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METHODOLOGY

Dimension reduction and shrinkage 
methods for high dimensional disease risk 
scores in historical data
Hiraku Kumamaru1,2*, Sebastian Schneeweiss1, Robert J. Glynn1, Soko Setoguchi3 and Joshua J. Gagne1

Abstract 

Background:  Multivariable confounder adjustment in comparative studies of newly marketed drugs can be limited 
by small numbers of exposed patients and even fewer outcomes. Disease risk scores (DRSs) developed in histori-
cal comparator drug users before the new drug entered the market may improve adjustment. However, in a high 
dimensional data setting, empirical selection of hundreds of potential confounders and modeling of DRS even in the 
historical cohort can lead to over-fitting and reduced predictive performance in the study cohort. We propose the 
use of combinations of dimension reduction and shrinkage methods to overcome this problem, and compared the 
performances of these modeling strategies for implementing high dimensional (hd) DRSs from historical data in two 
empirical study examples of newly marketed drugs versus comparator drugs after the new drugs’ market entry—dab-
igatran versus warfarin for the outcome of major hemorrhagic events and cyclooxygenase-2 inhibitor (coxibs) versus 
nonselective non-steroidal anti-inflammatory drugs (nsNSAIDs) for gastrointestinal bleeds.

Results:  Historical hdDRSs that included predefined and empirical outcome predictors with dimension reduction 
(principal component analysis; PCA) and shrinkage (lasso and ridge regression) approaches had higher c-statistics 
(0.66 for the PCA model, 0.64 for the PCA + ridge and 0.65 for the PCA + lasso models in the warfarin users) than an 
unreduced model (c-statistic, 0.54) in the dabigatran example. The odds ratio (OR) from PCA + lasso hdDRS-stratifica-
tion [OR, 0.64; 95 % confidence interval (CI) 0.46–0.90] was closer to the benchmark estimate (0.93) from a randomized 
trial than the model without empirical predictors (OR, 0.58; 95 % CI 0.41–0.81). In the coxibs example, c-statistics of 
the hdDRSs in the nsNSAID initiators were 0.66 for the PCA model, 0.67 for the PCA + ridge model, and 0.67 for the 
PCA + lasso model; these were higher than for the unreduced model (c-statistic, 0.45), and comparable to the demo-
graphics + risk score model (c-statistic, 0.67).

Conclusions:  hdDRSs using historical data with dimension reduction and shrinkage was feasible, and improved 
confounding adjustment in two studies of newly marketed medications.

Keywords:  High dimensional propensity score, Disease risk score, Historical data, Shrinkage, Comparative study, 
Confounding
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Background
Comparative effectiveness and safety assessments of 
newly marketed medical products in routine care are 
now widely conducted using large databases, including 
administrative claims databases and electronic health 

record data [1–3]. The numbers of potential confounders 
available for studies in these databases are large, and the 
utility of standard multivariable regression approaches 
can be limited especially when the number of study out-
comes is small [4]. Propensity scores (PSs) have been 
used to circumvent this problem by modeling the expo-
sure instead of the outcome [5–7]. In the presence of 
many potential confounders or proxies thereof, an algo-
rithm for automated confounder selection may reduce 
bias beyond adjustment for variables pre-specified by 

Open Access

Emerging Themes in
Epidemiology

*Correspondence:  hik205@mail.harvard.edu 
1 Division of Pharmacoepidemiology and Pharmacoeconomics, 
Department of Medicine, Brigham and Women’s Hospital, Harvard 
Medical School, 1620 Tremont Street (Suite 3030), Boston, MA 02120, USA
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12982-016-0047-x&domain=pdf


Page 2 of 10Kumamaru et al. Emerg Themes Epidemiol  (2016) 13:5 

researchers in studies using administrative claims data-
bases [8]. The high dimensional PS (hdPS) algorithm 
generates, selects, and incorporates into a PS model the 
top potential confounders from thousands of empirically-
identified diagnosis, procedure, and drug codes based 
on their strength of association with the outcome and 
exposure. However, for a new medical product in its early 
marketing phase, the hdPS approach can be limited due 
to evolving propensities over time and small numbers 
of exposed patients and outcomes [9]. Small number of 
outcomes can lead to unstable estimates of the outcome-
covariate associations, and to residual confounding [10].

Historically derived disease risk scores (DRSs) may be 
a useful alternative to PSs in this setting. Although the 
number of individuals exposed to the new drug and the 
number of outcomes may be limited in the early market-
ing phase, there often exist many individuals exposed to 
the comparator product in the period preceding market 
entry of the new drug. Using a historical cohort to fit a 
DRS model and then applying the model as a prediction 
rule to estimate disease risk for patients using the drugs 
of interest after the market entry enables adjustment for 
a large number of potential confounders without having 
to fit a model in the study cohort [9]. While DRSs offer 
similar dimension reduction benefits as PSs and also have 
an important balancing property distinct from that of the 
PS for alternatively treated patients [11], empirical selec-
tion and inclusion of hundreds of potential confounders 
into the DRS estimation model will lead to over-fitting 
in the historical cohort and reduced predictive perfor-
mance in the study cohort. In order to stably estimate 
historical high-dimensional DRSs (hdDRSs) with large 
numbers of variables, we propose the use of dimension 
reduction via principal component analysis and shrink-
age with ridge and lasso regression. These techniques 
have been used often for prediction modeling in genetic 
epidemiology [12–14], but less frequently in clinical and 
pharmaco-epidemiology.

