
1Scientific Data |           (2022) 9:125  | https://doi.org/10.1038/s41597-022-01208-6

www.nature.com/scientificdata

Global land projection based on 
plant functional types with a 1-km 
resolution under socio-climatic 
scenarios
Guangzhao Chen  1,2,4, Xia Li  3,4 & Xiaoping Liu  1 ✉

This study presents a global land projection dataset with a 1-km resolution that comprises 20 land 
types for 2015–2100, adopting the latest IPCC coupling socioeconomic and climate change scenarios, 
SSP-RCP. This dataset was produced by combining the top-down land demand constraints afforded by 
the CMIP6 official dataset and a bottom-up spatial simulation executed via cellular automata. Based 
on the climate data, we further subdivided the simulation products’ land types into 20 plant functional 
types (PFTs), which well meets the needs of climate models for input data. The results show that our 
global land simulation yields a satisfactory accuracy (Kappa = 0.864, OA = 0.929 and FoM = 0.102). 
Furthermore, our dataset well fits the latest climate research based on the SSP-RCP scenarios. 
Particularly, due to the advantages of fine resolution, latest scenarios and numerous land types, our 
dataset provides powerful data support for environmental impact assessment and climate research, 
including but not limited to climate models.

Background & Summary
Since the industrial revolution, human activities have continuously strengthened in scope and intensity and have 
substantially impacted regional- and global-scale land-use and land-cover changes (LUCCs)1,2. Moreover, this 
trend is expected continue in the foreseeable future3,4. Scenario-based simulations of future land changes can 
provide important evaluation information on the effect of land policies under different conditions. Thus, they 
have become a powerful tool for analysing potential future land-use changes5. Furthermore, from the ongoing 
global climate change perspective, scenario-based future land change simulations can provide an essential ref-
erence for environmental change risk assessment6. Moreover, land simulation products are an essential driving 
factor for climate models7.

To better coordinate international climate research, Phase 6 of the Coupled Model Intercomparison Project 
(CMIP6) used the latest group of coupled scenarios, the SSP-RCP scenarios8. Using these scenarios, different 
scholars can establish universal and comparable climate studies. In the coupled scenario, shared socioeconomic 
pathways (SSPs) consider the future social and economic possibilities from population, economy, policy and 
technology perspectives9. Representative concentration pathways (RCPs) employ radiative forcing as an indi-
cator to describe future climate change possibilities10. Different SSPs and RCPs can form a scenario matrix 
comprising numerous coupled scenarios. Therefore, CMIP6 recommends some of the most likely scenarios as 
critical SSP-RCP scenarios to sharpen the research focus. Herein, we focus on the seven coupling scenarios with 
the highest priority, Tier 1 and Tier 2 levels, designated by CMIP6, and one coupling scenario that is specially 
added to achieve the goal of temperature increase below 1.5°C (SSP1-1.9)11. Tier 1 level scenarios include SSP1-
2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5, while Tier 2 level scenarios include SSP4-3.4, SSP4-6.0 and SSP5-3.4-OS 
(hereinafter, abbreviated as SSP5-3.4).
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In addition to enriching scenario settings, the resolution of land simulation products needs to be improved. 
Existing global LUCC prediction products generally suffer from coarse resolution. The resolution of most prod-
ucts is between 5′ and 0.5° (approximately 10–50 km on the equator)12–14. For example, for the latest SSP-RCP 
scenarios, Popp et al.15 only projected the land area of different regions under SSP without spatial details; the 
LUH2 dataset4 has a coarse resolution of only 0.25°. Chen et al.16 improved the resolution of the projected land 
use product to 0.05°, i.e. about 5 km at the equator. Coarse resolutions afford enormous uncertainty to related 
research using these products, limiting the potential application of these global LUCC projection products14. 
Even at a 10-km resolution, the spatial pattern of urban land will be severely distorted if the resolution is coarse, 
making it impossible to effectively simulate the spatial changes17.

The number of land types included in future land datasets also needs to be improved. Many global and 
regional climate models (e.g. CLM7, ECHAM18, RegCM19 and WRF6) use land cover data with more detailed 
classification as important driving data20–22. Moreover, they require vegetation-type data that can reflect land 
roughness, surface albedo, soil hydrology and heat characteristics as driving data. Therefore, land data based on 
plant functional type (PFT) are more suitable for climate research, such as climate models. PFT incorporates 
numerous land types that can reflect specific ecological functions and climate characteristics23. However, most 
existing future land datasets, especially those with a fine resolution, contain very limited land types. They usually 
comprise only 6–7 land types; thus, they do not well meet climate models’ requirements17,24.

Therefore, this study aims to (1) connect the land projection dataset to the latest group of climate research 
scenarios, SSP-RCPs, (2) improve the resolution of the global land projection dataset under the latest scenario 
and (3) enrich future land projection dataset’s land types. Thus, this study first generates a 1-km future global 
land-use and land-cover (LULC) dataset comprising seven broad land types with 5-year intervals from 2015 to 
2100 via land simulation. Then, the LULC dataset is subdivided to afford a PFT-based land dataset containing 
20 land types. To our knowledge, this is the highest resolution till date of a future global land dataset with the 
latest SSP-RCP scenarios. Due to their fine spatial details and rich land type information, the two proposed data-
sets will contribute to environmental impact assessment and the latest climate research, such as global climate 
modelling.

