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Although the construction and application of pillar[5]arene-based [1]rotaxanes have been
extensively studied, the types of stoppers for them are limited. In this work, we designed
and prepared three series of pillar[5]arene-based [1]rotaxanes (P5[1]Rs) with
pentanedione derivatives, azobenzene derivatives, and salicylaldehyde derivatives as
the stoppers, respectively. The obtained P5[1]Rs were fully characterized by NMR (1H,
13C, and 2D), mass spectra, and single-crystal X-ray analysis. We found that the synergic
C–H···π, C–H···O interactions and N–H···O, O–H···N hydrogen bonding are the key to the
stability of [1]rotaxanes. This work not only enriched the diversity of pillar[n]arene family but
also gave a big boost to the pillar[n]arene-based mechanically interlocked molecules
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INTRODUCTION

Mechanically interlocked molecules (MIMs), mainly including knots, rotaxanes, and catenanes, are a
new type of fascinating molecules that contain mechanical bonds and allow for large movements at
the molecular level (Hu et al., 2017; Zhou et al., 2020). MIMs cannot be separated without breaking
the participating covalent bonds due to the mechanical bonds forming an entanglement in space.
During the past decades, MIMs have drawn a tremendous interest not only due to their smart
architectures but also due to their potential applications in various fields (Sluysmans et al., 2019;
Cornelissen et al., 2021; David et al., 2021). [1]Rotaxanes, which are composed of “T”-shaped axles
and macrocyclic wheels and the axles are threaded by their own wheels and connected by covalent
bonds, are considered as the fundamental supramolecular systems for the construction of diverse
MIMs (Tian et al., 2018; Scheme 1). It is known that there is a huge challenge for the efficient
synthesis of [1]rotaxanes due to their subtle structures.

Pillar[5]arenes, first reported by Ogoshi et al. (2008), are considered the fifth generation of
classical macrocyclic compounds (An et al., 2021) after crown ethers (Liu et al., 2017; Wu et al., 2020;
Bai et al., 2022), cyclodextrins (Bolton et al., 2020; Sugita et al., 2022), calixarenes (An et al., 2019; Li
B. et al., 2020; Zhang et al., 2021), and cucurbiturils (Chernikova et al., 2020; Zhang et al., 2022). Pillar
[5]arenes are composed of five hydroquinone derivatives, which are linked by –CH2– at the 2,5-
positions (Shi et al., 2011; Strutt et al., 2012). During the past 14 years, great developments have been
made in the synthesis (Yao et al., 2012; Fan et al., 2016; Wu et al., 2021), host–guest properties
(Ogoshi et al., 2015; Zhou et al., 2016; Lu et al., 2022), self-assembly (Guo et al., 2020; Cai et al., 2021a;
Cao et al., 2021; Wang et al., 2021; Wu et al., 2022), and applications (Tan et al., 2015; Li L. et al.,
2020; Cai et al., 2021b; Guo et al., 2021; Yan et al., 2021) of pillar[5]arenes. Pillar[5]arene-based
rotaxanes (P5Rs) have also attracted much attention. In 2011, Prof. Stoddart and co-workers
prepared the first P5R in two steps. First, a host–guest complex was fabricated between DMpillar[5]
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arene and 1,8-diaminooctane. Then, the stopper 3,5-di-
tertbutylbenzaldehyde reacted with the amino groups on the
guest to block the cavity to form P5R (Strutt et al., 2011).
After that, numerous types of P5[1]Rs with various longer
axels and different sizes of stoppers have been designed and
synthesized (Han et al., 2017; Nazarova et al., 2022; Scheme 1).
For example, in 2014, Xia and co-workers designed and
synthesized a P5[1]R with the yield up to 73% in three steps
(Xia et al., 2014; Scheme 1). Firstly, they prepared a
monocarboxylic acid-functionalized pillar[5]arene through the
co-oligomerization reaction and a linear guest with a stopper on
one side and a primary amine group on the other side. Next, due
to the C–H/π interactions, the alkyl chain on the guest is passed
through the cavity of the pillar[5]arene, where the primary amine
group and the carboxylic acid group are expected to form an ion
pair complex. Lastly, the primary amine group on the guest and
the carboxylic acid group on pillar[5]arene reacted via Schiff-base
formation to afford P5[1]R. Besides, our groups have constructed
a couple of P5[1]Rs from their parent pseudo[1]rotaxanes in
recent years through aldoamine condensation (Zhang et al., 2019;
Zhao et al., 2020; Scheme 1).

Although great progress has been made in the research of P5
[1]Rs (Du et al., 2017; Scheme 1), the species of P5[1]Rs,
especially the types of the stoppers, are not abundant enough.
In this work, we designed and prepared three series of P5[1]Rs
with different stoppers from their parent pseudo[1]rotaxanes via
the “threading-followed-by-stoppering” method. The obtained
P5[1]Rs were characterized by various technologies, such as 1H
NMR, 13C NMR, 2D-NOESY spectra, and X-ray single-crystal
diffraction.

