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Supplementary Note 1. The number of patients carrying tumor-derived mutations among 

different cancer stages. 

Employing tumor-derived single nucleotide variation (SNV), Chabon et al.1 proposed a semi-

supervised machine learning model to predict the source of circulating cell-free DNA (cfDNA) and 

then applied the model for NSCLC detection. After analyzing their public data, we found that the 

SNVs in plasma cfDNA detected from 51 (70 in total) cancer patients did not overlap with the 

mutations detected from their corresponding tumor tissues. Besides, 39 cases out of the 51 non-

overlap patients were diagnosed as early stages (IA, IB), in contrast, the tumor-derived mutations 

are found from about 61% (14/23) of patients with later-stage tumors (IIB, IIIA, IIIB), which is 

exhibited in Supplementary Fig. 1. This study suggested a persuasive phenomenon that whether the 

tumor-derived mutations are detectable in plasma cfDNA is highly dependent on the cancer stages. 
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Supplementary Note 2. The proposition and the corresponding proof about the informative 

score. 

To identify TS and TD markers, some studies2 calculate simple statistical characteristics, such as 

mean and standard, of each class. Smyth et al.3 manage to find differentially methylated probes 

(DMP) with statistical significance between two groups. Xia et al.4 adopt the area under the curve 

(AUC) to measure the discriminability of each methylation site between two classes.  Recourse to 

machine learning skills, many studies5,6 rank marker candidates according to their contribution to 

the classification assignments. However, all above approaches fail to uniformly excavate and 

evaluate both TS and TD markers. In this paper, we propose a novel approach based on matrix norm 

to select informative markers, which neither requires model training nor fits a probability 

distribution of each marker candidate. A measure to quantify the discriminability of the marker 

candidate is defined in Eq. (1) and three corresponding propositions are presented as follows. 

Proposition 1. Given 𝐀 ∈ ℝ+
𝐵×𝑀(𝐵 ≥ 𝑀 > 1) , ∑ 𝐀𝑖𝑗

𝐵
𝑗=1 = 1 , and 𝒟 =

‖𝐀‖∗−‖𝐀‖𝐹

𝑀−√𝑀
, then 𝒟 ∈

[0,1]. 

Proof. According to the equivalence of matrix norms, the inequality ‖𝐀‖𝐹 ≤ ‖𝐀‖∗ ≤ √𝑀‖𝐀‖𝐹 

holds, which results in 0 ≤ 𝒟 ≤
‖𝐀‖𝐹(√𝑀−1)

𝑀−√𝑀
=

‖𝐀‖𝐹

√𝑀
. Since the entries in 𝐀 are nonnegative and 

restricted by ∑ 𝐀𝑖𝑗
𝐵
𝑗=1 = 1, we have ‖𝐀‖𝐹

2 = ∑ ∑ 𝐀𝑖𝑗
2𝐵

𝑗=1
𝑀
𝑖=1 ≤ ∑ (∑ 𝐀𝑖𝑗

𝐵
𝑗=1 )

2𝑀
𝑖=1 = 𝑀. The first 

equality and the second inequality hold according to the definition of F-norm and the inequality of 

arithmetic and geometric means (AM-GM), respectively. As a result, ‖𝐀‖𝐹 ≤ √𝑀, such that 0 ≤

𝒟 ≤ 1.                            □ 

Proposition 2. 𝒟 = 0 holds if and only if rank(𝐀) = 1, i.e. all the column vectors of 𝐀 are 

linearly correlated. 

Proof. According to the definition of nuclear norm, we have ‖𝐀‖∗ = ∑ 𝜎𝑖
𝑀
𝑖=1 , where 𝜎𝑖 suggest 

the 𝑖th largest singular value of 𝐀. 
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Sufficiency: rank(𝐀) = 1 suggests 𝜎𝑖 = 0 for 𝑖 = 2,3, … , 𝑀 . Therefore, ∑ 𝜎𝑖
𝑀
𝑖=1 = √∑ 𝜎𝑖

2𝑀
𝑖=1 , 

i.e. ‖𝐀‖∗ = ‖𝐀‖𝐹, such that 𝒟 = 0. 

