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In naturalistic multi-cue and multi-step learning tasks, where outcomes of behavior are

delayed in time, discovering which choices are responsible for rewards can present a

challenge, known as the credit assignment problem. In this review, I summarize recent

work that highlighted a critical role for the prefrontal cortex (PFC) in assigning credit

where it is due in tasks where only a few of the multitude of cues or choices are

relevant to the final outcome of behavior. Collectively, these investigations have provided

compelling support for specialized roles of the orbitofrontal (OFC), anterior cingulate

(ACC), and dorsolateral prefrontal (dlPFC) cortices in contingent learning. However,

recent work has similarly revealed shared contributions and emphasized rich and

heterogeneous response properties of neurons in these brain regions. Such functional

overlap is not surprising given the complexity of reciprocal projections spanning the

PFC. In the concluding section, I overview the evidence suggesting that the OFC, ACC

and dlPFC communicate extensively, sharing the information about presented options,

executed decisions and received rewards, which enables them to assign credit for

outcomes to choices on which they are contingent. This account suggests that lesion or

inactivation/inhibition experiments targeting a localized PFC subregion will be insufficient

to gain a fine-grained understanding of credit assignment during learning and instead

poses refined questions for future research, shifting the focus from focal manipulations

to experimental techniques targeting cortico-cortical projections.

Keywords: orbitofrontal, dorsolateral prefrontal, anterior cingulate, learning, reward, reinforcement, plasticity,

behavioral flexibility

INTRODUCTION

When an animal is introduced to an unfamiliar environment, it will explore the surroundings
randomly until an unexpected reward is encountered. Reinforced by this experience, the animal
will gradually learn to repeat those actions that produced the desired outcome. The work conducted
in the past several decades has contributed a detailed understanding of the psychological and
neural mechanisms that support such reinforcement-driven learning (Schultz and Dickinson, 2000;
Schultz, 2004; Niv, 2009). It is now broadly accepted that dopamine (DA) signaling conveys
prediction errors, or the degree of surprise brought about by unexpected rewards, and interacts
with cortical and basal ganglia circuits to selectively reinforce the advantageous choices (Schultz,
1998a,b; Schultz and Dickinson, 2000; Niv, 2009). Yet, in naturalistic settings, where rewards are
delayed in time, and where multiple cues are encountered, or where several decisions are made
before the outcomes of behavior are revealed, discovering which choices are responsible for rewards
can present a challenge, known as the credit assignment problem (Mackintosh, 1975; Rothkopf and
Ballard, 2010).
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In most everyday situations, the rewards are not immediate
consequences of behavior, but instead appear after substantial
delays. To influence future choices, the teaching signal conveyed
by DA release needs to reinforce synaptic events occurring on
a millisecond timescale, frequently seconds before the outcomes
of decisions are revealed (Izhikevich, 2007; Fisher et al., 2017).
This apparent difficulty in linking preceding behaviors caused
by transient neuronal activity to a delayed feedback has been
termed the distal reward or temporal credit assignment problem
(Hull, 1943; Barto et al., 1983; Sutton and Barto, 1998; Dayan
and Abbott, 2001; Wörgötter and Porr, 2005). Credit for the
reward delayed by several seconds can frequently be assigned
by establishing an eligibility trace, a molecular memory of
the recent neuronal activity, allowing modification of synaptic
connections that participated in the behavior (Pan et al., 2005;
Fisher et al., 2017). On longer timescales, or when multiple
actions need to be performed sequentially to reach a final
goal, intermediate steps themselves can acquire motivational
significance and subsequently reinforce preceding decisions, such
as in temporal-difference (TD) learning models (Sutton and
Barto, 1998).

