these agents are still being evaluated [4,6,10]. Several researchers have
focused their attention on the identification of dietary or natural agents which modulate
Notch signaling. This review discusses the efficacy of several dietary and natural agents in
the regulation of the Notch signaling pathway in the context of cancer.

2. Notch Signaling

Notch signaling is activated by direct contact between Notch ligands and receptors
expressed on opposing cells. Five single-pass transmembrane Notch ligands (Jagged-1,
Jagged-2, and Delta-like (DLL)-1, -3, and -4) have been identified in mammals. Notch
ligands activate one of four membrane-bound Notch receptors (Notch-1, -2, -3, -4). Contact
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between a ligand and a receptor induces a S2 cleavage of the Notch receptor by a disintegrin
and metalloprotease (ADAM)-10, liberating the Notch extracellular domain (NECD), which
is endocytosed into the ligand-expressing cell [1,5,11]. Notch can also be activated by
ligand-independent mechanisms [12]. ADAM-17 preferentially performs S2 cleavage under
ligand-independent conditions [13].

The cleavage of Notch by ADAM-10 or ADAM-17 is followed by an S3/S4 cleavage
of Notch by the gamma secretase complex [14]. Gamma secretase cleavage liberates the
Notch intracellular domain (NICD). NICD translocates to the nucleus, where it binds
the transcription factor CSL that represents CBF-1/RBPJ-κ (recombinant signal binding
protein for immunoglobulin kappa J region) in mammals [1]. The binding of NICD to
RBP-Jκ induces the recruitment of mastermind-like protein (MAML) and the transcriptional
activation complex, thereby activating transcription [11,15]. Classic Notch downstream
targets include Hes and Hey family members, which are frequently used as markers of
pathway activation.

Of particular interest in cancer biology is the role of Notch in regulation of the CSC
population. CSCs express detoxifying and drug efflux proteins such as ATP-binding cas-
sette subfamily G2 (ABCG2) and aldehyde dehydrogenase (ALDH), which confer treatment
resistance [16]. The survival of CSCs following treatment permits tumor regrowth and
subsequent patient relapse [17]. The strength of evidence that Notch contributes to CSC
maintenance is high. Breast cancer cells with high Notch pathway activity demonstrate en-
hanced sphere-formation capacity in vitro and tumor-formation capacity in vivo compared
to cells with low Notch activity [18]. In accordance with this, knock-down or overexpression
of Notch inhibits or enhances sphere formation, respectively, in cancer cells [19,20].

In addition to its direct role in regulating CSCs and epithelial to mesenchymal tran-
sition (EMT), the Notch pathway cross-talks with several pathways including Ras, Wnt,
nuclear factor kappa B (NF-κB), Janus Kinase/Signal Transducer and Activator of Transcrip-
tion (JAK/STAT) signaling and others, which contribute to cancer cell proliferation [21].
The simultaneous overexpression of Ras and Notch-1 induced the malignant transformation
of HMLE human mammary epithelial cells, while the overexpression of either of these two
genes alone did not result in transformation, suggesting a cooperative relationship between
the pathways [22]. The Notch ligand Jagged-1 is a transcriptional target of Wnt signaling
pathway [23]. In addition, β-catenin, a component of Wnt signaling pathway, can directly
bind NICD in HEK293 human embryonic kidney cells, and the overexpression of β-catenin
increases Hes-1 reporter activity in mouse embryonic fibroblasts [24]. These data suggest
that Wnt activation can augment Notch pathway activity. Both NF-κB and JAK/STAT
signaling cross-talk with Notch in a bi-directional manner [25]. NF-κB is a Notch target
gene [3], suggesting that Notch inhibition may also result in NF-κB pathway deactivation.
In addition, Notch is a regulator of angiogenesis in cancer cells [26]. Collectively, these
data indicate that the modulation of Notch may alter the activity of several other pathways
relevant to tumor progression.