Necessity: 𝒟 = 0 indicates ‖𝐀‖∗ = ‖𝐀‖𝐹 , such that ∑ 𝜎𝑖
𝑀
𝑖=1 = √∑ 𝜎𝑖

2𝑀
𝑖=1 , i.e. (∑ 𝜎𝑖

𝑀
𝑖=1 )

2
=

∑ 𝜎𝑖
2𝑀

𝑖=1 . Expanding the equality, we know that the sum of all cross terms among singular values 

has to be zero, i.e. ∑ ∑ 𝜎𝑖𝜎𝑗
𝑀
𝑗=𝑖+1

𝑀−1
𝑖=1 = 0. Now we suppose that there exist at least two nonzero 

singular values 𝜎𝑝  and 𝜎𝑞 . And then their cross term meets 𝜎𝑝𝜎𝑞 > 0  owing to the non-

negativity of singular values, such that ∑ ∑ 𝜎𝑖𝜎𝑗
𝑀
𝑗=𝑖+1

𝑀−1
𝑖=1 > 0 , which contradicts 

∑ ∑ 𝜎𝑖𝜎𝑗
𝑀
𝑗=𝑖+1

𝑀−1
𝑖=1 = 0 . Therefore, there is only one nonzero singular value, which leads to 

rank(𝐀) = 1, i.e. all column vectors of 𝐀 are linearly correlated.           □ 

Proposition 3. 𝒟 = 1  holds if and only if all the column vectors of 𝐀 are orthonormal basis. 

Proof. Let the singular-value decomposition of 𝐀 be 𝐀 = 𝐔𝐃𝐕𝑇. 

Sufficiency: Since 𝐀 is constructed by orthonormal basis, we have 𝐀𝑇𝐀 = 𝐈, such that 𝐀𝑇𝐀 =

𝐕𝐃𝑇𝐔𝑇𝐔𝐃𝐕𝑇 = 𝐕𝐃𝑇𝐃𝐕𝑇 = 𝐈, thus 𝐃𝑇𝐃 = 𝐈. As 𝐃 is a diagonal matrix formed by singular 

values, we have 𝜎1 = 𝜎2 = ⋯ = 𝜎𝑀 = 1, such that ‖𝐀‖𝐹 = √𝑀 and ‖𝐀‖∗ = 𝑀, which result in 

𝒟 = 1. 

Necessity: According to Proposition 1, 𝒟 = 1  suggests 
‖𝐀‖∗−‖𝐀‖𝐹

𝑀−√𝑀
=

‖𝐀‖𝐹

√𝑀
= 1 , i.e. ‖𝐀‖∗ =

√𝑀‖𝐀‖𝐹 and ‖𝐀‖𝐹 = √𝑀. Therefore, ∑ 𝜎𝑖
𝑀
𝑖=1 = √𝑀 ∑ 𝜎𝑖

2𝑀
𝑖=1 = 𝑀. According to the AM-GM 

inequality, we have 𝜎1 = 𝜎2 = ⋯ = 𝜎𝑀 = 1 , such that 𝐃𝑇𝐃 = 𝐈  and thus 𝐀𝑇𝐀 = 𝐈 , i.e. the 

column vectors of 𝐀 are orthogonal. From Proposition 1, we know ‖𝐀‖𝐹
2 = ∑ ∑ 𝐀𝑖𝑗

2𝐵
𝑗=1

𝑀
𝑖=1 ≤

∑ (∑ 𝐀𝑖𝑗
𝐵
𝑗=1 )

2𝑀
𝑖=1 = 𝑀. As a result, ‖𝐀‖𝐹 = √𝑀 leads to ∑ 𝐀𝑖𝑗

2𝐵
𝑗=1 = (∑ 𝐀𝑖𝑗

𝐵
𝑗=1 )

2
. Due to the 

non-negative property of the entries in 𝐀 and the restriction ∑ 𝐀𝑖𝑗
𝐵
𝑗=1 = 1, each column of 𝐀 has 

one and only one nonzero element, whose value is 1. In this situation, all the column vectors of 𝐀 

are orthonormal basis.                   

  □ 
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Supplementary Note 3. Details for the generation of simulation dataset. 

To quantify the performance of tumor fraction prediction, we collected 656 normal blood DNA 

methylation profiles from GSE402797 and DNA methylation data from 5 types of solid tumor tissues, 

including 775 BRCA, 293 COAD, 821 LUNG, 375 LIHC, 484 PRAD from The Cancer Genome 

Atlas (TCGA) to generate simulated methylation profiles of plasma cfDNA from cancer patients. 