Several excellent reviews have summarized the accumulated
knowledge on mechanisms that link choices and their outcomes
through time, highlighting the advantages of eligibility traces
and TD models (Wörgötter and Porr, 2005; Barto, 2007; Niv,
2009; Walsh and Anderson, 2014). Yet these solutions to the
distal reward problem can impede learning in multi-choice
tasks, or when an animal is presented with many irrelevant
stimuli prior to or during the delay. Here, I only briefly
overview the work on the distal reward problem to highlight
potential complications that can arise in credit assignment based
on eligibility traces when learning in multi-cue environments.
Instead, I focus on the structural (or spatial) credit assignment
problem, requiring animals to select and learn about the most
meaningful features in the environment and ignore irrelevant
distractors. Collectively, the reviewed evidence highlights a
critical role for the prefrontal cortex (PFC) in such contingent
learning.

Recent studies have provided compelling support for
specialized functions of the orbitofrontal (OFC) and dorsolateral
prefrontal (dlPFC) cortices in credit assignment in multi-cue
tasks, with fewer experiments targeting the anterior cingulate
cortex (ACC). For example, it has seen suggested that the dlPFC
aids reinforcement-driven learning by directing attention to
task-relevant cues (Niv et al., 2015), the OFC assigns credit
for rewards based on the causal relationship between trial
outcomes and choices (Jocham et al., 2016; Noonan et al.,
2017), whereas the ACC contributes to unlearning of action-
outcome associations when the rewards are available for
free (Jackson et al., 2016). However, this work has similarly
revealed shared contributions and emphasized rich and
heterogeneous response properties of neurons in the PFC,
with different subregions monitoring and integrating the
information about the task (i.e., current context, available
options, anticipated rewards, as well as delay and effort costs) at
variable times within a trial (upon stimulus presentation, action
selection, outcome anticipation, and feedback monitoring; ex.,

Hunt et al., 2015; Khamassi et al., 2015). In the concluding
section, I overview the evidence suggesting that contingent
learning in multi-cue environments relies on dynamic cortico-
cortical interactions during decision making and outcome
valuation.

SOLVING THE TEMPORAL CREDIT
ASSIGNMENT PROBLEM

When outcomes follow choices after short delays (Figure 1A),
the credit for distal rewards can frequently be assigned by
establishing an eligibility trace, a sustained memory of the
recent activity that renders synaptic connections malleable
to modification over several seconds. Eligibility traces can
persist as elevated levels of calcium in dendritic spines of
post-synaptic neurons (Kötter and Wickens, 1995) or as a
sustained neuronal activity throughout the delay period (Curtis
and Lee, 2010) to allow for synaptic changes in response to
reward signals. Furthermore, spike-timing dependent plasticity
can be influenced by neuromodulator input (Izhikevich, 2007;
Abraham, 2008; Fisher et al., 2017). For example, the magnitude
of short-term plasticity can be modulated by DA, acetylcholine
and noradrenaline, whichmay even revert the sign of the synaptic
change (Matsuda et al., 2006; Izhikevich, 2007; Seol et al., 2007;
Abraham, 2008; Zhang et al., 2009). Sustained neural activity
has been observed in the PFC and striatum (Jog et al., 1999;
Pasupathy and Miller, 2005; Histed et al., 2009; Kim et al., 2009,
2013; Seo et al., 2012; Her et al., 2016), as well as the sensory
cortices after experience with consistent pairings between the
stimuli and outcomes separated by predictable delays (Shuler and
Bear, 2006).

On extended timescales, when multiple actions need to be
performed sequentially to reach a final goal, the distal reward
problem can be solved by assigning motivational significance to
intermediate choices that can subsequently reinforce preceding
decisions, such as in TD learning models (Montague et al., 1996;
Sutton and Barto, 1998; Barto, 2007). Assigning values to these
intervening steps according to expected future rewards allows to
break complex temporal credit assignment problems into smaller
and easier tasks. There is ample evidence for TD learning in
humans and other animals that on the neural level is supported
by transfer of DA responses from the time of reward delivery
to preceding cues and actions (Montague et al., 1996; Schultz,
1998a,b; Walsh and Anderson, 2014).