Method
Fig. 1 shows the creation process of a future land dataset. The process can be divided into three parts. The first 
part is the estimation of the future area demands for different land types under different SSP-RCP scenarios. The 
second part is the implementation of a 1-km spatial land simulation using the future land use simulation (FLUS) 
model under the macro constraints of the demands. The FLUS model is discussed below. At this point, a future 
LULC dataset containing seven land types is afforded. Furthermore, in the third part, we subdivide the land 
types to form a future land dataset of SSP-RCP scenarios with a 1-km resolution based on PFT classification.

estimating future land demand. CMIP6 affords a set of officially recommended future land-use datasets, 
LUH2 (Land-Use Harmonization 2)4, which is available for free at http://luh.umd.edu/index.shtml. We down-
loaded the LUH2 v2f Release with tree cover correction files on 25 February 2019. This dataset comprises a 
global projection of multiple land types for successive years from 2015 to 2100 under different SSP-RCP scenarios 
with a 0.25° resolution (approximately 25 km at the equator). Considering CMIP6, the recommended land-use  
 

Fig. 1 Workflow for creating future global 1-km resolution land datasets of SSP-RCP scenarios.
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prediction results for different SSP-RCP scenarios have been provided using different integrated assessment mod-
els (IAMs) created by different research teams25. IAMs are a class of integrated models that integrate relevant 
models developed in various disciplines, such as energy, economics, atmospheric chemistry, climate and ecology 
by constructing representative sectors26. One IAM can project several SSP-RCP scenarios3,27–30.

In the official future land-use datasets, however, a specific SSP only corresponds to a recommended IAM, 
which also affords RCPs coupling with this SSP, i.e. IMAGE model for SSP131, MESSAGE-GLOBIOM model for 
SSP229, AIM model for SSP328, GCAM model for SSP430 and REMIND-MAGPIE model for SSP527. Notably, 
LUH2 integrates the results afforded by different IAMs so that they have the same initial land-use distribution. 
Nevertheless, specific conversions are required before it can be used to support our land simulation because of 
its particular land classification and coarse resolution.

First, we mapped the land classification from LUH2 to the classification used in our simulation, which is 
based on the ESA-CCI land cover data from 2015. Table 1 shows the specific corresponding relation. The land 
types in LUH2 are combined into seven classes, wherein water and permanent ice and snow remain unchanged 
in the simulation.

Second, statistics on the land demand trends in LUH2 for each scenario and region were compiled. We 
divided the world into 31 regions by referring to the SSP official database’s partitions32 (https://tntcat.iiasa.ac.at/
SspDb, accessed on 20 September 2018, see Figure S1). The partition principles were mainly as follows: First, 
since countries with different development states tend to adopt different policies, countries with similar devel-
opment status were divided into the same region. Second, considering spatial heterogeneity, spatially neigh-
bouring countries were preferentially divided into the same region. To deal with the area gap between LUH2 and 
ESA-CCI land cover data in the initial year, 2015, the land change trends from LUH2 were extracted to calibrate 
the future land demands.

The calibration can be further subdivided: preliminary calibration and harmonisation of the total area. The 
preliminary future land demand based on the 2015 ESA-CCI land cover data was calibrated considering the land 
change trend in LUH2. The equation is as follows:
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Land classification in our 
simulation Land classification in LUH2 Land classification in ESA-CCI

Forest

Forested primary land Tree cover, broadleaved, evergreen

Potentially forested secondary land

Tree cover, broadleaved, deciduous

Tree cover, needleleaved, evergreen

Tree cover, needleleaved, deciduous

Tree cover, mixed leaf type

Shrubland

Mosaic tree and shrub (>50%)/herbaceous cover (<50%)

Mosaic natural vegetation (tree, shrub, herbaceous cover) 
(>50%)/cropland (<50%)

Grassland
Managed pasture Grassland

Rangeland Mosaic herbaceous cover (>50%)/tree and shrub (<50%)

Barren

Non-forested primary land Bare areas

Potentially non-forested secondary land
Lichens and mosses

Sparse vegetation (tree, shrub, herbaceous cover) (<15%)

Cropland

C3 annual crops Cropland, rainfed

C3 perennial crops Cropland irrigated or post-flooding

C4 annual crops Mosaic cropland (>50%)/natural vegetation (tree, shrub, 
herbaceous cover) (<50%)

C4 perennial crops

C3 nitrogen-fixing crops

Urban Urban land Urban areas

Water — Water bodies

Permanent snow and ice — Permanent snow and ice

Table 1. Land classification relations among LUH2, ESA-CCI and ours.
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where ′Area r j
t

,  represents the preliminary calibrated demand for land type j in region r at time t. Additionally, 
rater j

t
,∆  denotes the net change rate of the area of land type j in region r from time t−1 to t in LUH2. LUH2r j

t
,

1−  
denotes the area of land type j in region r at time t−1 in LUH2. Through such calibration, the illogical drastic 
fluctuations of land demands caused by the difference in the initial area in different products can be reduced 
while maintaining the original trend of LUH2. As an exception, Eq. 2 was applied to urban land since it repre-
sents a small fraction of the land, and this study assumes that urban land does not shrink at the 1-km scale.

Second is the harmonisation of the total land area. The total land area after preliminary calibration may be 
inconsistent with the actual total land area. Therefore, we adjusted the areas of the various land types obtained 
from the preliminary calibration using a proportion-based approach to render their total areas equal to the 
actual total land areas. Note that urban land was not considered in the adjustment because of its small propor-
tion. The equation for the adjustment is as follows:
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t
,  represents the adjusted demand for land type j in region r at time t, U denotes urban land and 

Arear
total represents the actual total land area of region r. The adjusted future land-use demands were used as 

simulation targets for different scenarios and as constraint conditions for iteration termination when perform-
ing future land-use simulations.