The objective of this study is to compare different 
approaches for hdDRS estimation in the historical com-
parator drug cohort for confounding adjustment in the 
concurrent study cohort of new and comparator drug ini-
tiators. We use two case studies to compare the methods: 
warfarin versus dabigatran on major hemorrhagic events 
and cyclooxygenase-2 inhibitor (coxibs) versus non-
selective non-steroidal anti-inflammatory drugs (nsN-
SAIDs) on gastrointestinal (GI) bleeding events.

Methods
Data sources, study cohorts, and outcomes
Dabigatran example
The dabigatran versus warfarin study was conducted 
using the United Healthcare claims database. As the 

concurrent study cohort, we identified patients 18 years 
or older, who initiated warfarin or dabigatran after 
October 2010, when dabigatran came into the market, 
through June 2012 (Fig.  1). Cohort entry was defined 
by the first prescription of medications which was pre-
ceded by 365 days of absence of either drug. We required 
patients to have a diagnosis of atrial fibrillation as defined 
by International Classification of Diseases, Ninth Revi-
sion, Clinical Modification (ICD-9-CM) code 427.31 
anywhere on record prior to initiation, and excluded 
patients with prior diagnoses or procedures related to 
valvular heart disease (Additional file 1: Table S1), venous 
thromboembolism, or end stage renal disease [15] in the 
365 days before cohort entry. Historical cohort of warfa-
rin initiators consisted of patients who initiated warfarin 
between October 2008 and September 2009, with the 
same inclusion criteria. We followed patients for 180 days 
after cohort entry for occurrence of major hemorrhagic 
events, including intracranial hemorrhage, upper GI 
hemorrhage, lower and unspecified GI bleed, urogenital 
bleed, and other major bleeds captured using discharge 
diagnoses and procedure codes (listed in the Additional 
file  1: Table S2). Based on the results reported in the 
clinical trial, we used a relative risk of 0.93 for dabigatran 
against warfarin as a benchmark [16], knowing that this 
is a target with certain uncertainty.

Coxibs example
The coxibs versus nsNSAIDs study was conducted 
using the Pennsylvania Pharmaceutical Assistance 
Contract for Elderly (PACE) program database linked 
to Medicare claims data [17]. In the concurrent study 
cohort, we included patients who initiated any nsN-
SAIDs, celecoxib, or rofecoxib between January 1999 
and December 31, 2002. We defined initiation as the 
first dispensing of one of these drugs following a period 
of at least 6 months of absence, and designated the date 
of dispensing as the cohort entry date. nsNSAIDs initia-
tors with entry dates between January 1, 1997 through 
Dec 31, 1998, before celecoxib came on to the market, 

Fig. 1  Patient enrollment and follow-up in the example studies
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comprised the historical cohort. We followed patients 
for 180 days after their entry for occurrence of GI bleeds, 
captured using a validated claims-based algorithm [18]. 
Based on the reports from randomized clinical trials and 
meta-analyses, we used relative risk of 0.50–0.64 as a 
benchmark [19–22].

The studies were approved by the review board of our 
institution and were carried out under an established 
data use agreement.

High‑dimensional disease risk score estimation using 
historical data
We used the historical cohorts to conduct hdDRS esti-
mation via three steps, similarly to the hdPS algorithm 
[8]: (1) empirical variable identification; (2) variable pri-
oritization; and (3) model specification. The models were 
then used in a fourth step to estimate the hdDRS in the 
concurrent cohorts.

Variable identification and prioritization
In each of the data dimensions of inpatient diagno-
ses (ICD-9-CM), outpatient diagnoses (ICD-9-CM), 
inpatient and outpatient procedures (ICD-9-CM and 
Current Procedural Terminology, 4th edition), drug 
prescriptions (generic names), and nursing home 
diagnoses (ICD-9-CM), we identified the 300 most 
prevalent codes. Prevalence was calculated as the pro-
portion of eligible patients in the historical cohorts 
with the code on record at least once in the 365-day 
period immediately preceding each patient’s cohort 
entry date.

We assessed the association of each code with the out-
come by fitting univariable logistic regression models 
predicting the study outcomes. The total of 1500 (300 × 5 
data dimensions) codes were ranked based on the esti-
mated likelihood of these models, and the 500 variables 
with the highest likelihoods were selected.

Model specification
We developed 14 multivariable logistic regression mod-
els to predict the outcome of interest in the historical 
cohorts using combinations of the following data com-
ponents: (a) demographic variables; (b) predefined risk 
factors for the outcome (listed in Additional file 1: Table 
S3); (c) established risk prediction scores: the HAS-BLED 
[23] score for major hemorrhagic events in the dabi-
gatran study and combined comorbidity score [24] for 
gastrointestinal bleeds in the coxib study (as there is no 
established risk score for GI bleeds in nsNSAIDs or cox-
ibs users, we utilized the combined comorbidity score, 
which captures overall comorbidity burden among older 
individuals); and (d) the 500 empirically-selected codes.