Both TD learning and eligibility traces offer elegant solutions
to the distal reward problem, and models based on cooperation
between these two mechanisms can predict animal behavior as
well as neuronal responses to rewards and predictive stimuli
(Pan et al., 2005; Bogacz et al., 2007). Yet assigning credit
based on eligibility traces can be suboptimal when an animal
interacts with many irrelevant stimuli prior to or during the
delay (Figure 1B). Under such conditions sensory areas remain
responsive to distracting stimuli and the arrival of non-specific
reward signals can reinforce intervening cues that did not
meaningfully contribute, but occurred close, to the outcome of
behavior (FitzGerald et al., 2013; Xu, 2017).
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FIGURE 1 | Example tasks highlighting the challenge of credit assignment and learning strategies enabling animals to solve this problem. (A) An example of a distal

reward task that can be successfully learned with eligibility traces and TD rules, where intermediate choices can acquire motivational significance and subsequently

reinforce preceding decisions (ex., Pasupathy and Miller, 2005; Histed et al., 2009). (B) In this version of the task, multiple cues are present at the time of choice, only

one of which is meaningful for obtaining rewards. After a brief presentation, the stimuli disappear, requiring an animal to solve a complex structural and temporal credit

assignment problem (ex., Noonan et al., 2010, 2017; Niv et al., 2015; Asaad et al., 2017; while the schematic of the task captures the challenge of credit assignment,

note that in some experimental variants of the behavioral paradigm stimuli disappeared before an animal revealed its choice, whereas in others the cues remained on

the screen until the trial outcome was revealed). Under such conditions, learning based on eligibility traces is suboptimal, as non-specific reward signals can reinforce

visual cues that did not meaningfully contribute, but occurred close, to beneficial outcomes of behavior. (C) On reward tasks, similar to the one shown in (B), the

impact of previous decisions and associated rewards on current behavior can be assessed by performing regression analyses (Jocham et al., 2016; Noonan et al.,

2017). Here, the color of each cell in a matrix represents the magnitude of the effect of short-term choice and outcome histories, up to 4 trials into the past (red-strong

influence; blue-weak influence on the current decision). Top: an animal learning based on the causal relationship between outcomes and choices (i.e., contingent

learning). Middle: each choice is reinforced by a combined history of rewards (i.e., decisions are repeated if beneficial outcomes occur frequently). Bottom: the

influence of recent rewards spreads to unrelated choices.

THE ROLE OF THE PFC IN STRUCTURAL
CREDIT ASSIGNMENT

Several recent studies have investigated the neural mechanisms
of appropriate credit assignment in challenging tasks where
only a few of the multitude of cues predict rewards reliably.
Collectively, this work has provided compelling support for
causal contributions of the PFC to structural credit assignment.
For example, Asaad et al. (2017) examined the activity of neurons
in monkey dlPFC while subjects were performing a delayed
learning task. The arrangement of the stimuli varied randomly
between trials and within each block either the spatial location or
stimulus identity was relevant for solving the task. The monkeys’
goal was to learn by trial-and-error to select one of the four
options that led to rewards according to current rules. When
stimulus identity was relevant for solving the task, neural activity
in the dlPFC at the time of feedback reflected both the relevant
cue (regardless of its spatial location) and the trial outcome, thus
integrating the information necessary for credit assignment. Such
responses were strategy-selective: these neurons did not encode

cue identity at the time of feedback when it was not necessary for
learning in the spatial location task, in which making a saccade
to the same position on the screen was reinforced within a block
of trials. Previous research has similarly indicated that neurons
in the dlPFC respond selectively to behaviorally-relevant and
attended stimuli (Lebedev et al., 2004; Markowitz et al., 2015)
and integrate information about prediction errors, choice values
as well as outcome uncertainty prior to trial feedback (Khamassi
et al., 2015).