Simulating future land dynamic. Herein, we used the FLUS model to simulate future land-use dynamics. 
It is a widely used land simulation model that effectively simulates land-use change at global and regional scale33–

37. Furthermore, it can be coupled with IAMs and system dynamics models. It has been successfully applied to 
the long-term simulation of global land cover change under the SRES scenario17 and the simulation of global 
urban land change under SSPs from 2015 to 210038, reflecting its reliable computing capabilities. Compared to 
traditional cellular automata (CA), the FLUS model has the following advantages: First, it uses a roulette selection 
mechanism to determine the state of each cell changes, which can adequately reflect the competition and random-
ness of various land types in reality. Simultaneously, it eliminates the drawbacks of traditional CA, which requires 
researchers to subjectively set thresholds. Second, the FLUS model adopts adaptive inertia coefficients; thus, the 
iteration speed can be automatically adjusted according to the difference between the existing land area and the 
target land area after each iteration. Thereby, the FLUS model eliminates the subjective setting of iterative speed 
parameters in traditional CA. Equation 4 expresses the execution of the FLUS model37:

TP Pg neighbor inertia cons (4)i j i j i j j k j, , ,= × × × →

where TPi j,  represents the total probability of grid cell i becoming land type j. Pgi j,
 represents the suitability 

probability of land type j on grid cell i. neighbori j,  represents the neighbourhood effect of land type j around grid 
cell i, and it is positively related to the number of grids of land type j around grid cell i. Moreover, inertiaj repre-
sents the adaptive inertia coefficient of land type j, and consk j→  represents the constraint of changing from the 
current land type k to land type j. That is, its value is 1 when such conversion is allowed; otherwise, it is 0. Herein, 
water bodies and permanent ice and snow are frozen, and urban land cannot change to other land types.

The estimation of the suitability probability is the key for ensuring the effective execution of the FLUS model. 
The FLUS model employs artificial neural networks (ANNs) to train and estimate the suitability probabilities 
of various land types37. Since our research comprises numerous land types, including artificial land (such as 
urban) and natural land (such as woodland, grassland and wasteland), we need to select appropriate spatial 
driving factors and input them into the ANNs to drive the suitability probability estimation. Regarding the 
existing land simulation studies5,39–41, we selected a series of relevant spatial driving factors, such as socioec-
onomic (GDP, population, urban centre and road) and physical (temperature, precipitation, topography and 
soil quality) factors. We selected the driving factors that are close in time to the initial year of our simulation. 
Furthermore, the driving factors’ original resolutions are as close as possible to 1 km, except for the soil quality 
factor (5′ resolution). Nevertheless, since the soil’s spatial heterogeneity is not as prominent as factors such as 
population and GDP, a 5′ resolution (approximately 10 km on the equator) is also acceptable. Table 2 shows the 
spatial driving factors used herein. All these factors were resampled to 1-km resolution before being input to the 
ANN for training and evaluation.

The FLUS model software (GeoSOS-FLUS V2.4)37 for performing future land change simulations can be 
downloaded for free from http://www.geosimulation.cn/FLUS.html. The FLUS Model module of the software 
can implement the operations of this subsection. First, we estimated each land type’s suitability probability (also 
called Probability-of-occurrence) in each region separately by inputting the corresponding land data and spatial 
driving factors. Then, we executed the land use simulation by region using the FLUS model under the SSP-RCPs 
land demand constraints. The simulation was performed with a 1-km resolution for 2015–2100, with 5-year 
intervals.

Creating plant functional types (PFT) product. The PFT classification used in the CLM model7 is used 
as a reference to create our future global PFT dataset based on previous land simulation results. Each grid unit 
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comprises five landunits in the CLM model: glacier, lake, wetland, vegetated and urban. Since we do not sim-
ulate the changes of glaciers and water bodies, the first three landunits can be frozen in the initial year data 
of the ESA-CCI dataset. Next, the CLM model subdivides the vegetated types, especially forest and grassland, 
into 15 PFTs. Thus, we referred to the method proposed by Bonan et al.42 and used historical average climate 
data and coarse-classified vegetated distribution data for subdividing forest and grassland into 15 corresponding 
PFTs. Subsequently, a future global land cover product based on PFT classification containing 20 land types was 
afforded. Figure 2 shows the workflow.

As shown in Figure 2, barren, cropland, urban, water and permanent snow and ice can be directly retained 
from the previous land simulation results. Therefore, the land subdivision based on PFT can be divided into two 
parts: forests and grasslands.

Subdivision for forest-type PFTs. Forest-type PFTs were subdivided into two steps. First, based on the 2015 
ESA-CCI land cover data and the nearest neighbour principle, each forest-type grid in the future years in each 
SSP-RCP scenario was assigned to one of the five preliminary forest-type PFTs (i.e. broadleaf evergreen tree, 
broadleaf deciduous tree, needleleaf evergreen tree, needleleaf deciduous tree and shrub). The nearest neigh-
bour principle is the most straightforward method for judging the potential of forest-type PFT. Second, the five 
preliminary PFTs were further subdivided into 11 types of forest-type PFTs using historical average climate data. 
The 1-km global historical average climate dataset provided by WorldClim43 (version 2.0, download on 3 July 
2018, https://worldclim.org/) was employed. This dataset comprises the average monthly climate indicators for 
30 years (1970–2000), such as average temperature, maximum temperature, minimum temperature, precipita-
tion and solar radiation. Additionally, to achieve reliable accuracies, it uses climate information from 9,000 to 
60,000 weather stations worldwide and the MODIS platform43.