We used dimension reduction via principal component 
analysis (PCA) and shrinkage with lasso and ridge regres-
sion in some models to reduce overfitting. For models 
involving principal components, we first conducted the 
PCA to identify 30 principal components based on the 
500 empirically-selected codes and then included either 
the top 10 or all 30 components in the DRS models. We 
chose a maximum of 30 principal components to main-
tain the event-to-variable ratio above 5 in the model with 
demographic variables. Ridge and lasso regressions were 
conducted using the ‘glmnet’ package in R [25]. Shrink-
age tuning parameter, lambda, was selected through 
10-fold cross validation minimizing the deviance of the 
prediction model in the testing sample.

To evaluate the added value of the empirically-selected 
codes, we constructed models including demographic 
variables, predefined variables, and established risk 
scores with and without the empirically selected codes. 
To evaluate the effect of PCA and shrinkage, a model 
including the 500 empirically-identified codes without 
dimension reduction or shrinkage was also created.

The coefficients from the 14 different models devel-
oped in the historical cohort were applied to the patients 
in the concurrent cohort to predict the baseline proba-
bility (DRS) of the outcome for each patient at the index 
date.

Statistical analysis and model evaluation
We report baseline characteristics of the historical and 
concurrent cohorts by presenting proportions and means 
of the demographic and predefined variables as well as the 
established risk scores. We evaluated the predictive per-
formances of the DRS models by assessing discrimination 
(c-statistics) and calibration [Hosmer–Lemeshow (H–L) 
test] of the DRSs applied to the concurrent cohort. The 
c-statistics and H–L test statistics were estimated in the 
new drug and the comparator drug initiators separately. 
As an additional visual aid, we also present calibration 
plots for a selected set of models in the dabigatran study. 
We also report the nominal c-statistics of the models in 
the historical cohort and their 95  % confidence inter-
vals, as well as the c-statistics from 10-fold cross valida-
tion to evaluate over-fitting of the models in the historical 
cohorts. We assessed the correlation between the num-
ber of events per variable in the DRS models and the 
gap between nominal and cross-validated c-statistcs by 
Spearman’s rank correlation. Finally, we estimated the 
DRS-adjusted relative odds of the study outcome for new 
drug initiation compared to comparator drug initiation 
using logistic regression stratified by DRS deciles. We 
selected the use of stratification over other methods such 
as matching so as to compare the effect estimates among 
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the same population. All analyses were conducted using 
SAS 9.3 (SAS Institute, Inc., Cary, NC) and R version 3.0.2 
(Vienna, Austria).

Results
Population characteristics and observed numbers of 
study outcomes in the two example studies are presented 
in Tables 1 and 2.

Dabigatran example
We identified 10,014 patients initiating warfarin dur-
ing the historical period, and 5360 warfarin initiators 
and 3874 dabigatran initiators during the concurrent 
period. Of these, 254 (2.5  %) historical warfarin ini-
tiators experienced hemorrhagic events during the 
180  days after initiation, while 129 (2.4  %) and 49 
(1.3 %) patients had hemorrhagic events in the concur-
rent warfarin and dabigatran initiators, respectively. 
In general, dabigatran initiators were younger and had 
fewer comorbidities than warfarin initiators in both 
periods. The unadjusted OR for hemorrhagic events 
within 180 days was 0.52 [95 % confidence interval (CI) 
0.37, 0.72].

Coxibs example
We identified 28,533 nsNSAIDs initiators in the histori-
cal cohort, and 15,930 nsNSAID and 31,875 coxib ini-
tiators in the concurrent cohort. During the 180 days of 
follow-up, we identified 201 (0.7 %), 87 (0.6 %) and 189 
(0.6  %) GI bleeding events in the historical nsNSAID, 
concurrent nsNSAID, and coxib initiators, respectively. 
Coxib initiators were older and had more comorbidities, 
higher frequencies of health service use, and more medi-
cation use as compared to nsNSAID initiators in either 
period. The unadjusted OR for GI bleeds within 180 days 
was 1.09 (95 % CI 0.84, 1.40).

Discrimination and calibration
Discrimination and calibration statistics of the 14 DRS 
models in the historical cohort as well as in the concur-
rent cohort are presented in Tables 3 and 4. As the num-
ber of events-per-variable included in the DRS model 
decreased, the gap between the nominal and the cross 
validated c-statistics in the historical cohort increased, 
when no shrinkage was applied (Spearman correlation 
coefficients: −0.89 for dabigatran study; −0.98 for coxib 
study). Smaller events-per-variable ratios were also 

Table 1  Baseline characteristics and observed risk of major hemorrhagic events within 180 days of the warfarin and dab-
igatran initiators in the historical and concurrent cohorts

GI bleed gastrointestinal bleeding, HAS-BLED HAS-BLED hemorrhage risk score, hosp. hospitalizations, Num. number
a  Enrollment period