EXPERIMENTAL SECTION

Syntheses of Pillar[5]arene-Based [1]
Rotaxanes
Based on previous reports (Zhang et al., 2019), pseudo[1]
rotaxanes 1a and 1b were prepared directly from P5 and
alkyl-diamine in CH3CH2OH (Scheme 2, and Supplementary

Figures S1–S6). Then, P5[1]Rs were successfully synthesized by
1a or 1b reacted with the stoppers (2, 3, 4, 5) under the catalysis of
CH3COOH. [1]Rotaxene 6e is taken as an example. Compound
1b (0.198 g, 0.2 mmol), stopper 2a (0.025 g, 0.2 mmol), and
0.1 ml CH3COOH were stirred in 10 ml of dry CH3CH2OH
for 12 h at 80°C. The reaction solvent was evaporated, and the
residue was purified by flash column chromatography on silica
gel (CH2Cl2/CH3OH, v/v 20:1) to give 6e as a yellow solid
(0.167 g). Other P5[1]Rs were prepared according to the same
method (Scheme 2).

6e: light yellow solid, yield 49%. m.p. 85–86°C; 1H NMR
(Supplementary Figure S16) (400 MHz, CDCl3) δ 13.57 (s,
1H, OH), 8.39 (s, 1H, CH), 7.36–7.31 (m, 1H, ArH), 7.28 (m,
1H, ArH), 6.99 (d, J = 8.3 Hz, 1H, ArH), 6.91 (m, 6H, ArH),
6.86–6.82 (t, J = 2 Hz, 4H, ArH), 6.71 (s, 1H, ArH), 5.06 (s, 1H,
NH), 4.57 (s, 2H, CH2), 3.88 (d, J = 7.0 Hz, 2H, CH2), 3.79–3.71
(m, 34H, 8CH3, 5CH2), 3.64 (t, J = 6.7 Hz, 2H, CH2), 2.45 (s, 2H,
CH2), 1.86–1.78 (d, J = 2 Hz, 2H,CH2), 1.73 (t, J = 7.8 Hz, 2H,
CH2), 1.61 (d, J = 7.4 Hz, 2H, CH2), 1.40 (t, J = 7.9 Hz, 2H, CH2),
1.19 (s, 2H, CH2), 1.02 (t, J = 7.4 Hz, 3H, CH3), 0.77 (s, 2H, CH2),
−0.08 (s, 2H, CH2), −1.38 (s, 4H, CH2), −2.36 (s, 2H,CH2);

13C
NMR (Supplementary Figure S17) (101 MHz, CDCl3) δ 167.2,
164.6, 161.3, 150.8, 150.4, 150.3, 150.3, 150.2, 150.0, 147.0, 132.2,
131.1, 129.4, 129.0, 128.3, 128.2, 128.1, 127.9, 127.8, 127.8, 127.1,
126.8, 118.8, 118.6, 117.0, 114.7, 113.9, 113.6, 113.3, 112.7, 112.4,
67.8, 65.8, 59.7, 55.5, 55.4, 55.3, 55.1, 38.0, 32.1, 31.3, 30.8, 30.6,

Scheme 1 | Chemical structures of different types of reported stoppers
for the formation of [1]rotaxanes.

Scheme 2 | Synthetic route to pillar[5]arene-based [1]rotaxanes and the
chemical structures of 6e and monomers.
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30.2, 29.7, 29.3, 28.9, 28.7, 28.3, 28.1, 26.5, 23.6, 19.6, 14.1; HRMS
(ESI) (Supplementary Figure S18) calcd. for C66H82N2O12([M +
Na]+): 1117.5765, found: 1117.5770.

6a: light yellow solid, yield 76%. m.p. 106–107°C; 1H NMR
(Supplementary Figure S7) (400 MHz, CDCl3) δ 13.47 (s, 1H,
OH), 8.38 (s, 1H, CH), 7.35 (t, J = 8 Hz, 1H, ArH), 7.28 (d, J =
6 Hz, 1H, ArH), 7.00 (d, J = 8.4 Hz, 1H, ArH), 6.92 (m, 5H, ArH),
6.88 (s, 1H, ArH), 6.84 (m, 4H, ArH), 6.73 (s, 1H, ArH), 5.09 (s,
1H, NH), 4.57 (s, 2H, CH2), 3.88 (d, J = 3.6 Hz, 2H, CH2),
3.79–3.69 (m, 34H, 8OCH3, 5CH2), 3.58 (d, J = 6.6 Hz, 2H, CH2),
2.48 (s, 2H, CH2), 1.82 (t, J = 14.7 Hz, 2H, CH2), 1.61 (s, 2H, CH2),
1.53 (d, J = 11.2 Hz, 2H, CH2), 0.99 (t, J = 7.4 Hz, 3H, CH3), 0.81
(s, 2H, CH2), −0.10 (s, 2H, CH2), −1.35 (s, 4H, CH2), −2.31 (s, 2H,
CH2);