Each class is randomly divided into a training, a validation and a test dataset by a ratio of 4:1:5, 

which is shown in Supplementary Table 1. To simulate normal plasma cfDNA more realistically, we 

employed 8 normal plasma cfDNA samples from GSE1221268, then compared them with the 

normal blood DNA methylation profiles and excluded the sites exhibiting significant differences 

(p<0.05) between these two datasets. The strategy to yield mixed simulation samples of cancer 

patients in this paper brings into correspondence with CancerLocator9 for comparison. Briefly, each 

training plasma sample of tumor type 𝑡  is generated by linearly combining one normal blood 

sample and one tumor tissue sample, which are randomly chosen from the training dataset of the 

normal control and the 𝑡th tumor, respectively. Considering the copy number variant (CNV) events, 

the methylation level of the 𝑘th marker on each synthetic methylation vector is given by: 

𝐱𝑘 = (1 − 𝜃𝑘
′ )𝐯𝑘 + 𝜃𝑘

′ 𝐮𝑘

𝜃𝑘
′ =

𝜃𝑐𝑘

𝜃𝑐𝑘 + 2(1 − 𝜃)
(S1)

 

where 𝐯𝑘 and 𝐮𝑘 denote the methylation level on the 𝑘th marker of normal cfDNA and tumor 

tissue DNA methylation features. 𝜃 and 𝜃𝑘
′  represent the tumor fraction before and after taking 

into account of the CNV events, 𝑐𝑘 denotes the copy number of tumor-derived cfDNA. The copy 

number of each CpG site in normal sources is fixed to 2 while that in tumor sources varies from 

zero to five, i.e., 𝑐𝑘 ∈ {0,1,2,3,4,5}. Consistent with CancerLocator, we quantified the pre-defined 

probability of CNV events as 10%, 30% and 50%, individually. The probabilities of each copy 

number are configured in Supplementary Table 2. 𝜃 is set to be uniformly distributed in a fixed 

range from 0 to 0.5 with a length of 0.05, i.e. {𝜃 ∈ U(0.05𝑠, 0.05(𝑠 + 1))  |𝑠 = 0,1, … ,9} . The 

validation/test simulation samples are generated from the test tissue/plasma data using the same 

procedure described above. The visualization for the generation of simulated plasma data is shown 

in Supplementary Fig. 2. 
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Supplementary Note 4. Parameter configuration of semi-reference-free deconvolution (SRFD). 

The norm parameter 𝑝 (0 < 𝑝 < 1)  and the coefficient of the structural penalty 𝜂  in 

Supplementary Algorithm 1 are set to 0.5 and 1000 across all experiments in this study. The 

maximum number of iterations for SRFD is set to 1000.  

We designed a parameter study (Supplementary Fig. 4). The number of markers was set 2~500 

per category while the number of normal and tumor patterns were set to 1~5 and 1~9, respectively. 

Due to the various normal sources in plasma, the number of normal patterns was set to lager than 

that of tumor patterns. It can be concluded that the best performance on validation dataset was 

achieved when using Top-50 markers, 7 normal patterns and 2 tumor patterns. Although the RMSE 

might still be reduced with a larger number of markers and corresponding tumor/normal patterns, 

the experimental cost for the potential clinical study and large-scale applications is positively 

correlated with the number of markers. It is necessary to find the minimal number of discriminative 

markers while achieving satisfactory performance. Based on this principle, we had chosen Top-50 

markers for each category.  

Correspondingly, we configured the number of normal and tumor patterns as 7 and 2 

throughout all experiments in this study. The marker number of methylations (Top-50), and plasma 

sample number (400 for each category) were consistent throughout most experiments (including 

simulation dataset, GSE10846210 and GSE12937411 real datasets). Since other cfDNA datasets (223 

cancer patients in Chen et al.12 and 1050 HCC patients in Xu et al. 13) contained new methylation 

sites/regions, the SRFD-Bayes were independently trained with corresponding sites/regions (10 and 

595, respectively). 
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Supplementary Note 5. Implementation details for tissue-requiring approaches and machine 

learning classifiers 

The deconvolution and diagnostic strategy of CancerLocator is set to the same as the original study. 

There was a critical parameter in CancerLocator, which acted as a tumor fraction threshold for 

distinguishing cancer patients from normal controls. This parameter was pre-set to 0.01 in the source 

code. We implemented a parameter study on the tumor fraction threshold to achieve its best 

performance in simulation dataset. The experimental results, shown in Supplementary Fig. 5, 

suggested that the best average localization performance of approximately 0.89 was achieved at a 

threshold of 0.1. Correspondingly, all the experiments of CancerLocator in the main context were 

implemented with the threshold of 0.1. 

The reference database for the NNLS approach is generated using the average DNA 

methylation over biological replicates in each category. 