Variable Historical cohort (Oct 1 2008–Sept 30 2010a) Concurrent cohort (Oct 1 2010–June 30 2012a)

Warfarin (N = 10,014) Warfarin (N = 5360) Dabigatran (N = 3874)

Age, mean (SD) 63.9 (11.5) 64.6 (11.8) 61.8 (11.5)

Female, n (%) 2974 (29.7) 1686 (31.5) 1040 (26.8)

Nursing home stay, n (%) 376 (3.8) 282 (5.3) 3815 (1.5)

Num. of medications, mean (SD) 11.0 (6.4) 11.2 (6.5) 10.1 (5.9)

Num. of physician visits, mean (SD) 15.8 (18.9) 17.1 (20.8) 12.9 (12.4)

At least 1 hospitalization, n (%) 4911 (49.0) 2686 (50.1) 1594 (41.2)

Use of proton pump Inhibitors, n (%) 1864 (18.6) 1092 (20.4) 689 (17.8)

Use of antiplatelets, n (%) 1155 (11.5) 611 (11.4) 399 (10.3)

Use of nsNSAIDs, n (%) 2231 (22.3) 1105 (20.6) 842 (21.7)

ICH hosp., n (%) 25 (0.2) 20 (0.4) 5 (0.1)

GI bleed hosp., n (%) 69 (0.7) 40 (0.7) 16 (0.4)

GI bleed, n (%) 457 (4.6) 262 (4.9) 152 (3.9)

Peripheral artery disease, n (%) 1190 (11.9) 747 (13.9) 362 (9.3)

Anemia, n (%) 1412 (14.1) 855 (16.0) 400 (10.3)

Chronic liver disease, n (%) 217 (2.2) 136 (2.5) 89 (2.3)

Chronic kidney disease, n (%) 1524 (15.2) 1046 (19.5) 452 (11.7)

Alcohol addiction, n (%) 247 (2.5) 116 (2.2) 85 (2.2)

Drug abuse, n (%) 106 (1.1) 53 (1.0) 46 (1.2)

HAS-BLED mean (SD) 2.0 (1.5) 2.1 (1.6) 1.8 (1.4)

Major hemorrhagic event, n (%) 254 (2.5 %) 129 (2.4 %) 49 (1.3 %)
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associated with higher HL statistics in the comparator 
drug initiators in the concurrent cohort, when no shrink-
age is applied.

The model with the 500 empirical covariates without 
dimension reduction or shrinkage (model 4) had the larg-
est gap between the nominal and cross-validated c-sta-
tistic in the historical cohort, and also had the lowest 
c-statistics and highest HL test statistics when applied to 
the concurrent cohort. Many of the models with empiri-
cally identified variables (models 5–14) had higher cross-
validated c-statistics in the historical cohort compared 
to the models without empirically identified variables 
(models 1–3), suggesting an improvement in the predic-
tive performance with the addition of these variables, 
although this did not always lead to better c-statistics in 
the concurrent cohort. In the dabigatran example, the 
cross-validated c-statistics corresponded well with the 
c-statistics estimated in the concurrent cohorts for most 
models except for the unreduced model (model 4). In 
the coxibs example, the cross-validated c-statistics were 
generally higher than the concurrent cohort c-statistics. 
Models 11 and 13 in the coxib example had extremely 
high c-statistics in the historical cohort (both nominal 

and cross-validated, although with large gaps), with 
very low c-statistics in the concurrent cohort, indicating 
extreme optimism likely due to overfitting. HL test statis-
tics for the comparator initiators were not significant for 
many of the models with higher c-statistics. In the new 
drug initiators, HL test statistics were all statistically sig-
nificant. The calibration plots for a selected set of models 
show that poor calibration for the dabigatran initiators is 
caused by overestimation of risk (Additional file 2: Figure 
S1).

Estimated treatment effects
In both examples, stratification by deciles of DRSs with 
higher c-statistics and low HL-test statistics led to larger 
changes in the OR in the expected direction (Tables  5, 
6). Stratification based on DRSs with either low c-sta-
tistics or high HL-statistics resulted in little change in 
the estimated ORs. In the dabigatran example, the larg-
est adjustment in the expected direction was achieved 
by lasso +  PCA model and demographics +  10 princi-
pal components model. In the coxib example, the largest 
reduction was achieved by the model with demographics 
and combined comorbidity score.

Table 2  Baseline characteristics and observed risk of gastrointestinal bleeds within 180 days of the non-selective non-
steroidal anti-inflammatory drugs and cyclooxygenase-2 inhibitors initiators in the historical and concurrent cohorts

Coxibs cyclooxygenase-2 inhibitors, GI bleed gastrointestinal bleeding, nsNSAIDs non-selective nonsteroidal anti-inflammatory drugs, Num. number
a  Enrollment period

Variable Historical cohort (Jan 1 1997–Dec 31 1998a) Concurrent cohort (Jan 1 1999–Dec 31 2001a)

nsNSAIDs (N = 28,533) nsNSAIDs (N = 15,930) Coxibs (N = 31,875)

Age, mean (SD) 78.6 (6.8) 78.9 (6.9) 80.5 (6.8)