The effect of the first step is shown in Fig. 3. After the preliminary forest-type PFTs were subdivided, the 
method proposed by Bonan et al.42 was used to further subdivide them into 11 forest-type PFTs according to 
different climate rules (Table 3).

In Table 3, Tc is the average temperature in the coldest month, Tw is the average temperature in the warmest 
month, Pann is the average annual precipitation, Pwin is the average precipitation in the winter half year (referring 
to November–April of the following year in the northern hemisphere and May–October in the southern hemi-
sphere) and GDD (growing-degree day) is the annual accumulated temperature of days over 5°C42. The daily 
GDD, GDDd, can be expressed as follow:

GDD
T T T T

T T
,

0, (5)
d

d b d b

d b
=






− >
≤

GDD is the sum of GDDd in one year. Td is the daily average temperature. Tb is the base temperature of crop 
development, which is set as 5°C here. However, the WorldClim dataset does not provide historical daily average 
temperatures. Therefore, when calculating GDD, a trade-off method was adopted. That is, Td was replaced with 
the monthly average temperature, and then, the calculated GDDd was multiplied by the number of days in the 
corresponding month. The historical average climate data used for subdividing forest-type PFTs are shown in 
Figure S2~S6.

Spatial Variables Year Resolution Data Sources

GDP 2006 1 km Ghosh et al.50

Population 2010 0.5′ LandScan 2010 Global Population Project51

Human Influence Index 2004 0.5′ NASA Socioeconomic Data and Applications Center, 
Global Human Influence Index, v252

Distance to cities (population > 30 × 103) 2014 1 km United Nations, Department of Economic and Social 
Affairs, Population Division (2014)53

Distance to roads 1980-2010 1 km NASA, Socioeconomic Data and Applications Center, 
Global Roads Open Access Data Set (gROADS), v154

DEM 2000 0.5′ Hijmans et al.55

Slope 2000 0.5′ Calculated from DEM by Slope tool provided by ArcGIS 
software

Annual Mean Temperature

2000 0.5′ Hijmans et al.55Temperature Annual Range

Temperature Seasonality

Annual Precipitation
2000 0.5′ Hijmans et al.55

Precipitation Seasonality

Soil quality (Excess salts)

2008 5′ Fischer et al.56
Soil quality (Nutrient availability)

Soil quality (Oxygen availability to roots)

Soil quality (Workability)

Table 2. Spatial driving factors used in this study.

https://doi.org/10.1038/s41597-022-01208-6
https://worldclim.org/


6Scientific Data |           (2022) 9:125  | https://doi.org/10.1038/s41597-022-01208-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

Subdivision for grassland-type PFTs. Specific climatic rules were also adopted to subdivide grassland-type PFTs. 
Grassland-type PFTs were subdivided into arctic C3 grass, C3 grass and C4 grass in the CLM model. Different 
grasslands are located in regions with different climatic characteristics. Considering the method proposed by 
Bonan et al.42, we used the climate rules shown in Table 4 to subdivide the grassland-type PFTs.

In Table 4, Pmon represents monthly precipitation. Additionally, the meanings and corresponding data of 
other abbreviations are the same as in Table 3. Mixed C3/C4 grass denotes that both C3 and C4 grasses account 
for 50% of a 1-km grid. The historical average data of precipitation in the driest month are shown in Figure S7.

Data Records
Two land datasets from 2015 to 2100 with 5-year intervals were created herein under the following SSP-RCP 
scenarios: 1) 1-km global land dataset comprising seven land types and 2) 1-km global PFT-based land dataset 
comprising 20 land types. Both land datasets are publicly available and open source at https://doi.org/10.5281/
zenodo.458477544 or http://www.geosimulation.cn/Global-SSP-RCP-LUCC-Product.html. All files in the data-
sets are in single-band GeoTIFF format, representing one year of a scenario. GeoTIFF files can be processed in 
ArcGIS and using programming languages such as Python. Moreover, some extension packages, such as the 
GDAL package for Python, can make the handling of these GeoTIFF files easy.

technical Validation
Future land demand. After extracting and calibrating the LUH2 dataset, we obtained the demands for 
each land type in the 31 regions of the world from 2015 to 2100 under the SSP-RCP scenarios used during the 
land change simulations. To demonstrate the effect of calibrating the land demands provided by LUH2, the land 
demands and their trajectories were compared on a global scale (Fig. 4).

Fig. 2 Workflow for the 1-km future global land cover products based on PFT classification.
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Fig. 3 The basis and results of the preliminary estimation of the potential distribution of forest-type PFTs. (a) 
The distribution of forest-type PFTs in ESA-CCI in 2015. (b) The preliminary potential distribution of forest-
type PFTs based on (a) and the nearest neighbour principle.