13C NMR (Supplementary Figure S8) (101 MHz, CDCl3)
δ 167.3, 164.4, 161.2, 150.8, 150.4, 150.3, 150.2, 150.1, 150.0,
132.3, 131.0, 130.0, 129.0, 128.4, 128.3, 128.0, 127.9, 127.3,
126.9,118.7, 118.6, 117.1, 115.0, 114.1, 113.7, 113.5, 113.4,
112.8, 112.4, 68.1, 65.9, 60.4, 55.6, 55.5, 55.4, 55.3, 55.2, 38.1,
32.1, 31.9, 30.2, 29.2, 28.9, 28.7, 28.5, 28.3, 28.2, 26.4, 23.6, 19.7,
14.1; HRMS (ESI) (Supplementary Figure S9) calcd. for
C64H78N2O12([M + Na]+): 1089.5452, found: 1089.5437.

6c: light yellow solid, yield 89%. m.p. 92–93°C; 1H NMR
(Supplementary Figure S10) (400 MHz, CDCl3) δ 13.52 (s,
1H, OH), 8.31 (s, 1H, CH), 7.44–7.38 (m, 2H, ArH), 6.94–6.87
(m, 6H, ArH), 6.85–6.82 (t, J = 4 Hz, 4H, ArH), 6.72 (s, 1H, ArH),
5.09 (s, 1H, NH), 4.57 (s, 2H, CH2), 3.90–3.85 (m, 2H, CH2),
3.80–3.70 (m, 34H, 8OCH3,5CH2), 3.58 (t, J = 7.2 Hz, 2H, CH2),
2.48 (s, 2H, CH2), 1.81 (d, J = 15.5 Hz, 2H, CH2), 1.59 (t, J = 7.5
Hz, 2H, CH2), 1.50 (t, J = 7.3 Hz, 2H, CH2), 0.99 (t, J = 7.4 Hz, 3H,
CH3), 0.80 (s, 2H, CH2), −0.11 (s, 2H, CH2), −1.34 (s, 4H, CH2),
−2.28 (s, 2H, CH2);

13C NMR (Supplementary Figure S11)
(101 MHz, CDCl3) δ 167.3, 163.1, 160.3, 150.8, 150.4, 150.4,
150.3, 150.3, 150.2, 150.0, 147.1, 134.9, 133.1, 129.5, 129.1,
128.4, 128.3, 128.2, 128.1, 127.9, 127.9, 127.3, 126.9, 120.1,
119.1, 115.0, 114.1, 113.8, 113.6, 113.5, 112.7, 112.4, 110.0,
68.1, 65.9, 60.3, 55.7, 55.6, 55.4, 55.3, 55.1, 38.1, 32.0, 31.8,
30.2, 29.3, 29.1, 28.8, 28.7, 28.4, 28.3, 28.1, 26.3, 23.6, 19.6,
14.1; HRMS (ESI) (Supplementary Figure S12) calcd. for
C64H77BrN2O12([M + Na]+): 1167.4558, found: 1167.4537.

6d: yellow solid, yield 47%. m.p. 108–109°C; 1H NMR
(Supplementary Figure S13) (400 MHz, CDCl3) δ 13.89 (s,
1H, OH), 8.39 (s, 1H, CH), 7.41 (s, 1H, ArH), 7.11 (s, 1H,
ArH), 6.91 (d, J = 15.0 Hz, 5H, ArH), 6.86–6.82 (t, 4H, ArH), 6.73
(s, 1H, ArH), 5.07 (s, 1H, NH), 4.57 (s, 2H, CH2), 3.88 (d, J = 12.5
Hz, 2H, CH2), 3.79–3.69 (m, 34H, 8OCH3, 5CH2), 3.60–3.55 (d, J
= 4 Hz, 2H), 2.45 (s, 2H, CH2), 1.82 (s, 2H, CH2), 1.59 (s, 4H,
CH2), 1.49 (t, J = 6 Hz, 9H, CH3), 1.34 (d, J = 2.4 Hz, 9H, CH3),
1.02–0.98 (m, 3H, CH3), 0.86 (s, 2H, CH2), −0.07 (s, 2H, CH2),
−1.29 (s, 4H, CH2), −2.32 (s, 2H, CH2);

13C NMR
(Supplementary Figure S14) (101 MHz, CDCl3) δ 167.3,
165.5, 158.1, 150.8, 150.3, 150.2, 150.1, 150.0, 147.0, 140.1,
136.8, 129.5, 129.1, 128.3, 128.2, 128.0, 127.9, 127.2, 126.9,
125.6, 117.8, 114.9, 114.0, 113.6, 113.4, 112.7, 112.4, 68.0, 65.9,
60.3, 55.6, 55.4, 55.3, 55.1, 38.1, 35.1, 32.0, 31.5, 30.2, 29.4, 29.3,
28.8, 28.6, 28.3, 26.3, 23.6, 19.6, 14.1; HRMS (ESI)
(Supplementary Figure S15) calcd. for C72H94N2O12([M +
Na]+): 1201.6704, found: 1201.6683.