White, n (%) 26,535 (93.0) 14,450 (90.7) 30,583 (95.9)

Female, n (%) 24,011 (84.2) 13,287 (83.4) 27,812 (87.3)

Nursing home stay, n (%) 1757 (6.2) 989 (6.2) 2781 (8.7)

Num. of medications, mean (SD) 9.4 (5.1) 9.7 (5.2) 10.5 (5.4)

Num. of physician visits, mean (SD) 9.7 (6.9) 9.3 (6.7) 9.8 (6.7)

At least 1 hospitalization, n (%) 8514 (29.8) 2267 (28.0) 10,497 (32.9)

Use of warfarin, n (%) 2148 (7.5) 1212 (7.6) 4509 (14.1)

Use of gastroprotective drugs, n (%) 9059 (31.7) 4560 (28.6) 12,238 (38.4)

Use of corticosteriods, n (%) 2445 (8.6) 1435 (9.0) 3265 (10.2)

Use of clopidogrel, n (%) 671 (2.4) 785 (4.9) 2148 (6.7)

Rheumatoid arthritis, n (%) 1215 (4.3) 519 (3.3) 1721 (5.4)

Congestive heart failure, n (%) 5892 (20.6) 3295 (20.7) 7864 (24.7)

Osteoarthritis, n (%) 13,044 (45.7) 6645 (41.7) 17,812 (55.9)

Peripheral vascular disease, n (%) 5173 (18.1) 3192 (20.0) 7387 (23.2)

GI bleeding, n (%) 1352 (4.7) 788 (4.9) 1972 (6.2)

Chronic kidney diseases, n (%) 965 (3.4) 684 (4.3) 1275 (4.0)

Carotid artery disease, n (%) 11,551 (40.5) 6460 (40.6) 13,944 (43.8)

Combined comorbidity score >2, n (%) 7266 (25.5) 4170 (26.2) 10,051 (31.5)

GI bleed, n (%) 201 (0.7 %) 87 (0.6 %) 189 (0.6 %)
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Discussion
The addition of empirically identified outcome predic-
tors coupled with dimension reduction and shrinkage 
techniques in historical DRS development led to gen-
erally better predictive performance than DRS models 
without empirically identified predictors and clearly out-
performed DRS models with the same empirical predic-
tors that did not use dimension reduction or shrinkage 
techniques.

DRSs offer important advantages to other methods 
for assessing the comparative safety and effectiveness of 
new drugs in the early marketing setting. As with PSs, 
DRSs facilitate the incorporation of a large number of 
covariates for confounding adjustment. However, in 
the early marketing setting, few exposures and evolving 
prescribing patterns can limit the use of PSs. Develop-
ing a DRS in historical data and applying it to a concur-
rent cohort can overcome these limitations. Given that 
empirical variable selection has been shown to enhance 
confounding adjustment when included in PSs [8], inclu-
sion of these potential confounding variables likely also 
enhances the ability of DRSs to mitigate confounding. 
Use of the DRS and its limitations are less well studied 
compared to PS [26, 27]. Unlike PS-based analyses where 
covariate balance can be easily assessed upon stratifica-
tion, matching or weighting, prognostic balance cannot 

be readily assessed in DRS based analyses. Hansen has 
proposed the “dry-run” analysis for assessing prognos-
tic balance [28], but it has not yet been formally evalu-
ated. In addition, in the presence of strong correlation 
between the covariates and the exposure, DRS-based 
analyses may exaggerate the statistical significance of the 
effect measure, although later studies have shown that 
this is only problematic in the presence of extreme cor-
relation that is rarely observed in practice [26, 29]. Lim-
ited investigation on the effect of misspecification of the 
DRS model have been conducted, and require further 
work.

Use of historically developed hdDRSs may be limited 
by two key factors. The first is over-fitting of the models 
in the historical cohort and reduced generalizability of 
the model to the concurrent cohort. This problem was 
exemplified by the worse performance of the unreduced 
model (model 4), in which 500 empirically identified 
covariates were included with no dimension reduction 
or shrinkage. High nominal c-statistics in the historical 
cohort but low c-statistics and extreme HL-statistics in 
the concurrent cohort demonstrated severe overfitting. 
For all models, the gap between the nominal and cross-
validated c-statistics in the historical cohort is an indica-
tion of over-fitting and, as expected, the gaps were larger 
for the models with smaller event-per-variable ratios. The 

Table 3  Predictive performance of  the disease risk score (DRS) models in  the warfarin versus  dabigatran historical 
and concurrent cohorts

CI confidence interval, Demo demographic variables, HL Hosmer–Lemeshow test statistics, Num. model number, predef. predefined variables, PCA(10) top 10 
components from principal component analysis, PCA(30) top 30 components from principal component analysis, c-stat c-statistics, x-valid. 10-fold cross-validated
a  Score = HAS-BLED score [23]
b  Event per variable: ratio between the number of outcomes and number of variables included in the DRS model

Num. Model data component and dimension  
reduction/shrinkage method

EPVb Historical cohort Concurrent cohort

Warfarin initiators Warfarin initiators Dabigatran initiators

c-stat 95 % CI x-valid.  
c-stat

c-stat 95 % CI HL (P value) c-stat 95 % CI HL (P value)