Notch signaling regulates gene expression in a cell-type- and context-dependent
manner [2,3,11]. Notch has been shown to have both an oncogenic role and a tumor-
suppressive role in different cancer cells, depending on the cellular context [2,10]. Therefore,
Notch mutations are either activating or inactivating, in function of the overall role that
Notch plays in that specific cellular context as either an oncogene or a tumor suppressor [10].

Several approaches to modulating Notch signaling in cancer are actively being re-
searched, including the use of monoclonal antibodies and gamma secretase inhibitors
(GSIs) [4,10]. GSI use in cancer, while sometimes efficacious in tumor remission, is associ-
ated with undesirable side effects, including diarrhea, nausea, and vomiting [4,6]. Given
the crucial role of Notch signaling in normal tissue, an ideal therapeutic agent would
specifically target Notch signaling in cancer cells, while leaving Notch in the normal tissue
unaffected. The use of diet-derived agents, either alone or in combination with current
chemotherapeutic agents, may be a possible route for targeting Notch in cancer cells with
minimal toxicity to the surrounding healthy tissue.
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3. Modulation of Notch Pathway by Dietary Agents

The appeal of diet-derived solutions for the prevention of cancer originated from
epidemiological data suggesting that certain populations may have a lower cancer risk
based on their dietary patterns. Correlations have been identified, for example, between
the Mediterranean diet and a reduced cancer risk [27]. Reductionist examinations of diet
patterns indicate that specific foods and food bioactive compounds underlie the reduced
risk of disease development, suggesting that these bioactive compounds could be used in
chemopreventive or as adjuvant treatment-focused models.

3.1. Curcumin

Curcumin, the bright yellow bioactive compound derived from Curcuma longa species
plants, and its analogs, reduced the expression of Notch pathway components including
Notch-1, Jagged-1, components of the gamma secretase complex, and Notch downstream
targets in several cancer models (Figure 1, Table 1) [28–35]. Curcumin analogs or enhanced
methods of delivery are preferred given the low bioavailability of curcumin from its
dietary source, turmeric [36]. In a xenograft mouse model with HCT116 human colon
cancer cells, oral administration of the turmeric/phospholipid formulation Meriva®, in
combination with oxaliplatin treatment, inhibited NICD-1 in tumor tissue [29], suggesting
that curcumin may improve the efficacy of anticancer drugs (Table 2). Curcumin modulates
the expression of pathways and processes downstream of Notch. In U2OS osteosarcoma
cells, curcumin inhibits the expression of Notch-1 and matrix metalloproteases (MMP)-2,
and -9 [31]. Importantly, curcumin treatment also inhibits invasion in U2OS cells, and
invasion is rescued by the overexpression of Notch-1 [31].
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Figure 1. Effect of dietary agents on Notch signaling pathway in cancer cells. Notch ligands,
including Jagged-1, bind to, and permit cleavage of, the Notch receptor. The Notch extracellular
domain is first cleaved by ADAM-10; Notch intracellular domain (NICD) is then cleaved by the
gamma secretase complex. NICD translocates and activates transcription in the nucleus. Dietary
agents that modulate Notch in cancer cells in vitro are listed. EGCG, epigallocatechin-3-gallate; DATS,
diallyl trisulfide; RBP-Jκ, recombinant signal binding protein for immunoglobulin kappa J region;
MAML, mastermind-like protein.
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Table 1. Effect of dietary agents on Notch pathway components in vitro by cancer type.