The activity within the dlPFC has been linked to
structural credit assignment through selective attention and
representational learning (Niv et al., 2015). Under conditions
of reward uncertainty and unknown relevant task features,
human participants opt for computational efficiency and
engage in a serial-hypothesis-testing strategy (Wilson and Niv,
2011), selecting one cue and its anticipated outcome as the
main focus of their behavior, and updating the expectations
associated exclusively with that choice upon feedback receipt
(Akaishi et al., 2016). Niv and colleagues tested participant on
a three-armed bandit task, where relevant stimulus dimensions
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(i.e., shape, color or texture) predicting outcome probabilities
changed between block of trials (Niv et al., 2015). In such
multidimensional environment, reinforcement-driven learning
was aided by attentional control mechanisms that engaged the
dlPFC, intraparietal cortex, and precuneus.

In many tasks, the credit for outcomes can be assigned
according to different rules: based on the causal relationship
between rewards and choices (i.e., contingent learning), their
temporal proximity (i.e., when the reward is received shortly
after a response), or their statistical relationship (when an
action has been executed frequently before beneficial outcomes;
Jocham et al., 2016; Figure 1C). The analyses presented in
papers discussed above did not allow for the dissociation
between these alternative strategies of credit assignment. By
testing human participants on a task with continuous stimulus
presentation, instead of a typical trial-by-trial structure, Jocham
et al. (2016) demonstrated that the tendency to repeat choices
that were immediately followed by rewards and causal learning
operate in parallel. In this experiment, activity within another
subregion of the PFC, the OFC, was associated with contingent
learning. Complementary work in monkeys revealed that the
OFC contributes causally to credit assignment (Noonan et al.,
2010): animals with OFC lesions were unable to associate a
reward with the choice on which it was contingent and instead
relied on temporal and statistical learning rules. In another
recent paper, Noonan and colleagues (2017) extended these
observations to humans, demonstrating causal contributions of
the OFC to credit assignment across species. The participants
were tested on a three-choice probabilistic learning task. The
three options were presented simultaneously and maintained on
the screen until the outcome of a decision was revealed, thus
requiring participants to ignore irrelevant distractors. Notably,
only patients with lateral OFC lesions displayed any difficulty
in learning the task, whereas damage to the medial OFC or
dorsomedial PFC preserved contingent learning mechanisms.
However, it is presently unknown whether lesions to the dlPFC
or ACC affect such causal learning.

In another test of credit assignment in learning, contingency
degradation, the subjects are required to track causal
relationships between the stimuli or actions and rewards.
During contingency degradation sessions, the animals are still
reinforced for responses, but rewards are also available for free.
After experiencing non-contingent rewards, control subjects
reliably decrease their choices of the stimuli. However, lesions to
both the ACC andOFC inhibit contingency degradation (Jackson
et al., 2016). Taken together, these observations demonstrate
causal contributions of the PFC to appropriate credit assignment
in multi-cue environments.

COOPERATION BETWEEN PFC
SUBREGIONS SUPPORTS CONTINGENT
LEARNING IN MULTI-CUE TASKS

Despite the segregation of temporal and structural aspects
of credit assignment in earlier sections of this review, in
naturalistic settings the brains frequently need to tackle both

problems simultaneously. Here, I overview the evidence favoring
a network perspective, suggesting that dynamic cortico-cortical
interactions during decision making and outcome valuation
enable adaptive solutions to complex spatio-temporal credit
assignment problems. It has been previously suggested that
feedback projections from cortical areas occupying higher levels
of processing hierarchy, including the PFC, can aid in attribution
of outcomes to individual decisions by implementing attention-
gated reinforcement learning (Roelfsema and van Ooyen, 2005).
Similarly, recent theoretical work has shown that even complex
multi-cue and multi-step problems can be solved by an extended
cascade model of synaptic memory traces, in which the plasticity
is modulated not only by the activity within a population of
neurons, but also by feedback about executed decisions and
resulting rewards (Urbanczik and Senn, 2009; Friedrich et al.,
2010, 2011). Contingent learning, according to these models,
can be supported by the communication between neurons
encoding available options, committed choices and outcomes
of behavior during decision making and feedback monitoring.
For example, at the time of outcome valuation, information
about recent choices can be maintained as a memory trace
in the neuronal population involved in action selection or
conveyed by an efference copy from an interconnected brain
region (Curtis and Lee, 2010; Khamassi et al., 2011, 2015).
Similarly, reinforcement feedback is likely communicated as a
global reward signal (ex., DA release) as well as projections from
neural populations engaged in performance monitoring, such as
those within the ACC (Friedrich et al., 2010; Khamassi et al.,
2011). The complexity of reciprocal and recurrent projections
spanning the PFC (Barbas and Pandya, 1989; Felleman and Van
Essen, 1991; Elston, 2000) may enable this network to implement
such learning rules, integrating the information about the task,
executed decisions and performance feedback.