1 Demo (age + sex) 127.0 0.58 0.55, 0.62 0.59 0.59 0.54, 0.63 2.7 (0.95) 0.68 0.61, 0.75 28.1 (<0.01)

2 Demo + scorea 84.7 0.61 0.57, 0.64 0.60 0.62 0.57, 0.67 5.6 (0.69) 0.70 0.63, 0.77 24.6 (<0.01)

3 Demo + score + predef. 16.9 0.64 0.60, 0.67 0.61 0.61 0.56, 0.66 7.5 (0.48) 0.69 0.63, 0.76 23.0 (<0.01)

4 Demo + cov500 0.5 0.86 0.84, 0.89 0.61 0.54 0.49, 0.60 384 (<0.01) 0.56 0.48, 0.64 126 (<0.01)

5 Demo + PCA(10) 21.2 0.67 0.64, 0.71 0.65 0.66 0.61, 0.71 5.2 (0.73) 0.68 0.61, 0.75 27.0 (<0.01)

6 Demo + PCA(30) 7.9 0.69 0.65, 0.72 0.63 0.63 0.59, 0.68 10.2 (0.25) 0.64 0.56, 0.72 18.5 (0.02)

7 Demo + score + PCA(10) 19.5 0.67 0.64, 0.71 0.64 0.64 0.59, 0.69 9.8 (0.28) 0.67 0.60, 0.73 18.1 (0.02)

8 Demo + score + PCA(30) 7.7 0.69 0.65, 0.72 0.63 0.62 0.57, 0.67 10.1 (0.26) 0.64 0.56, 0.72 17.6 (0.02)

9 Demo + predef. + score + PCA(10) 10.2 0.69 0.66, 0.72 0.64 0.64 0.59, 0.69 16.0 (0.04) 0.66 0.59, 0.73 20.3 (0.01)

10 Demo + predef. + score + PCA(30) 5.6 0.71 0.67, 0.74 0.63 0.63 0.58, 0.68 21.1 (0.01) 0.66 0.59, 0.73 18.9 (0.02)

11 Ridge (Demo + predef. + score + cov500) 0.5 0.83 0.81, 0.86 0.69 0.63 0.59, 0.68 12.3 (0.14) 0.63 0.55, 0.71 19.5 (0.01)

12 Ridge (Demo + predef. + score + PCA(30)) 5.6 0.71 0.68, 0.74 0.65 0.64 0.58, 0.68 14.9 (0.06) 0.67 0.59, 0.75 25.5 (<0.01)

13 Lasso (Demo + predef. + score + cov500) 0.5 0.72 0.69, 0.75 0.63 0.64 0.59, 0.68 10.8 (0.21) 0.66 0.59, 0.73 27.7 (<0.01)

14 Lasso (Demo + predef. + score + PCA(30)) 5.6 0.70 0.67, 0.73 0.65 0.65 0.61, 0.70 10.7 (0.22) 0.67 0.59, 0.74 19.5 (0.01)
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second key problem is the possibility of changes in the 
associations between the covariates and outcomes over 
time as populations and treatment strategies change. 
Any change in coding practice and clinical practice pat-
terns between the historical and concurrent periods may 
lead to misspecification of the covariate-outcome asso-
ciation in the historically-developed DRS. This may hap-
pen, for example, if there is a procedure that is used to 
treat severer patients in the historical population, but are 
more often used to treat healthier patients in the concur-
rent cohort. We tried to indirectly evaluate this, in part, 
by assessing the discordance between the cross-validated 
c-statistics in the historical cohort and the c-statistics in 
the concurrent cohort, but it is impossible to completely 
disentangle the effect of overfitting and changes in the 
covariate-outcome relationship over time. The gap was 
not prominent for the models that used PCA, but present 
for most of the models that included the covariates with-
out PCA even with shrinkage by lasso or ridge regression.

Because we evaluated the performance of the hdDRS 
models in two examples using two large administrative 
databases from the US, the results may not generalize to 
other study settings where the number of outcomes in 
the historical cohort is different, the number of potential 

confounders may be different, or where coding practices 
or clinical practice evolve in different patterns. Further-
more, we used the results of randomized trials as bench-
marks against which to compare the performance of the 
hdDRS modeling strategies, but the results in obser-
vational studies may differ from randomized trials for 
several reasons other than incomplete confounding con-
trol. For example, in the dabigatran study example, the 
patients in our cohort were younger (mean age 71.6 years 
in the RE-LY trial vs. 64.6 years in the warfarin groups) 
and were more likely to be on proton pump inhibi-
tors at baseline (13.8  % in the RE-LY trial vs. 20.4  % in 
the warfarin groups). In the presence of effect modifica-
tion, this difference in patient characteristics (and of the 
effect modifier distribution) can lead to different relative 
risk estimates. In addition, factors such as differences 
in outcome definitions, outcome capture, and patient 
treatment adherence can lead to different estimates in 
routine care comparative effectiveness estimates and tri-
als. It is therefore not surprising that even the odds ratio 
estimates closest to the benchmarks in our analyses did 
not exactly reach the benchmarks, and at the same time, 
some uncertainty may remain in our evaluation of the 
adjusted estimates from DRS stratification.