↑ Induced ↓ Suppressed
Dietary
Agent Cancer Type Notch-1 Notch-2 Notch-3 Jagged-1 Hes-1 Hey-1 References

Curcumin Cholangiocarcinoma ↓ ↓ [30]
Colorectal *, # ↓ ↓ [29,32]
Esophageal ↓ ↓ ↓ [33]
Lymphoma ↓ [28]
Osteosarcoma ↓ ↓ ↓ [31]
Prostate ↓ ↓ [34]

DATS Osteosarcoma ↓ ↓ [37]
Breast ↓ [38]

Vitamin D Breast * ↓ ↓ ↓ ↑ [39]
EGCG Colorectal ↑ ↓ ↓ [40]

Head and Neck ↓ [41]
Neuroblastoma ↓ [42]
Tongue ↓ ↓ ↓ [43]

Genistein Breast ↓ [44]
Colon ↓ [45]
Neuroblastoma ↓ ↓ [46]

Resveratrol Cervical ↓ ↓ ↓ [47]
Carcinoids ↑ [48]
Glioblastoma ↑ [49]
Ovarian ↓ ↓ [50]
T-ALL ↓ ↓ [51]
Thyroid ↑ ↑ [52]

Retinoic Acid Breast ↓ [53]
Glioblastoma ↓ ↓ [54]
Neuroblastoma * ↓ [55]
Ovarian ↓ [56]
Pancreatic * ↓ [57]

PEITC Breast ↓ ↓ [58]
Pancreatic ↓ ↓ [59]

Sulforaphane Pancreatic ↓ [60]
Prostate ↓ ↓ [61]

* Indicates use of dietary analog; # indicates alternate delivery method e.g., nanoparticle; DATS, diallyl trisulfide;
EGCG, epigallocatechin-3-gallate; PEITC, phenethyl isothiocyanate.

Table 2. Effect of dietary agents on Notch pathway components in vivo by cancer type.

↑ Induced ↓ Suppressed
Dietary
Agent Concentration Cancer Type Effect References

Curcumin
0.2% equivalent
curcuminoids as

Meriva®, #
Colorectal ↓ NICD-1, Ki67

[29]
↑ cleaved Caspase 3
↓ tumor volume; additive effect on tumor volume

with oxaliplatin

Honokiol 200 µg/kg body
weight Colorectal ↓ NICD-1, Jagged-1, Hes-1, Presenilin-1, Nicastrin [62]

↓ tumor volume

Sulforaphane 6 µmol SFN in 0.1
mL PBS Prostate ↓ NICD-2 [63]

EGCG 25 mg/kg body
weight Lip, Tongue ↓ Notch-1, Notch-2, Hes1 [43]

Vitamin D 10 mg/kg body
weight of MT19c * Ovarian ↓ Notch signaling pathway

[64]↑ DNA fragmentation
↓ tumor volume

# Indicates alternate delivery method e.g., nanoparticle; Meriva®, turmeric/phospholipid formulation; * Indicates
use of dietary analog; MT19c, vitamin D analog; SFN, sulforaphane; PBS, phosphate buffer saline; NICD, Notch
intracellular domain.

3.2. Genistein

Genistein is a polyphenolic, soy-derived isoflavone. Mammary epithelial cells from
rats fed lifelong diets including soy protein isolate or genistein supplementation had
reduced Notch-2 mRNA compared to casein-fed rats, although whether this inhibitory
effect translates to a chemopreventive effect cannot be determined [65]. In breast, colon,
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and neuroblastoma cancer cell lines, genistein suppressed Notch-1 protein expression
(Table 2) [44–46]. In breast cancer cells, the suppression of Notch-1 by genistein coincides
with the downregulation of cyclin B1 and Bcl-2, and this effect is mimicked by Notch-1
siRNA treatment [44]. Further research is required to determine if cell cycle inhibition and
apoptosis induction by genistein are a direct downstream consequence of Notch inhibition.

3.3. EGCG and Tea Polyphenols

The green tea polyphenol epigallocatechin-3-gallate (EGCG) modulates the expression
of Notch pathway components in vitro (Table 1). EGCG inhibited Notch-1 in neuroblastoma,
cholangiocarcinoma, and colon cancer cell lines, and in head and neck squamous cell
carcinoma CSCs [41,42,66,67]. EGCG inhibited Notch-2 in colon cancer cell line [40], and
nearly ablated Hes-1 gene expression in colon cancer cells, suggesting pathway deactivation.
The EGCG analog theaflavin-3,3’-digallate (TF3) inhibited NICD-1 expression in ovarian
cancer OVCAR-3 cells [68]. In squamous cell carcinoma of the tongue cell lines, treatment
with EGCG modulated Notch-4 expression, although the direction of this effect (up or
down) varied by EGCG incubation time and cell line [69].