Preliminary forest-type PFT Subdivided forest-type PFT Climate rules

Broadleaf evergreen tree Broadleaf evergreen tree, tropical Tc > 15.5°C

Broadleaf evergreen tree Broadleaf evergreen tree, temperate Tc ≤ 15.5°C

Broadleaf deciduous tree Broadleaf deciduous tree, tropical Tc > 15.5°C

Broadleaf deciduous tree Broadleaf deciduous tree, temperate −15°C<Tc ≤ 15.5°C and GDD > 1200

Broadleaf deciduous tree Broadleaf deciduous tree, boreal Tc ≤ −15°C or GDD ≤ 600

Needleleaf evergreen tree Needleleaf evergreen tree, temperate Tc > −19°C and GDD > 600

Needleleaf evergreen tree Needleleaf evergreen tree, boreal Tc ≤ −19°C or GDD ≤ 600

Needleleaf deciduous tree Needleleaf deciduous tree None

Shrub Broadleaf evergreen shrub, temperate Tc > −19°C and GDD > 600 and Pann > 520 mm 
and Pwin > 2/3 Pann

Shrub Broadleaf deciduous shrub, temperate Tc > −19°C and GDD > 600 and (Pann ≤ 520 mm 
or Pwin ≤ 2/3 Pann)

Shrub Broadleaf deciduous shrub, boreal Tc ≤ −19°C or GDD ≤ 600

Table 3. Subdivision rules for forest-type PFTs.

Preliminary grassland-type PFT Subdivided grassland-type PFT Climate rules

Grassland C3 grass, arctic GDD<400

Grassland C3 grass GDD ≥ 400 and (Tw ≤ 22°C or six months Pmon ≤ 25 mm and 
for month Tmon > 22°C)

Grassland C4 grass GDD ≥ 400 and Tc ≥ 22°C and driest month Pmon > 25 mm

Grassland Mixed C3/C4 grass Other grasslands that do not meet the above rules

Table 4. Subdivision rules for grassland-type PFT.

https://doi.org/10.1038/s41597-022-01208-6
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As shown in Fig. 4, the two-step calibration of LUH2 data yields satisfactory results. The results show that 
our adjusted land demands for each land type in each scenario are maintained highly similar to that in LUH2. 
That is, the trajectory of each land type in each scenario in LUH2 is well preserved. Moreover, for the gaps 
between our dataset and LUH2 in the area of different land types in the initial year, with some relatively large 
gaps, the change ranges of our adjusted land demands are comparable to LUH2. Therefore, the land demands 
in our land change simulation fully reflect the macro constraints on land change caused by SSP-RCPs’ storyline. 
Simultaneously, these projected demands are consistent and comparable with land projections made by various 
IAMs in CMIP6.

Fig. 4 Comparison of demands for major land types between ours and LUH2 under the SSP-RCP scenarios on 
a global scale (2015–2100).

https://doi.org/10.1038/s41597-022-01208-6
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Validation of the land simulation. To validate the land simulation accuracy, historical simulations were 
independently conducted on the 31 regions and the obtained accuracies were evaluated. The historical simu-
lation spanning from 1992 to 2015 reflects the long-term simulation performance of our model. The land data 
observed in 1992 also stem from the ESA-CCI land dataset. It is merged into seven land types according to the 
corresponding relationship in Table 1 and resampled to 1-km resolution. We assumed that physical conditions, 
such as topography, temperature, precipitation and soil, did not significantly change in two decades. Similarly, 
socioeconomic factors such as GDP and population did not significantly change in the spatial distribution pat-
tern. Therefore, we employed the same spatial driving factor dataset to estimate the seven land types’ suitability 

Fig. 5 Comparison of suitability probability and observed land pattern for representative regions in the initial 
year of the historical simulation.
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probabilities when conducting historical land simulations. Then, we conducted historical land simulations by 
taking the observed area in 2015 as the land demands.

Accuracy of the suitability probability. Suitability probability is an essential part of the FLUS model. As shown 
in Fig. 5, we selected three representative regions (China, USA and Brazil) containing comprehensive land types 
to exhibit the spatial distribution of suitability probabilities in the historical land simulation. The results show 
that the spatial distributions of the suitability probabilities achieve good results in each region. Moreover, the 
suitability probability distribution of each land type generally coincided with the observed land pattern. The 
suitability probability’s spatial pattern shows that the suitability probability is relatively high in places where 
a specific land type is concentrated. However, the converse is observed in places where specific land types are 
scattered.

To quantify the suitability probability’s accuracy, we employed the receiver operating characteristic (ROC) 
curve as a detection tool. The area under the curve (AUC) from the ROC curve was used to measure the suita-
bility probability’s accuracy. AUC ranged between 0 and 1. The larger the value, the higher the accuracy. We uni-
formly sampled each land type according to 10% of the total number of grids in each region and evaluated the 
accuracies shown in Table 5. Figures S8–S12 present the spatial distribution of AUC for different land types and 
regions. The average AUC values of the five main land types were above 0.91. Among them, the average AUC 
of urban land was the highest, reaching 0.959. The AUCs of barren and forest reached 0.942 and 0.941, respec-
tively, while those of cropland and grassland reached 0.926 and 0.914, respectively. Among the various land 
types in each region, the OAS-M region’s grassland (other middle and high-income Asian countries, including 
Singapore, Malaysia, Thailand and other Southeast Asian countries) afforded the lowest AUC value (0.821). 
Since less grassland is present in this region, this low AUC value has a limited impact on the land simulation’s 
accuracy. Generally, the AUC of the suitability probabilities reached the desired accuracy in each region and 
each land type.