Table 4  Predictive performance of  the disease risk score (DRS) models in  the cyclooxygenase-2 inhibitor versus  non-
selective non-steroidal anti-inflammatory drugs in historical and concurrent cohorts

c-stat c-statistics, coxibs cyclooxygenase-2 inhibitors, Demo demographic variables, HL Hosmer–Lemeshow test statistics, nsNSAIDs non-selective nonsteroidal anti-
inflammatory drug, Num. model number, PCA(10) top 10 components from principal component analysis, PCA(30) top 30 components from principal component 
analysis, predef. predefined variables, x-valid. 10-fold cross-validated
a  Score = combined comorbidity score [24]
b  Average of 3 of 10 which reached convergence in the 10-fold cross-validation, the rest did not reach convergence
c  Event per variable: ratio between the number of outcome and number of variables included in the model

Num. Model data component and dimension 
reduction/shrinkage method

EPVc Historical cohort Concurrent cohort

nsNSAID initiators nsNSAID initiators coxib initiators

c-stat 95 % CI x-valid.  
c-stat

c-stat 95 % CI HL (P value) c-stat 95 % CI HL (P value)

1 Demo (age + sex + race) 40.2 0.64 0.60, 0.67 0.63 0.64 0.59, 0.70 9.6 (0.30) 0.59 0.55, 0.63 24.4 (<0.01)

2 Demo + scorea 33.5 0.66 0.62, 0.69 0.65 0.67 0.61, 0.72 9.6 (0.30) 0.65 0.62, 0.68 34.2 (<0.01)

3 Demo + score + predef. 7.2 0.70 0.67, 0.74 0.66 0.66 0.59, 0.72 12.0 (0.15) 0.62 0.58, 0.66 41.2 (<0.01)

4 Demo + cov500 0.4 0.96 0.95, 0.97 0.71 0.45 0.38, 0.51 >999 (<0.01) 0.48 0.43, 0.52 >999 (<0.01)

5 Demo + PCA(10) 13.4 0.72 0.68, 0.75 0.68 0.66 0.60, 0.72 10.4 (0.24) 0.63 0.59, 0.67 32.1 (<0.01)

6 Demo + PCA(30) 5.7 0.75 0.72, 0.79 0.69 0.66 0.61, 0.72 12.4 (0.13) 0.65 0.62, 0.69 56.5 (<0.01)

7 Demo + score + PCA(10) 12.6 0.72 0.68, 0.75 0.68 0.66 0.60, 0.72 12.1 (0.15) 0.62 0.58, 0.66 34.8 (<0.01)

8 Demo + score + PCA(30) 5.6 0.75 0.72, 0.79 0.69 0.66 0.60, 0.72 12.6 (0.12) 0.65 0.61, 0.69 58.5 (<0.01)

9 Demo + predef. + score + PCA(10) 5.3 0.74 0.70, 0.77 0.67 0.65 0.59, 0.72 21.7 (0.01) 0.60 0.56, 0.64 74.3 (<0.01)

10 Demo + predef. + score + PCA(30) 3.5 0.78 0.75, 0.81 0.70 0.66 0.60, 0.72 23.6 (< 0.01) 0.63 0.58, 0.67 102.6 (<0.01)

11 Ridge (Demo + predef. + score + cov500) 0.4 0.92 0.90, 0.93 0.77 0.55 0.48, 0.62 77.3 (<0.01) 0.59 0.54, 0.63 172.9 (<0.01)

12 Ridge (Demo + predef. + score + PCA(30)) 3.5 0.77 0.74, 0.80 0.71 0.67 0.61, 0.72 11.9 (0.16) 0.64 0.60, 0.68 35.2 (<0.01)

13 Lasso (Demo + predef. + score + cov500) 0.4 0.93 0.91, 0.94 0.72b 0.53 0.46, 0.60 409 (<0.01) 0.57 0.52, 0.61 578.8 (<0.01)

14 Lasso (Demo + predef. + score + PCA(30)) 3.5 0.78 0.74, 0.81 0.72 0.67 0.61, 0.73 9.1 (0.33) 0.65 0.61, 0.69 38.3 (<0.01)
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Table 5  The relative odds of major hemorrhagic events within 180 days for dabigatran initiators compared to warfarin 
initiators adjusted by DRS decile stratification

CI confidence interval, Demo demographic variables, DRS disease risk scores, OR odds ratios, PCA(10) top 10 components from principal component analysis, PCA(30) 
top 30 components from principal component analysis, predef. predefined variables
a  Score = HAS-BLED score [23]
b  Stratified by DRS decile indicators

Model Num. Model data component and dimension reduction/shrinkage method used Adjusted by DRS decilesb