EGCG and its related compounds modulate Notch-related pathways and processes,
including angiogenesis, EMT, and maintenance of a CSC phenotype. TF3 inhibited c-Myc,
hypoxia-inducible factor 1α (HIF-1α), and VEGF in ovarian cancer cells [68]. The inhibition
of c-Myc, HIF-1α, and VEGF by TF3 was reversed by ectopic expression of NICD-1 [68].
EGCG induced E-cadherin and suppressed MMP-2 and -9 in neuroblastoma cells [42].
EGCG-mediated Notch inhibition reduced sphere formation in head and neck carcinoma
cells, and this effect was augmented by the addition of cisplatin [41]. Furthermore, pre-
treatment of head and neck CSCs with cisplatin, either alone or in combination with EGCG,
prior to grafting into BALB/c nude mice, inhibited tumor growth in both models, and the
effect was strongest with co-treatment [41]. In a K-Ras transgenic mouse model, EGCG
was shown to inhibit tumoral lesions on lip and tongue by down-regulation of the Notch
pathway [43]. Taken together, these data support the modulation of Notch receptors and
activity by EGCG, as well as a role for EGCG in reducing the markers of an aggressive
cancer phenotype.

3.4. Resveratrol

Studies of resveratrol, the stilbene found in the skins of grapes, peanuts, and blue-
berries, underscore the context-dependent nature of Notch signaling as both oncogenic-
and tumor-suppressive in cancer cells (Table 1). Accumulating evidence suggests that
certain types of cancer, including neuroendocrine tumors and brain cancers, rely on Notch
activation for tumor suppression [70,71].

Carcinoid tumors are slowly growing neuroendocrine tumors that usually grow in the
gastrointestinal tract or lungs. In cultured neuroendocrine cancer cells from gastrointestinal
and pulmonary carcinoids, resveratrol treatment induced activation of Notch signaling,
as indicated by Notch-2 induction and the suppression of achaete-scute complex-like
1 (ASCL-1), a downstream target of Notch. In addition, resveratrol suppressed expression
of neuroendocrine hormones and reduced carcinoid proliferation in vitro and in vivo [48].

Resveratrol increased Notch-2 mRNA, induced apoptosis and suppressed neuroen-
docrine marker ASCL-1 in medullary thyroid cancer (MTC) [52]. In anaplastic thyroid
carcinoma (ATC), resveratrol activated Notch-1 signaling and suppressed growth of ATC
cells in vitro and in vivo [72]. Taken together, these data support a tumor-suppressive role
of Notch in MTC and ATC [52,72].

In addition, resveratrol induced Notch-1 in glioblastoma cells while the Notch-1
inhibitor MRK-003 partially reversed the resveratrol-mediated inhibition of proliferation,
supporting a tumor-suppressive role of Notch in glioblastoma [49]. In medulloblastoma
cells, resveratrol induction of Notch-1 and Notch-2 had a minimal effect on meduloblastoma
cell growth [73].
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Resveratrol suppressed Notch in cell models of T-ALL, cervical, ovarian, and breast
cancer [47,50,51,74]. Culturing ovarian and cervical cancer cells with a GSI caused a
decrease in Hes-1 protein expression without altering viability, suggesting that Notch
inhibition is dispensable to cancer cell death [47,50]. These data collectively underscore the
context-dependent nature of Notch signaling.