Region Forest Grassland Barren Cropland Urban

ANUZ 0.951 0.933 0.936 0.980 0.942

BRA 0.928 0.942 0.927 0.918 0.970

CAN 0.979 0.954 0.989 0.979 0.931

CAS 0.906 0.929 0.948 0.864 0.960

CHN 0.969 0.969 0.986 0.950 0.989

EEU 0.929 0.912 0.947 0.918 0.968

EEU-FSU 0.930 0.852 0.923 0.903 0.954

EFTA 0.926 0.932 0.973 0.944 0.971

EU12-H 0.881 0.892 0.941 0.889 0.964

EU12-M 0.927 0.884 0.939 0.907 0.972

EU15 0.943 0.919 0.957 0.933 0.984

IDN 0.949 0.973 0.919 0.889 0.928

IND 0.970 0.920 0.937 0.965 0.978

JPN 0.962 0.925 0.888 0.921 0.983

KOR 0.959 0.860 0.852 0.856 0.950

LAM-L 0.944 0.951 0.875 0.932 0.928

LAM-M 0.945 0.920 0.986 0.963 0.984

MEA-H 0.837 0.812 0.982 0.903 0.970

MEA-M 0.905 0.915 0.942 0.911 0.970

MEX 0.952 0.957 0.979 0.896 0.982

NAF 0.964 0.933 0.950 0.945 0.922

OAS-CPA 0.965 0.952 0.980 0.931 0.909

OAS-L 0.969 0.938 0.884 0.920 0.911

OAS-M 0.974 0.821 0.965 0.963 0.988

PAK 0.938 0.930 0.906 0.965 0.988

RUS 0.957 0.906 0.962 0.982 0.921

SAF 0.932 0.918 0.981 0.933 0.981

SSA-L 0.950 0.946 0.993 0.918 0.922

SSA-M 0.925 0.941 0.987 0.935 0.944

TUR 0.926 0.903 0.899 0.889 0.991

USA 0.950 0.882 0.976 0.938 0.973

Average 0.941 0.914 0.942 0.926 0.959

Table 5. AUC of the suitability probability in each region and each land type.
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Accuracy of the land simulation. Fig. 6 shows the comparison of the land pattern in 2015 obtained from the his-
torical land simulation and the observed land data. The figure shows that the simulated land pattern is similar to 
the observed land pattern. The land simulations perform reasonably well. To further quantitatively evaluate the 
land simulation’s accuracy, the three commonly used accuracy indicators, the Kappa coefficient, overall accuracy 
(OA) and Figure of Merit (FoM), were used.

Table 6 lists each region’s Kappa coefficient, OA and FoM in the historical land simulation. The spatial distri-
butions are shown in Figures S13–S15. From the overall results of the 31 regions, the Kappa coefficient is 0.864, 
OA is 0.929 and FoM is 0.102. Thus, the simulations afford high accuracy in terms of the Kappa coefficient and 
OA. However, the low FoM needs to be examined. According to related literature, an FoM value in the 0.1–0.3 
range is an acceptable result17,45, because FoM stringently measures the simulation accuracy. It only evaluates 
the part of the land that changes. Moreover, the FoM value is proportional to the proportion of land observed to 
change in the simulated region. This proportional relationship can generally reach 1.5:1. That is, when the pro-
portion of land observed to change is 10%, the FoM of a good simulation result can reach 0.1546. In our historical 
land simulations, the observed global land changed from 1992 to 2015 accounted for only 3.10%, but the average 
FoM value reached 0.102. This accuracy is better than the general proportional relationship level, indicating that 
our land simulation’s accuracy is acceptable.

Comparison of land cover representation in 1-km and coarse resolutions. To test the superiority of our global 
LUCC product relative to the existing global LUCC products in terms of the spatial resolution, we selected a 
small-scale region to compare the effects of using different resolutions. We chose several resolutions that are 
commonly used in current global LUCC products, including 5′ (approximately 10 km on the equator) used by 
IMAGE 3.013, LUSs12 and CLUMondo model47, 0.25° (~25 km on the equator) in the fractional form used by 
LUH24 and 0.5° (~50 km on the equator) used by IMAGE 2.448. Fig. 7 shows a comparison of our 1-km reso-
lution product and these coarse resolutions. Furthermore, Fig. 7 shows the simulation results for 2050 for the 
middle road (SSP2-4.5) of the eight scenarios, highlighting the San Francisco metropolitan area in the USA. In 
addition to showing the representation in our 1-km product (Fig. 7a), representations in the 10-km resolution 
(Fig. 7b), 25-km resolution in fractional form (Fig. 7c) and 50-km resolution (Fig. 7d) are shown via resampling. 
Clearly, the use of land products with 10-km or coarser resolution merges many small patches of urban land 
(shown in dark red in Fig. 7 a,b,d) into other land types, causing a loss of urban spatial detail. Moreover, the 

Fig. 6 Comparison between observed and simulated land patterns for the representative regions in 2015.
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10-km resolution results are unable to depict the spatially intertwined pattern in the zones where different land 
types transition. The 25-km resolution in fractional form also loses considerable spatial detail when describing 
the forest. For the 50-km resolution, the spatial distribution of land cover in this metropolitan area can be rep-
resented using only 20 or so grids.

Performance of the simulation of future land dynamics. We created a 1-km resolution global land 
dataset under SSP-RCP scenarios at 5-year intervals from 2015 to 2100, comprising seven land types, through 
future land simulations. To strengthen the land change visualisation, we counted and displayed the area of land 
change (km2) on each 10 × 10 km2 grid by 2100.