6g: yellow solid, yield 58%. m.p. 126–127°C; 1H NMR
(Supplementary Figure S19) (400 MHz, CDCl3) δ 13.59 (s,
1H, OH), 8.30 (s, 1H, CH), 7.40 (d, J = 10.0 Hz, 2H, ArH),
6.98–6.77 (m, 10H, ArH), 6.71 (s, 1H, ArH), 5.06 (s, 1H, NH),
4.56 (s, 2H, CH2), 3.75 (m, 38H, 8OCH3, 7CH2), 2.45 (s, 2H,
CH2), 1.87–1.79 (m, 2H, CH2), 1.72 (m, 2H, CH2), 1.57 (t, J = 7.4
Hz, 2H, CH2), 1.38 (m, 2H, CH2), 1.18 (m, 2H, CH2), 1.02 (t, J =
7.3 Hz, 3H, CH3), 0.77 (s, 2H, CH2), −0.08 (s, 2H, CH2), −1.36 (s,
4H, CH2), −2.35 (s, 2H, CH2);

13C NMR (Supplementary Figure
S20) (101 MHz, CDCl3) δ 167.3, 163.4, 160.4, 150.8, 150.4, 150.3,
150.1, 130.0, 147.0, 134.9, 133.2, 129.4, 129.0, 128.3, 128.2, 128.1,
128.0, 127.8, 127.2, 126.8, 120.1, 119.1, 114.7, 113.9, 113.6, 113.3,
112.7, 112.4, 119.9, 67.8, 65.9, 59.7, 55.5, 55.4, 55.3, 55.1, 38.0,
32.1, 31.2, 30.8, 30.6, 30.2, 29.7, 29.3, 28.9, 28.7, 28.3, 28.1, 26.5,
23.6, 19.7, 14.1; HRMS (ESI) (Supplementary Figure S21) calcd.
for C66H81BrN2O12([M + Na]+): 1195.4871, found: 1195.4853.

6h: yellow solid, yield 63%. m.p. 102–103°C; 1H NMR
(Supplementary Figure S22) (400 MHz, CDCl3) δ 13.94 (s,
1H, OH), 8.39 (s, 1H, CH), 7.40 (d, J = 2.4 Hz, 1H, ArH),
7.11 (d, J = 2.4 Hz, 1H, ArH), 6.95–6.81 (m, 9H, ArH), 6.74 (d, J =
10.9 Hz, 1H, ArH), 5.12 (s, 1H, NH), 4.57 (s, 2H, CH2), 3.90–3.61
(m, 38H, 8OCH3, 7CH2), 2.51 (s, 2H, CH2), 1.83 (d, J = 14.9 Hz,
2H, CH2), 1.73 (t, J = 7.7 Hz, 2H, CH2), 1.61 (t, J = 7.6 Hz, 2H,
CH2), 1.48 (s, 9H, CH3), 1.44–1.38 (t, J = 12 Hz, 2H, CH2), 1.32 (s,
9H, CH3), 1.18 (s, 2H, CH2), 1.02 (t, J = 7.4 Hz, 3H, CH3), 0.75 (s,
2H, CH2), −0.14 (s, 2H, CH2), −1.20–1.47 (t, J = 52 Hz, 4H, CH2),
−2.36 (s, 2H, CH2);

13C NMR (Supplementary Figure S23)
(101 MHz, CDCl3) δ 167.3, 165.7, 158.1, 150.9, 150.3, 150.3,
150.2, 150.0, 147.0, 140.1, 136.8, 129.3, 129.0, 128.4, 128.2,
128.1, 128.0, 127.9, 127.8, 127.2, 126.8, 125.6, 117.8, 114.7,
114.1, 114.0, 113.6, 113.3, 112.7, 112.7, 112.3, 67.8, 65.8, 59.6,
55.4, 55.4, 55.4, 55.3, 55.2, 55.1, 38.0, 35.1, 32.1, 31.5, 31.4, 30.8,
30.7, 30.1, 29.7, 29.4, 29.2, 28.9, 28.6, 28.5, 28.3, 28.2, 26.6, 23.6,
19.6, 14.1; HRMS (ESI) (Supplementary Figure S24) calcd. for
C74H98N2O12([M + Na]+): 1229.7017, found: 1229.6999.