3.5. Retinoic Acid

Retinoic acid and related retinoids inhibit Notch expression and signaling in cultured
cancer cells (Figure 1, Table 1). All-trans retinoic acid (ATRA) inhibited Notch-1 expression
in glioblastoma, breast and ovarian cancer cells, and NICD-1 in glioblastoma cells [54,56,75].
ATRA suppressed Notch-3 protein in MDA-MB-231 breast cancer cells [53]. The retinoids
4-HPR, Cl-AHPC, and AHP3 inhibited Notch-1 in neuroblastoma [55] and pancreatic cancer
cell lines [57].

The retinoid 4-HPR induced E-cadherin expression in neuroblastoma cells [55]. In
contrast, neuroblastoma cells treated with 13-cis retinoic acid displayed increased migration
compared to untreated cells in a Notch-independent manner. However, treatment of 13-cis
retinoic acid induced cell-cycle arrest and increased the fraction of Annexin-V-positive
cells [76]. Historically, ATRA has been used as a differentiation-inducing agent [77]. Treat-
ment with ATRA reduced sphere size and formation in glioblastoma and ovarian cancer
cells, and inhibited ALDH-1 in ovarian cancer cells [54,56]. Pre-treating glioblastoma and
ovarian cancer cells with ATRA prior to grafting into SCID mice impaired tumor formation,
suggesting that ATRA reduces the tumorigenic capacity of cancer cells [54,56]. Furthermore,
in a glioblastoma xenograft model, dissociated ATRA-treated tumors displayed reduced
sphere formation when cultured ex vivo compared to untreated dissociated tumor cells [54].
The retinoids Cl-AHPC and AHP3 also blocked sphere formation in pancreatic cancer
cells [57]. These data support an anti-CSC role for ATRA in vitro and in vivo.

3.6. Sulforaphane

Sulforaphane, an isothiocyanate derived from cruciferous vegetables, inhibited full-
length Notch-1, -2, and -4 protein expression in prostate cancer cells, while upregulating the
expression of NICD-1, -2, and -4 [63]. Hes-1 reporter activity was induced by sulforaphane
in LNCaP and PC-3 prostate cancer cells [63]. Tumor tissue from transgenic adenocarci-
noma mouse prostate mice treated with sulforaphane, in contrast, had reduced NICD-2
expression compared to control-treated animals [63] (Table 2). Sulforaphane treatment
inhibited prostate cancer cell migration and the expression of EMT-related proteins, al-
though this effect was Notch-independent [61,63]. Sulforaphane inhibited Notch-1, and
negated a gemcitabine-induced rise in Notch-1 expression in pancreatic cancer cells cul-
tured in vitro [60]. Sulforaphane inhibited tumor growth in xenograft nude mice when
MiaPaCa2 pancreatic cancer cells were pre-treated with the agent before grafting, and
when sulforaphane was administered after grafting [60], suggesting chemopreventive and
anticancer roles of sulforaphane in vivo. Further studies are required to determine the
effect of sulforaphane on Notch in preclinical in vivo models of pancreatic cancer.

3.7. Vitamin D

Results regarding the efficacy of vitamin D as a Notch modulator are mixed. Treatment
with 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) had no effect on Notch-2, Notch-4, or
Jagged-1 protein expression in a cell model of glioblastoma, or on Notch-1 or Jagged-1
in keratinocytes [78,79]. In the MCF10DCIS.com breast cancer cells, the Gemini vitamin
D analog BXL0124 blocked Notch-1 activation and the expression of Jagged-1, -2, and
DLL-1 (Table 1) [39]. Conversely, BXL0124 rapidly induced the message and protein
expression of Hes-1 in MCF10DCIS.com cells [39]. Knock-down of Hes-1 with siRNA
partially reversed the BXL0124-mediated suppression of NICD-1, Jagged-2, and c-Myc
protein. Hes-1 overexpression in the absence of BXL0124 suppressed NICD-1, Jagged-2, and
c-Myc, suggesting a negative feedback loop in which Hes-1 inhibits Notch activation. In
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the SUM159 triple-negative breast cancer cells, the vitamin D compounds down-regulated
Notch-1, Notch-2, Notch-3, Jagged-1, Jagged-2, and Hes-1 [80]. Tumor tissue from SKOV-
3 xenograft nude mice i.p. treated with the vitamin D analog MT19c had decreased
expression of Notch pathway components, and increased DNA fragmentation relative to
control (Table 2) [64]. Further studies on the role of vitamin D and its analogs on Notch
modulation across several types of cancer are warranted.