Kappa OA FoM Region Kappa OA FoM

ANUZ 0.889 0.925 0.044 LAM-M 0.887 0.937 0.055

BRA 0.794 0.908 0.066 MEA-H 0.839 0.993 0.104

CAN 0.962 0.976 0.179 MEA-M 0.898 0.961 0.125

CAS 0.836 0.880 0.112 MEX 0.919 0.967 0.103

CHN 0.847 0.886 0.137 NAF 0.903 0.986 0.123

EEU 0.841 0.911 0.100 OAS-CPA 0.895 0.928 0.074

EEU-FSU 0.763 0.896 0.066 OAS-L 0.874 0.940 0.084

EFTA 0.914 0.935 0.070 OAS-M 0.885 0.940 0.109

EU12-H 0.856 0.919 0.057 PAK 0.835 0.881 0.133

EU12-M 0.856 0.918 0.056 RUS 0.891 0.943 0.096

EU15 0.870 0.913 0.075 SAF 0.858 0.922 0.063

IDN 0.810 0.925 0.080 SSA-L 0.911 0.940 0.083

IND 0.918 0.959 0.093 SSA-M 0.914 0.959 0.160

JPN 0.773 0.903 0.213 TUR 0.876 0.920 0.085

KOR 0.677 0.818 0.215 USA 0.937 0.961 0.102

LAM-L 0.843 0.945 0.085 Average 0.864 0.929 0.102

Table 6. Kappa coefficient, OA and FOM of the historical land simulation in each region.

Fig. 7 Differences in land spatial pattern representations using different resolutions (case of SSP2-4.5 in 2050 
for the San Francisco metropolitan area, USA). (a) 1-km resolution; (b) 10-km resolution; (c) 25-km resolution 
(forest distribution shown in fractional form) and (d) 50-km resolution.
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Taking grassland as an example, we selected the prairie in the central USA as a representative area to show 
its spatial changes between 2015 and 2100 (Fig. 8). The red grid in Fig. 8 represents grassland reduction, and the 
green grid represents grassland expansion. The figure clearly shows that different socioeconomic and climate 
policies affect grassland changes4.

Under the two coupled scenarios of SSP1, the green development road, animal product consumption reduc-
tion caused a decrease in pasture demand. Simultaneously, cropland increased with the use of biomass energy. 
Therefore, under the background of the total reduction of grassland in the USA, the grassland in the grassland–
cropland junction area clearly decreased, but a relatively noticeable increase was observed inside the grassland 
area (SSP1-1.9 and SSP1-2.6 in Fig. 8). In the SSP3 scenario, although factors such as a high proportion of 
animals in the diet promote an increase in grassland (pasture), the USA has a slow-developing economy and 
the smallest population among the five SSP scenarios. The two opposing factors cause a slight rise in grassland 
demand. Therefore, the prairie of the central USA remains relatively stable under SSP3-7.0, and the areas of 
increase and decrease are balanced. Under the SSP5 scenarios, rapid population and economic growth generate a 
strong demand growth in food and feed. However, due to the rapid development of agricultural technology and 
the high intensification of the livestock production system, under SSP5-8.5, the USA’s grassland area remains 

Fig. 8 Grassland change in central USA under different SSP-RCP scenarios from 2015 to 2100. The colour from 
red to green represents the net change in grassland area in a 10 × 10 km2 grid from decreasing to increasing. The 
grassland in the white grid is frozen.
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stable, displaying a low intensity of grassland spatial changes (SSP5-8.5 in Fig. 8). However, under SSP5-3.4, to 
achieve the goal of net-zero CO2 emission, the scenario supposes that the second-generation bioenergy crops 
will be widely promoted after 204011. Therefore, the grassland area in the USA will drastically decrease. This is 
manifested in the large-scale encroachment of grassland by cropland in the grassland–cropland junction area 
in central USA (SSP5-3.4 in Fig. 8). A similar situation also occurs in SSP4-3.4. Nevertheless, the difference is 
that cropland most severely encroaches on grassland due to its lack of an intensive production system (SSP4-3.4 
in Fig. 8).

We selected a cropland agglomeration area near the Gulf of Guinea in western Africa as a representative 
area to stimulate the spatial changes of cropland from 2015 to 2100 (Fig. 9). This area is located in the SSA-L 
region (i.e. a low-income country in sub-Saharan Africa), and it is the main cropland production area in SSA-L. 
As SSA-L is expected to have a substantial population growth ranging from 98% to 340% under all SSPs by 
210049, food demand is expected to inevitably increase. Therefore, the cropland areas of SSA-L increase in var-
ying degrees under different SSPs. Notably, in SSP3-7.0, a regional competition and confrontation scenario, 
SSA-L exhibits the most dramatic population growth, slow technological development, and hindered interna-
tional trade, causing the demand for cropland to skyrocket. Therefore, it is manifested as a substantial expansion 
of cropland to grassland and forest (SSP3-7.0 in Fig. 9). SSP4 is a polarisation scenario, making SSA-L, the 

Fig. 9 Cropland change in western Africa under different SSP-RCP scenarios from 2015 to 2100. The colour 
from red to green represents the net change in cropland area in a 10 × 10 km2 grid from decreasing to 
increasing. The cropland in the white grid is frozen.
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low-income region, has many similarities in SSP4 and SSP3, such as substantial population growth. However, 
compared to SSP3, international trade will not be hindered in SSP4. Therefore, depending on the global food 
supply, SSA-L’s cropland demand is slightly lower in SSP4-6.0 than that in SSP3-7.0.