7a: white solid, yield 36%. m.p. 186–187°C; 1H NMR
(Supplementary Figure S25) (400 MHz, CDCl3) δ 11.51 (s,
1H, NH), 7.89 (d, J = 6.6 Hz, 2H, ArH), 7.42 (t, J = 8 Hz, 3H,
ArH), 6.94–6.82 (m, 9H, ArH), 6.72 (s, 1H, ArH), 5.71 (s, 1H,
CH), 5.05 (s, 1H, NH), 4.57 (s, 2H, CH2), 3.89 (m, 2H, CH2),
3.80–3.71 (m, 34H, 8OCH3, 5CH2), 3.32 (m, 2H, CH2), 2.44 (s,
2H, CH2), 2.13 (s, 3H, CH3), 1.83 (m, 2H, CH2), 1.59–1.48 (m,
4H, CH2), 1.01 (t, J = 7.4 Hz, 3H, CH3), 0.87 (s, 2H, CH2), −0.03
(s, 2H, CH2), −1.37 (d, J = 60.8 Hz, 4H, CH2), −2.32 (s, 2H, CH2);
13C NMR (Supplementary Figure S26) (101 MHz, CDCl3) δ
187.6, 164.2, 150.9, 150.5, 150.4, 150.2, 150.0, 147.2, 140.4, 130.5,
129.7, 129.1, 128.4, 128.2, 128.1, 128.0, 127.9, 127.3, 126.8, 115.2,
114.3, 113.9, 113.7, 112.8, 112.5, 91.9, 68.3, 65.9, 55.8, 55.6, 55.4,
55.3, 55.2, 43.8, 38.0, 32.1, 31.1, 30.1, 29.3, 29.1, 28.9, 28.6, 28.3,
27.9, 19.7, 19.3, 14.1; MS (m/z): HRMS (ESI) (Supplementary
Figure S27) calcd. for C67H82N2O12([M + Na]+): 1129.5765,
found: 1129.5748.

7b: white solid, yield 36%. m.p. 212–213°C; 1H NMR
(Supplementary Figure S28) (400 MHz, CDCl3) δ 11.53 (s,
1H, NH), 7.91–7.86 (t, J = 5.6 Hz, 2H, ArH), 7.42 (t, J = 6.4
Hz, 3H, ArH), 6.94–6.82 (m, 9H, ArH), 6.71 (s, 1H, ArH), 5.71 (s,
1H, CH), 5.04 (s, 1H, NH), 4.57 (s, 2H, CH2), 3.88 (t, J = 6.6 Hz,
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2H, CH2), 3.80–3.71 (m, 34H, 8OCH3, 5CH2), 3.38 (m, 2H, CH2),
2.43 (s, 2H, CH2), 2.12 (s, 3H, CH3), 1.83 (s, 2H, CH2), 1.70 (t, J =
7.8 Hz, 2H, CH2), 1.62–1.57 (t, J = 7.2 Hz, 2H, CH2), 1.44 (t, J =
7.8 Hz, 2H, CH2), 1.20 (t, J = 7.7 Hz, 2H, CH2), 1.03 (t, J = 7.4 Hz,
3H, CH3), 0.81 (s, 2H, CH2), −0.05 (s, 2H, CH2), −1.39 (d, J = 47.7
Hz, 4H, CH2), −2.36 (s, 2H, CH2);

13C NMR (Supplementary
Figure S29) (101 MHz, CDCl3) δ 187.7, 167.2, 164.6, 150.8, 150.4,
150.3, 150.2, 150.1, 150.0, 147.0, 140.4, 130.5, 129.4, 129.1, 128.6,
128.4, 128.2, 128.0, 127.9, 127.8, 127.1, 127.0, 126.8, 114.8, 114.0,
113.7, 113.3, 112.8, 112.4, 92.0, 77.3, 67.9, 55.5, 55.4, 55.3, 55.1,
43.4, 38.0, 32.1, 30.8, 30.7, 30.4, 30.2, 29.7, 29.3, 28.8, 28.7, 27.8,
19.7, 19.4, 14.1; MS (m/z): HRMS (ESI) (Supplementary Figure
S30) calcd. for C69H86N2O12([M + Na]+): 1157.6078, found:
1157.6054.

8a: white solid, yield 54%. m.p. 87–88°C; 1H NMR
(Supplementary Figure S31) (400 MHz, CDCl3) δ 10.86 (s,
1H, NH), 6.94–6.81 (m, 9H, ArH), 6.71 (s, 1H, ArH), 5.07 (s,
1H, NH), 5.00 (s, 1H, CH), 4.57 (s, 2H, CH2), 3.88 (t, J = 6.6 Hz,
2H, CH2), 3.81–3.67 (m, 34H, 8OCH3, 5CH2), 3.21 (m, 2H, CH2),
2.45 (s, 2H, CH2), 2.04 (s, 3H, CH3), 1.98 (s, 3H, CH3), 1.82 (m,
2H, CH2), 1.62–1.58 (t, J = 7.6 Hz, 2H, CH2), 1.42 (t, J = 7.8 Hz,
2H, CH2), 1.02 (t, J = 7.3 Hz, 3H, CH3), 0.79 (s, 2H, CH2), −0.08
(s, 2H, CH2), −1.32 (s, 4H, CH2), −2.33 (s, 2H, CH2);

13C NMR
(Supplementary Figure S32) (101 MHz, CDCl3) δ 194.8, 167.2,
162.4, 150.9, 150.5, 150.4, 150.3, 150.2, 150.1, 150.0, 147.2, 129.6,
129.1, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.3, 126.9, 115.7,
115.2, 114.3, 113.9, 113.7, 113.6, 112.8, 112.4, 95.1, 68.2, 55.7,
55.6, 55.5, 55.4, 55.3, 55.1, 43.6, 38.0, 32.05, 31.2, 29.3, 29.1, 28.8,

28.5, 28.3, 27.8, 19.7, 18.7, 14.1; MS (m/z): HRMS (ESI)
(Supplementary Figure S33) calcd. for C62H80N2O12([M +
Na]+): 1067.5609, found: 1067.5613.