3.8. Other Agents

Honokiol, a traditional Chinese and Japanese herbal therapeutic, inhibited Notch path-
way components, including Notch-1 and -2, Jagged-1, Hes-1, and subunits of the gamma sec-
retase complex in melanoma, hepatocellular carcinoma, and colon cancer cells [20,62,81,82].
In addition, sphere formation and cell survival were inhibited by honokiol treatment, alone
or in combination with a single dose of ionizing radiation at 5 Gy [20,81]. Honokiol in
combination with ionizing radiation inhibited NICD-1, Jagged-1, Hes-1, members of γ
secretase complex, and tumor growth in vivo (Table 2) [62].

Withaferin A, a lactone found in the leaves of Withania somnifera (Indian Winter cherry)
suppressed NICD-1 and induced NICD-2 and NICD-4 expression and RBP-Jκ reporter
activity in breast cancer cells [83]. Withaferin A suppressed ALDH1 activity, although in a
Notch-independent manner [84]. Withaferin A inhibited NICD-1 in SKOV3 ovarian cancer
cells and colon cancer cell lines [85,86]. Importantly, the viability of the normal colon cell
line FHC was not affected by withaferin A treatment [86], suggesting low toxicity towards
normal tissue. In A2780 ovarian cancer cells, withaferin A inhibited Notch-1 and enhanced
the therapeutic effect of Doxil, a liposomal preparation of doxorubicin [87].

Hesperetin, a flavonoid found in citrus fruits, activates Notch-1 signaling, and induced
apoptosis and expression of differentiation markers in ATC cells [88].

Phenethyl isothiocyanate (PEITC), a cruciferous-vegetables-derived isothiocyanate,
suppressed Notch-1 and Notch-2 levels, reduced cell proliferation, and induced apoptosis
in pancreatic cancer cells [59]. In HER2-positive breast and ovarian carcinoma cells, PEITC
decreased the expression of NICD-1 and targeted both differentiated cells and CSCs [58].

Diallyl trisulfide (DATS), a dietary bioactive compound derived from Allium veg-
etables, inhibited the expression of Notch-1, and Hes-1 in osteosarcoma cells [37]. DATS
suppressed Notch ligands Jagged-1 and Jagged-2 in MDA-MB-231 and MCF-7 breast cancer
cells, and in Harvey-ras (H-ras) transformed MCF10A-H-Ras breast epithelial cells [38].
In addition, DATS inhibited alpha-secretases ADAM-10 and ADAM-17 in breast cancer
cells [38], supporting a role for DATS in the inhibition of Notch pathway components often
overexpressed in breast tumors.

4. Conclusions

In summary, the Notch signaling pathway plays a key role in the development and
progression of cancer. Targeting Notch is also important due to the pathway’s extensive
degree of cross-communication with other signaling pathways, including Wnt, NF-κB, and
JAK/STAT, which confer survival advantages to cancer cells. In addition, Notch activation
is critically involved in the maintenance of highly tumorigenic and treatment-resistant
CSCs, which play a role in tumor survival and recurrence. Several dietary agents including
curcumin, EGCG, resveratrol, and isothiocyanates have been shown to modulate Notch
pathway components in a context-dependent manner. Further studies are needed to identify
causal relationships between the modulation of Notch components by dietary agents and
tumor cell growth and metastasis. In addition, future studies characterizing the role of
dietary agents, alone or in combination with chemotherapeutic agents, on the modulation
of Notch signaling will further our understanding of Notch biology and improve cancer
prevention and treatment.
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