In many everyday decisions, the options are compared across
multiple features simultaneously (ex., by considering current
context, needs, available reward types, as well as delay and effort
costs). Neurons in different subregions of the PFC exhibit rich
response properties, signaling these features of the task at various
time epochs within a trial. For example, reward selectivity in
response to predictive stimuli emerges earlier in the OFC and
may then be passed to the dlPFC that encodes both the expected
outcome and the upcoming choice (Wallis and Miller, 2003).
Similarly, on trials where options are compared based on delays
to rewards, choices are dependent on interactions between the
OFC and dlPFC (Hunt et al., 2015). Conversely, when effort costs
are more meaningful for decisions, it is the ACC that influences
choice-related activity in the dlPFC (Hunt et al., 2015). The OFC
is required not only for the evaluation of stimuli, but also more
complex abstract rules, based on rewards they predict (Buckley
et al., 2009). While both the OFC and dlPFC encode abstract
strategies (ex., persisting with recent choices or shifting to a new
response), such signals appear earlier in the OFC and may be
subsequently conveyed to the dlPFC where they are combined
with upcoming response (i.e., left vs. right saccade) encoding
(Tsujimoto et al., 2011). Therefore, the OFC may be the first
PFC subregion to encode task rules and/or potential rewards
predicted by sensory cues; via cortico-cortical projections, this
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information may be subsequently communicated to the dlPFC
or ACC (Kennerley et al., 2009; Hayden and Platt, 2010) to drive
strategy-sensitive response planning.

The behavioral strategy that the animal follows is influenced
by recent reward history (Cohen et al., 2007; Pearson et al., 2009).
If its choices are reinforced frequently, the animal will make
similar decisions in the future (i.e., exploit its current knowledge).
Conversely, unexpected omission of expected rewards can signal
a need for novel behaviors (i.e., exploration). Neurons in the
dlPFC carry representations of planned as well as previous
choices, anticipate outcomes, and jointly encode the current
decisions and their consequences following feedback (Seo and
Lee, 2007; Seo et al., 2007; Tsujimoto et al., 2009; Asaad
et al., 2017). Similarly, the ACC tracks trial-by-trial outcomes
of decisions (Procyk et al., 2000; Shidara and Richmond, 2002;
Amiez et al., 2006; Quilodran et al., 2008) as well as reward and
choice history (Seo and Lee, 2007; Kennerley et al., 2009, 2011;
Sul et al., 2010; Kawai et al., 2015) and signals errors in outcome
prediction (Kennerley et al., 2009, 2011; Hayden et al., 2011;
Monosov, 2017). At the time of feedback, neurons in the OFC
encode committed choices, their values and contingent rewards
(Tsujimoto et al., 2009; Sul et al., 2010). Notably, while the OFC
encodes the identity of expected outcomes and the value of the
chosen option after the alternatives are presented to an animal,
it does not appear to encode upcoming decisions (Tremblay
and Schultz, 1999; Wallis and Miller, 2003; Padoa-Schioppa and
Assad, 2006; Sul et al., 2010; McDannald et al., 2014), therefore
it might be that feedback projections from the dlPFC or ACC
are required for such activity to emerge at the time of reward
feedback.