8b: white solid, yield 39%. m.p. 86–87°C; 1H NMR
(Supplementary Figure S34) (400 MHz, CDCl3) δ 10.92 (s,
1H, NH), 6.94–6.82 (m, 9H, ArH), 6.70 (s, 1H, ArH), 5.04 (s,
1H, NH), 5.00 (s, 1H, CH), 4.57 (s, 2H, CH2), 3.87 (t, J = 6.5 Hz,
2H, CH2), 3.80–3.68 (m, 34H, 8OCH3, 5CH2), 3.28 (m, 2H, CH2),
2.42 (s, 2H, CH2), 2.03 (s, 3H, CH3), 1.97 (s, 3H, CH3), 1.83 (s, 2H,
CH2), 1.64 (d, J = 7.4 Hz, 2H, CH2), 1.58 (d, J = 7.4 Hz, 2H, CH2),
1.42–1.36 (m, 2H, CH2), 1.20–1.15 (t, J = 8 Hz, 2H, CH2), 1.03 (t,
J = 7.4 Hz, 3H, CH3), 0.83–0.77 (d, J = 8.8 Hz, 2H,CH2), −0.06 (s,
2H, CH2), −1.40 (d, J = 53.4 Hz, 4H, CH2), −2.37 (s, 2H, CH2);

13C
NMR (Supplementary Figure S35) (101 MHz, CDCl3) δ 194.9,
167.2, 162.9, 150.8, 150.4, 150.3, 150.2, 150.1, 150.0, 147.0, 129.4,
129.0, 128.4, 128.2, 128.2, 128.0, 127.9, 127.8, 127.1, 126.8, 114.8,
114.0, 113.7, 113.3, 112.7, 112.4, 95.2, 67.9, 65.9, 55.5, 55.4, 55.3,
55.1, 43.1, 38.0, 32.1, 30.8, 30.6, 30.5, 30.2, 29.7, 29.3, 28.8, 28.8,
28.7, 28.2, 27.8, 26.4, 19.7, 18.8, 14.1; MS (m/z): HRMS (ESI)
(Supplementary Figure S36) calcd. for C64H84N2O12([M +
Na]+): 1095.5922, found: 1095.5912.

9a: red solid, yield 56%. m.p. 100–102°C; 1H NMR
(Supplementary Figure S37) (400 MHz, CDCl3) δ 8.45 (s, 1H,
CH), 8.39 (m, 2H, ArH), 8.09–7.98 (m, 5H,ArH), 7.10 (d, J = 9.0
Hz, 1H, ArH), 6.94–6.89 (t, J = 14.4 Hz, 4H, ArH), 6.84 (d, J = 5.5
Hz, 4H, ArH), 6.74 (s, 1H, ArH), 5.15 (s, 1H, NH), 4.57 (s, 2H,
CH2), 3.89 (s, 2H, CH2), 3.80–3.72 (m, 34H, 8OCH3, 5CH2), 3.55
(s, 2H, CH2), 2.53 (s, 2H,CH2), 1.82 (s, 2H, CH2), 1.61–1.57 (t, J =

FIGURE 1 | 1H NMR spectra (400 MHz, 298K) of (A) monomer-1 in CDCl3, (B) 6e in DMSO-d6, (C) 6e in CDCl3, and (D) monomer-2 in CDCl3.
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7.6 Hz, 2H,CH2), 1.47 (s, 2H, CH2), 1.00 (t, J = 7.4 Hz, 3H, CH3),
0.76 (s, 2H, CH2), −0.11 (s, 2H, CH2), −1.18 (d, J = 62.5 Hz, 4H,
CH2), −2.16 (s, 2H, CH2);

13CNMR (Supplementary Figure S38)
(101 MHz, CDCl3) δ 196.3, 168.4, 167.4, 164.1, 156.0, 150.8,
150.5, 150.4, 150.3, 150.2, 150.0, 148.2, 147.2, 144.6, 130.6,
129.6, 129.1, 128.4, 128.3, 128.2, 128.1, 127.9, 127.4, 127.2,
127.0, 124.8, 124.8, 123.3, 123.0, 119.7, 119.0, 117.6, 115.1,
114.2, 114.0, 113.8, 113.6, 112.8, 112.4, 77.2, 68.2, 55.9, 55.8,
55.6, 55.5, 55.3, 55.1, 38.1, 32.1, 31.4, 30.2, 29.3, 28.9, 28.3, 27.8,
19.6, 14.1; MS (m/z): HRMS (ESI) (Supplementary Figure S39)
calcd. for C70H81N5O14([M + Na]+): 1238.5678, found:
1238.5674.