Odds ratio 95 % CI

Crude 0.52 0.37, 0.72

1 Demo (age + sex + race) 0.58 0.41, 0.81

2 Demo + scorea 0.60 0.43, 0.84

3 Demo + score + predef. 0.58 0.41, 0.81

4 Demo + cov500 0.53 0.38, 0.74

5 Demo + PCA(10) 0.64 0.45, 0.89

6 Demo + PCA(30) 0.62 0.44, 0.87

7 Demo + score + PCA(10) 0.61 0.44, 0.86

8 Demo + score + PCA(30) 0.61 0.44, 0.86

9 Demo + predef. + score + PCA(10) 0.60 0.43, 0.84

10 Demo + predef. + score + PCA(30) 0.60 0.43, 0.84

11 Ridge (Demo + predef. + score + cov500) 0.58 0.41, 0.81

12 Ridge (Demo + predef. + score + PCA(30)) 0.61 0.44, 0.85

13 Lasso (Demo + predef. + score + cov500) 0.60 0.43, 0.85

14 Lasso (Demo + predef. + score + PCA(30)) 0.64 0.46, 0.90

Table 6  Relative odds of  gastrointestinal bleeds within  180  days for  cyclooxigenaze-2 inhibitor initiators compared 
to nsNSAIDs initiators adjusted by DRS decile stratification

CI confidence interval, Demo demographic variables (age, sex and race), DRS disease risk scores, OR odds ratios, PCA(10) top 10 components from principal component 
analysis, PCA(30) top 30 components from principal component analysis, predef. predefined variables
a  Score = combined comorbidity score [24]
b  Stratified by DRS decile indicators

Model Num. Model data component and dimension reduction/shrinkage method used Adjusted by DRS decilesb

Odds ratio 95 % CI

Crude 1.09 0.84, 1.40

1 Demo (age + sex + race) 0.98 0.76, 1.27

2 Demo + scorea 0.93 0.72, 1.20

3 Demo + score + predef. 0.97 0.75, 1.25

4 Demo + cov500 1.05 0.82, 1.36

5 Demo + PCA(10) 0.97 0.75, 1.25

6 Demo + PCA(30) 0.97 0.75, 1.25

7 Demo + score + PCA(10) 0.98 0.76, 1.26

8 Demo + score + PCA(30) 0.97 0.75, 1.25

9 Demo + predef. + score + PCA(10) 1.00 0.77, 1.29

10 Demo + predef. + score + PCA(30) 0.98 0.76, 1.27

11 Ridge (Demo + predef. + score + cov500) 1.04 0.80, 1.34

12 Ridge (Demo + predef. + score + PCA(30)) 0.96 0.74, 1.24

13 Lasso (Demo + predef. + score + cov500) 1.05 0.82, 1.36

14 Lasso (Demo + predef. + score + PCA(30)) 0.95 0.73, 1.22
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It is also important to highlight that while these high 
dimensional approaches try to maximize the use of the 
measured covariates for confounding control, they can-
not account for unmeasured confounding. For hdDRS, 
the prediction of the models will be differentially affected 
in the new drug group versus the comparator drug group 
when the omitted variable is a confounder, leading to a 
biased relative risk estimate. Because we selected covari-
ates to include in the model based on their univariate 
association with the outcome, it is possible that con-
founding from the interaction of two or more covariates 
are not captured in the models. Also, since our cohorts 
had limited numbers of patients and outcomes, the pre-
cision of estimates was limited, precluding meaningful 
statistical comparisons. Carefully designed simulation 
studies with high data dimensionality and incorporating 
covariate-outcome association changes over time that are 
reflective of the real-world may be needed to assess the 
true relative performances of these approaches. Lastly, 
we acknowledge the scarceness of prior evidence in the 
use of dimension reduction or shrinkage approaches in 
the context of DRSs. While our study showed a strong 
correlation between improved predictive performance 
from the use of these methods and estimated relative 
risk estimates that are closer to the expected values from 
the trials, further work is needed to investigate the opti-
mal use of DRS methods for the purpose of confounding 
control.

We expect that the addition of different data sources, 
such as clinical registries or electronic medical record 
data could further enhance the performance of hdDRS 
approaches. As previously suggested, combining DRSs 
with PS, such as by matching on both PS and DRS, 
matching by the Mahalanobis distance, and subclassi-
fication by both PS and DRS [9, 30, 31], is a promising 
approach to obviate bias when one of the two models is 
misspecified, although the application of these methods 
has not been well studied in a high dimensional con-
text and warrants further investigation. Finally, adaptive 
hdDRS approaches in the setting of prospective moni-
toring of new drugs, in which the historical cohort grows 
with the prospective accumulation of data, could miti-
gate the impact of changes in coding practice and clinical 
practice patterns on model misspecification. Inclusion 
of the concurrent comparator drug initiators may help 
reduce the effect of changing covariate-outcome pat-
terns, but will need to be balanced with the challenges 
of developing the DRS in part of the study cohort as 
described by Hansen.

Conclusions
hdDRSs developed using the historical comparator drug 
initiator cohort with dimension reduction and shrinkage 

methods was feasible for confounding adjustment in 
comparative studies using large administrative databases. 
This approach led to substantial improvement in the pre-
diction of outcomes in the concurrent cohort over high-
dimensional approaches that do not involve dimension 
reduction or shrinkage, while performing better than or 
at least as well as models based on investigator-defined 
variables only.
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