We also selected the forest agglomeration area in central Africa that is centred on the Congo Basin as a 
representative area to show the forest’s spatial changes from 2015 to 2100 under different SSPs (Fig. 10). The 
Congo Basin is one of the three major tropical rainforest areas in the world. The extensive tropical rain forest and 
surrounding forest in this area affect the regional as well as global ecosystems. The results show that in the green 
development road of SSP1 (SSP1-1.9 and SSP1-2.6), the forests in this area are extensively and well protected and 
the implementation of the biodiversity protection policy has restored them. In the three scenarios corresponding 
to SSP3 and SSP4, this area suffered the most severe and extensive forest degradation. This was mainly due to the 
rapid cropland expansion in SSA-L, a low-income region, in SSP3 and SSP4. Further, even the scattered cropland 
in the forest agglomeration area encroached a large amount of forest.

Performance of the PFT-based land dataset. By subdividing the seven-land-type global land simula-
tion products, we created a 1-km global land cover dataset under the SSP-RCP scenarios based on PFT classifica-
tion with 20 land types from 2015 to 2100. Figure S16 displays an overview of the PFT-based land dataset.

Fig. 10 Forest change in central Africa under different SSP-RCP scenarios from 2015 to 2100. The colour from 
red to green represents the net change in forest area in a 10 × 10 km2 grid from decreasing to increasing. The 
forest in the white grid is frozen.
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To clearly depict the land changes of each PFT under the SSP-RCP scenarios, the proportion of various land 
types in our global PFT dataset in 2015 and 2100 was compared (Fig. 11). The results show that among the land 
types, cropland fluctuates the most in different scenarios. The areas of various vegetations also correspondingly 
change. Additionally, the mixed C3/C4 grass exhibits a relatively obvious decrease in each scenario. This signifies 
that the encroachment on grassland owing to the cropland expansion mainly occurs near the warm temperate 
zone, i.e. areas with relatively good hydrothermal conditions. In SSP3-7.0, SSP4-3.4 and SSP5-3.4, where sub-
stantial cropland expansion occurs, the temperate broadleaf deciduous shrub, tropical broadleaf deciduous tree 
and temperate broadleaf deciduous tree relatively considerably decrease.

Usage Notes
This study generated two 1-km future global LULC datasets from 2015 to 2100 with 5-year intervals under 
SSP-RCP scenarios, one comprising seven broad land types and the other comprising 20 PFT-based land types. 
The validation by performing historical land simulation revealed that the model affords excellent accuracy in 
all regions (on average, Kappa coefficient = 0.864, OA = 0.929 and FoM = 0.102). Moreover, our future datasets’ 
land changes appropriately reflect the storyline’s impact of SSP-RCP scenarios on the land cover. Therefore, we 
hope these two datasets, especially the PFT-based one, will better support environmental impact analysis and 
climate-related research under the latest climate scenarios.

Our datasets have the following advantages. First, due to the 1-km resolution, our datasets can map spatial 
details and reduce spatial uncertainty better than the existing global SSP-RCPs datasets, such as the 0.25° LUH2. 
Particularly, the spatial pattern of urban land is well preserved in our datasets. Second, our PFT-based dataset 
provides more plentiful land type information than the current fine-resolution future global land datasets, which 
usually contain only a few land types. Moreover, PFT-based land data are more valuable than broad land types 
data in the study of climate models. Therefore, our PFT-based dataset can be widely used in climate change 
research. Third, since our datasets adopt SSP-RCP scenarios and refer to the projected future land demand 
trajectories in LUH2, they are comparable with the official land dataset of CMIP6, which makes our datasets 
authoritative and universally applicable.

However, our datasets have several limitations. Users should evaluate whether these limitations affect them. 
First, the land cover classification accuracy from ESA-CCI data that was employed herein as the initial land data 
may yield potential errors in future land projections. Second, the spatial driving factors for future land simula-
tion and the subdivision for the PFT-based dataset are not time varying, which is mainly limited by data availa-
bility. Moreover, spatial data for future global socioeconomic and soil drivers under SSP-RCPs are unavailable, 
and spatial data for future temperature and precipitation under SSP-RCPs suffer from coarse resolutions and 
insufficiently included scenarios. This limitation may cause local-scale deviations in depicting the land distribu-
tions from the scenario assumptions in our datasets, despite maintaining overall distribution reliability through 
suitability probabilities. We will resolve this limitation and update our datasets when the relevant spatial diver 
data based on SSP-RCPs become available. Third, like LUH2, water and permanent snow and ice in our datasets 
remain constant in the future. In reality, however, although they cover only a tiny fraction of the global conti-
nent, this may still have implications for researchers in specific fields, such as those concerned with snow and 
ice cover changes. Fourth, the spatial drivers used in our land simulation do not encompass all aspects, although 
various elements like socioeconomic, geomorphological, soil and climatic have been considered herein. For 
example, although precipitation, topography and soil quality, which can reflect water availability for crops to 
some extent, have been considered, they do not cover all the factors affecting cultivation, such as the distribution 
of agricultural infrastructure. Therefore, if a particular driver that a user is focusing on is not included in our 
spatial drivers, then our datasets may not be appropriate for them.

Fig. 11 Comparison of the proportion of PFT land types under SSP-RCP scenarios in 2015 and 2100.
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Code availability
The land simulation in this study was performed by the FLUS model software (GeoSOS-FLUS V2.4), which can 
be downloaded for free from http://www.geosimulation.cn/FLUS.html. Meanwhile, the tutorial on the operation 
of this software can be found in the user manual at this URL. The other spatial calculations and analyses in this 
study were performed by ArcGIS software as described in the Method section. The spatial data used for input are 
all publicly available online, with sources cited within the manuscript.
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