9b: red solid, yield 89%. m.p. 100–101°C; 1H NMR
(Supplementary Figure S40) (400 MHz, CDCl3) δ 8.46 (s, 1H,
CH), 8.37 (d, J = 8.5 Hz, 2H, ArH), 8.06 (d, J = 9.4 Hz, 1H, ArH),
7.98 (d, J = 8.6 Hz, 3H, ArH), 7.09 (d, J = 9.0 Hz, 1H, ArH),
6.94–6.83 (m, 9H, ArH), 6.72 (s, 1H, ArH), 5.08 (s, 1H, NH), 4.57
(s, 2H, CH2), 3.88 (s, 2H, CH2), 3.75 (m, 34H, 8OCH3, 5CH2),
3.68 (s, 2H, CH2), 2.47 (s, 2H, CH2), 1.79 (d, J = 33.9 Hz, 4H,
CH2), 1.60 (d, J = 7.5 Hz, 2H, CH2), 1.41 (s, 2H, CH2), 1.20 (s, 2H,
CH2), 1.02 (t, J = 7.5 Hz, 3H, CH3), 0.80 (s, 2H, CH2), −0.06 (s,
2H, CH2), −1.31 (s, 4H, CH2), −2.31 (s, 2H, CH2);

13C NMR
(Supplementary Figure S41) (101 MHz, CDCl3) δ 164.3, 156.0,
150.8, 150.4, 150.3, 150.2, 150.1, 150.0, 148.2, 147.0, 144.6, 129.6,
129.4, 129.0, 128.3, 128.2, 128.0, 127.9, 127.8, 127.2, 126.8, 124.7,
123.3, 123.0, 119.6, 117.6, 114.8, 114.0, 113.7, 113.3, 112.7, 112.4,
77.2, 67.9, 58.2, 55.5, 55.4, 55.3, 55.1, 38.0, 32.1, 31.0, 30.8, 30.5,
30.2, 29.7, 29.3, 28.8, 28.6, 28.3, 28.0, 23.6, 19.6, 14.1; MS (m/z):

HRMS (ESI) (Supplementary Figure S42) calcd. for
C70H81N5O14([M + Na]+): 1266.5991, found: 1266.5969.

Synthesis of Monomers
Synthesis of compound Monomer-1: methyl 2-(4-
butoxyphenoxy) acetate (1 g, 4.2 mmol) and 1,10-
decanediamine (7.7 g, 44.8 mmol) were added to 20 ml of
anhydrous ethanol solution and reacted at 75°C for 12 h. The
organic solvent was removed by rotation under reduced pressure,
and compound Monomer-1 was obtained by column
chromatography (volume ratio: dichloromethane: methanol =
10: 1). White solid, 60%; 1H NMR (Supplementary Figure S43)
(400 MHz, CDCl3) δ 6.84 (s, 4H, ArH), 6.65 (s, 1H, NH2), 5.31 (s,
1H, NH), 4.43 (s, 2H, CH2), 3.91 (t, J = 6.5 Hz, 2H, CH2), 3.69 (m,
2H, CH2), 3.36–3.30 (m, 2H, CH2), 1.75–1.72 (m, 6H, CH2),
1.51–1.40 (m, 10H, CH2), 1.23 (t, J = 7.0 Hz, 4H, CH2), 0.97 (t, J =
7.4 Hz, 3H, CH3).

Synthesis of compound Monomer-2: Monomer-1 (0.208 g,
0.55 mmol) and salicylaldehyde (0.06 g, 0.5 mmol) were added to
20 ml of anhydrous ethanol solution and reacted at 80°C for 4 h.
The organic solvent was removed by rotating under reduced
pressure, and the compound Monomer-2 was obtained by
column chromatography (volume ratio: ethyl acetate:
petroleum ether = 1:5). Yellow solid, 50%; 1H NMR
(Supplementary Figure S44) (400 MHz, CDCl3) δ 13.73 (s,
1H, OH), 8.33 (s, 1H, CH), 7.32–7.27 (m, 1H, ArH), 6.95 (d,
J = 8.2 Hz, 1H, ArH), 6.84 (s, 4H, ArH), 6.60 (s, 1H, ArH), 4.43 (s,
2H, CH2), 3.91 (t, J = 6.5 Hz, 2H, CH2), 3.58 (t, J = 6.9 Hz, 2H,

FIGURE 2 | Partial 2D NOESY spectrum of a CDCl3 solution of 6e at 298K.
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CH2), 3.33 (m, 2H, CH2), 1.79–1.64 (m, 4H, CH2), 1.49 (m, 6H,
CH2), 1.28 (t, J = 4.9 Hz, 10H, CH2), 0.97 (t, J = 7.4 Hz, 3H, CH3).

Materials and Methods
Stoppers 2a, 2c, 2d, 3, 4, and 5 and reagents [1,10-decanediamine,
methyl 2-(4-butoxyphenoxy)acetate, and so on] were
commercially available (99%) and used as received. Further
purification and drying of the solvents by standard methods
were employed and distilled prior to use when necessary.