To capture the interactions between PFC subregions in
reinforcement-driven learning, Khamassi and colleagues have
formulated a computation model in which action values are
stored and updated in the ACC and then communicated to the
dlPFC that decides which action to trigger (Khamassi et al.,
2011, 2013). This model relies on meta-learning principles
(Doya, 2002), flexibly adjusting the exploration-exploitation
parameter based on performance history and variability in the
environment that aremonitored by the ACC. The explore-exploit
parameter then influences action-selection mechanisms in the
dlPFC, prioritizing choice repetition once the rewarded actions
are discovered and encouraging switching between different
options when environmental conditions change. In addition to
highlighting the dynamic interactions between the dlPFC and
ACC in learning, the model similarly offers an elegant solution
to the credit assignment problem by restricting value updating
only to those actions that were selected on a given trial. This
is implemented by requiring the prediction error signals in
the ACC to coincide with a motor efference copy sent by the
premotor cortex. The model is endorsed with an ability to learn
meta-values of novel objects in the environment based on the
changes in the average reward that follow the presentation of
such stimuli. While the authors proposed that such meta-value
learning is implemented by the ACC, it is plausible that the
OFC also plays a role in this process based on its contributions
to stimulus-outcome and state learning (Wilson et al., 2014;
Zsuga et al., 2016). Intriguingly, this model could reproduce
monkey behavior and neural responses on two tasks: four-choice

deterministic and two-choice probabilistic paradigms, entailing
a complex spatio-temporal credit assignment problem as the
stimuli disappeared from the screen prior to action execution
and outcome presentation (Khamassi et al., 2011, 2013, 2015).
Model-based analyses of neuronal responses further revealed that
information about prediction errors, action values and outcome
uncertainty is integrated both in the dlPFC and ACC, but at
different timepoints: before trial feedback in the dlPFC and after
feedback in the ACC (Khamassi et al., 2015).

Collectively, these findings highlight the heterogeneity of
responses in each PFC subregion that differ in temporal dynamics
within a single trial and suggest that the cooperation between
the OFC, ACC and dlPFC may support flexible, strategy- and
context-dependent choices. This network perspective further
suggests that individual PFC subregions may be less specialized
in their functions than previously thought. For example, in
primates both the ACC and dlPFC participate in decisions based
on action values (Hunt et al., 2015; Khamassi et al., 2015).
And more recently, it has been demonstrated that the OFC is
involved in updating action-outcome values as well (Fiuzat et al.,
2017). Analogously, while it has been proposed that the OFC is
specialized for stimulus-outcome and ACC for action-outcome
learning (Rudebeck et al., 2008), lesions to the ACC have been
similarly reported to impair stimulus-based reversal learning
(Chudasama et al., 2013), supporting shared contributions of
the PFC subregions to adaptive behavior. Indeed, these brain
regions communicate extensively, sharing the information about
presented options, executed decisions and received rewards
(Figure 2), which can enable them to assign credit for outcomes
to choices on which they are contingent (Urbanczik and Senn,
2009; Friedrich et al., 2010, 2011). Attention-gated learning likely
relies on the cooperation between PFC subregions as well: for
example, coordinated and synchronized activity between the
ACC and dlPFC aids in goal-directed attentional shifting and
prioritization of task-relevant information (Womelsdorf et al.,
2014; Oemisch et al., 2015; Voloh et al., 2015).

Functional connectivity within the PFC can support
contingent learning on shorter timescales (ex., across trials
within the same task), when complex rules or stimulus-action-
outcome mappings are switching frequently (Duff et al., 2011;
Johnson et al., 2016). Under such conditions, the same stimuli
can carry different meaning depending on task context or due to
changes in the environment (ex., serial discrimination-reversal
problems) and the PFC neurons with heterogeneous response
properties may be better targets for modification, allowing the
brain to exert flexible, rapid and context-sensitive control over
behavior (Asaad et al., 1998; Mansouri et al., 2006). Indeed, it
has been shown that rule and reversal learning induce plasticity
in OFC synapses onto the dorsomedial PFC (encompassing
the ACC) in rats (Johnson et al., 2016). When motivational
significance of reward-predicting cues fluctuates frequently,
neuronal responses and synaptic connections within the
PFC tend to update more rapidly (i.e., across block of trials)
compared to subcortical structures and other cortical regions
(Padoa-Schioppa and Assad, 2008; Morrison et al., 2011; Xie
and Padoa-Schioppa, 2016; Fernández-Lamo et al., 2017; Saez
et al., 2017). Similarly, neurons in the PFC promptly adapt their
responses to incoming information based on the recent history
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FIGURE 2 | Cooperation between PFC subregions in multi-cue tasks. In many