1H NMR and 13C NMR spectra were recorded on a Bruker
AVIII-400 MHz spectrometer. 2D NMR spectra were recorded
on a Bruker AV-600 MHz spectrometer. All NMR used
tetramethylsilane (TMS) as the internal standard.

A Bruker Micro-TOF spectrometer was used to investigate the
high-resolution mass (ESI) of the compounds.

A Bruker Smart APEX-2 CCD diffractometer was used to
investigate the X-ray single-crystal structures.

RESULTS AND DISCUSSION
1H NMR Investigation
As shown in Scheme 2, P5[1]Rs were synthesized from pseudo
[1]rotaxane 1a or 1b reacted with different stoppers in one
step. We used 1H NMR spectra to characterize the obtained P5
[1]Rs firstly. It can be clearly found that there were several
groups of protons in the high magnetic field (δ < 0 ppm) of the
1H NMR spectra of 6a, 6c, 6d, 6e, 6g, 6h, 7a, 7b, 8a, 8b, 9a, and
9b, indicating that the alkyl chain was penetrated into the
cavity of pillar[5]arene (Zhang et al., 2020; Ding et al., 2021).
[1]Rotaxane 6e is taken as an example; monomer-2 and 6e in
CDCl3 at 293 K are shown in Figures 1D,C. Compared with
monomer-2, we found that the signals of protons Hd, He, Hf,
Hg, and Hh on the alkyl chain attached onto the pillar[5]arene
platform shifted upfield from 1.277 to 0.756, −0.094, −1.292,
−1.382, and −2.401 ppm due to the shielding effect, indicating

FIGURE 3 | The single-crystal structure of 6e, where only the hydrogens in question are given for clarity. (A) N–H···O and O–H···N hydrogen bonding. (B) and (C)
C–H···O interaction, H···O distances, 3.0 Å, 3.2 Å, 3.4 Å, 3.0 Å, 3.2 Å, 3.1 Å, and 3.5 Å. (D) C–H···π interactions, H···ring center distances, 3.0 Å, 3.3 Å 3.0 Å, and 3.0 Å.
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the formation of a mechanically interlocked structure. Then,
we used DMSO-d6 as the solvent for

1H NMR investigation to
confirm the formation of [1]rotaxane. As is known that DMSO
is a de-complexometric solvent, in DMSO-d6, the signals of
protons on the alkyl chains upfield obviously below 0 ppm due
to the shielding effect (Figure 1B), confirming that the stopper
units are large enough for blocking the cavity of pillar[5]arene.
Further 13C NMR and HR-MS studies also confirmed that
these P5[1]Rs were prepared successfully.

2D NOESY Investigation
2D nuclear overhauser effect spectroscopy (NOESY) was then
used to characterize the stereochemical structure of the obtained
[1]rotaxanes. We also take 6e as an example. As shown in
Figure 2, the hydrogens (Hb, Hc, Hd, He, Hf, Hg, Hh, and
Hi) of the alkyl chain on 6e showed strong correlation with the
bridged -CH2- (Hbridge) and the hydrogen–OCH3 and -OCH2-
(HMe) on the 1,4-dimethoxybenzene, indicating that the alkyl
chain was passed through the cavity and consisted of the above 1H
NMR results. The NOESY spectrum of 6e in DMSO-d6 also
confirmed the interlocked structure (Supplementary
Figure S45).

Single-Crystal Structures
With the aim to further study the mechanically interlocked
structure of 6e, a colorless crystal was grown by a vapor
diffusion method. As shown in Figure 3A, the alkyl chain
penetrated into the cavity of pillar[5]arene and the
salicylaldiminato unit acted as a stopper to form [1]rotaxane.
One amide N–H···O hydrogen bonding and an O–H···N
hydrogen bonding were observed in Figure 3A. Besides the
weak C–H···O interactions between the CH2 of the axle and
the O atoms of the host (Figures 3B,C), multiple C–H···π
interactions between CH2 of the axle and benzene units of the
host (Figure 3D) were also observed. So, the driving forces for the
formation of [1]rotaxane was the synergic C–H···π, C–H···O
interactions and N–H···O hydrogen bonding.

CONCLUSION

In this article, we have successfully designed and synthesized
three series of pillar [5]arene-based [1]rotaxanes (P5[1]Rs) with

pentanedione derivatives, azobenzene derivatives, and
salicylaldehyde derivatives as the stoppers, respectively. 1H
NMR, 13C NMR, 2D-NOESY, MS, and single-crystal X-ray
analysis were used to characterize the obtained P5[1]Rs. We
found that the driving forces for the formation of [1]rotaxane
were the synergic C–H···π, C–H···O interactions and N–H···O,
O–H···N hydrogen bonding. This work not only enriched the
diversity of pillar[n]arene family but also gave a big boost to the
pillar[n]arene-based MIMs.
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