everyday decisions, the options are compared across multiple features

simultaneously (ex., by considering current context, needs, available reward

types, as well as delay and effort costs). Neurons in different subregions of the

PFC exhibit rich response properties, integrating many aspects of the task at

hand. The OFC, ACC and dlPFC communicate extensively, sharing the

information about presented options, executed decisions and received

rewards, which can enable them to assign credit for outcomes to choices on

which they are contingent.

of inputs (Freedman et al., 2001; Meyers et al., 2012; Stokes
et al., 2013). Critically, changes in the PFC activity closely track
behavioral performance (Mulder et al., 2003; Durstewitz et al.,
2010), and interfering with neural plasticity within this brain
area prevents normal responses to contingency degradation
(Swanson et al., 2015).

When the circumstances are stable overall and the same
cues or actions remain reliable predictors of rewards, long-
range connections between the PFC, association and sensory
areas can support contingent learning on prolonged timescales.
Neurons in the lateral intraparietal area demonstrate larger
post-decisional responses and enhanced learning following
choices that predict final outcomes of sequential behavior in
a multi-step and -cue task (Gersch et al., 2014). Such changes
in neuronal activity likely rely on information about task
rules conveyed by the PFC directly or via interactions with
neuromodulatory systems. These hypotheses could be tested in
future work.

In summary, dynamic interactions between subregions of the
PFC can support contingent learning in multi-cue environments.
Furthermore, via feedback projections, the PFC can guide
plasticity in other cortical areas associated with sensory and
motor processing (Cohen et al., 2011). This account suggests

that lesion experiments targeting a localized PFC subregion
will be insufficient to gain fine-grained understanding of
credit assignment during learning and instead poses refined
questions for future research, shifting the focus from focal
manipulations to experimental techniques targeting cortico-
cortical projections. To gain novel insights into functional
connectivity between PFC subregions, it will be critical to assess
neural correlates of contingent learning in the OFC, ACC,
and dlPFC simultaneously in the context of the same task. In
humans, functional connectivity can be assessed by utilizing
coherence, phase synchronization, Granger causality and Bayes
network approaches (Bastos and Schoffelen, 2016; Mill et al.,
2017). Indeed, previous studies have linked individual differences
in cortico-striatal functional connectivity to reinforcement-
driven learning (Horga et al., 2015; Kaiser et al., 2017)
and future work could focus on examining cortico-cortical
interactions in similar paradigms. To probe causal contributions
of projections spanning the PFC, future research may benefit
from designing multi-cue tasks for rodents and taking advantage
of recently developed techniques (i.e., chemo- and opto-genetic
targeting of projection neurons followed by silencing of axonal
terminals to achieve pathway-specific inhibition; Deisseroth,
2010; Sternson and Roth, 2014) that afford increasingly precise
manipulations of cortico-cortical connectivity. It should be
noted, however, that most experiments to date have probed
the contributions of the PFC to credit assignment in primates,
and functional specialization across different subregions may be
even less pronounced in mice and rats. Finally, as highlighted
throughout this review, the recent progress in understanding
the neural mechanisms of credit assignment has relied on
introduction of more complex tasks, including multi-cue and
probabilistic choice paradigms. While such tasks better mimic
the naturalistic problems that the brains have evolved to solve,
they also produce behavioral patterns that are more difficult
to analyze and interpret (Scholl and Klein-Flügge, 2017). As
such, computational modeling of the behavior and neuronal
activity may prove especially useful in future work on credit
assignment.
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