 The machine learning classifiers, including random forest (RF), multilayer perception (MLP) 

and support vector machine (SVM), are implemented and trained in MATLAB. The number of trees 

in RF is set to 100. Linear kernel function is adopted in SVM. The MLP is constructed by a three-

layer perceptron, in which the hidden layer has 10 neurons. 
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Supplementary Note 6. The calculation of the methylation level of a CpG site in cancer patients’ 

cfDNA 

The methylation of a CpG site 𝑘 in circulating cfDNA is quantified by the fraction of methylated 

cytosines among the total cytosines. Without loss of generality, we assume that there are 𝑀𝑘 

normal-derived cfDNA and 𝑁𝑘 tumor-derived cfDNA that together covers the 𝑘th CpG site in a 

cancer patient’s plasma, where the cytosines from 𝑀𝑘
1 (𝑀𝑘

1 < 𝑀𝑘) normal-derived cfDNA and 

𝑁𝑘
1(𝑁𝑘

1 < 𝑁k) tumor-derived cfDNA are methylated. Accordingly, the methylation level of the CpG 

site 𝑘 in the cancer patient’s cfDNA, 𝑥𝑘, can be calculated by: 

𝑥𝑘 =
𝑀𝑘

1 + 𝑁𝑘
1

𝑀𝑘 + 𝑁𝑘
=

𝑀𝑘

𝑀𝑘 + 𝑁𝑘

𝑀𝑘
1

𝑀𝑘
+

𝑁𝑘

𝑀𝑘 + 𝑁𝑘

𝑁𝑘
1

𝑁𝑘

(𝑆2) 

where 
𝑀𝑘

𝑀𝑘+𝑁𝑘
 and 

𝑁𝑘

𝑀𝑘+𝑁𝑘
 indicate the fraction of normal-derived and tumor-derived cfDNA, 

respectively. According to the definition of the methylation level, 
𝑀𝑘

1

𝑀𝑘
 and 

𝑁𝑘
1

𝑁𝑘
 represent the 

methylation levels of normal-derived and tumor-derived cfDNA on the 𝑘th CpG site, separately. 

For convenient of description, let 𝜃 =
𝑁𝑘

𝑀𝑘+𝑁𝑘
, 𝑣𝑘 =

𝑀𝑘
1

𝑀𝑘
, 𝑢𝑘 =

𝑁𝑘
1

𝑁𝑘
. The Equation (2) can be 

rewritten as 𝑥𝑘 = (1 − 𝜃)𝑣𝑘 + 𝜃𝑢𝑘. 

Assuming that the cancer patients’ cfDNA is derived from 𝑃 types of normal sources and one 

tumor tissue, the methylation level of the 𝑘th methylation marker can be given by: 

𝑥𝑘 = ∑ 𝜆𝑝

𝑃

𝑝=1

𝑣𝑘,𝑝 + 𝜃𝑢𝑘 (𝑆3) 

where 𝑣𝑘,𝑝 represent the methylation level of the 𝑘th marker in the 𝑝th normal-derived. 𝜆𝑝 and 

𝜃  suggest the fraction of cfDNA derived from the 𝑝 th normal source and the tumor tissue, 

individually, and they are constrained by ∑ 𝜆𝑝
𝑃
𝑝=1 + 𝜃 = 1. 
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Supplementary Box 1   The iterative algorithm for SRFD 

1. Input:  

    Methylation profiles 𝐗 ∈ ℝ+
𝐾×N 

    Structural binary mask 𝓜𝑆 

Parameters: 1 ≤ 𝐶 ≤ min(𝐾, 𝑁) , 𝑝 , 𝜂 , Convergence threshold 𝜀  and Maximum 

iterations 𝑇 

 

2. Initialize: 

 𝑡 = 0, 𝐃 = 𝐈. Randomly initialize the methylation pattern reference matrix and coefficient 

matrix 𝐖𝑡, 𝐑𝑡.  

 

3. Repeat: repeat the following steps until the convergence achieves. 

While 𝑡 < 𝑇 do 

3a. Compute the reconstruction error: 

      𝐙 = 𝐗 − 𝐖𝑡𝐑𝑡 

             𝐃𝑘𝑘 =
𝑝

2‖𝒛𝑘‖2
2−𝑝  ∀𝑘 ∈ {1,2, . . . , 𝑅} 

 

   3b. Update the methylation pattern reference matrix and coefficient matrix: 

             𝐖𝑡+1
𝑖ℎ ← 𝐖𝑡

𝑖ℎ
[𝐗𝐃𝐑𝑡

𝑇]𝑖ℎ

[𝐖𝑡𝐑𝑡𝐃𝐑𝑡
𝑇]𝑖ℎ

 

      𝐑𝑡+1
ℎ𝑗

← 𝐑𝑡
ℎ𝑗 [𝐖𝑡+1

𝑇 𝐗𝐃]
ℎ𝑗

[𝐖𝑡+1
𝑇 𝐖𝑡+1𝐑𝑡𝐃]

ℎ𝑗
+𝜂[𝐑𝑡⊙𝓜𝑆]ℎ𝑗

 

 

   3c. Normalize the coefficient matrix: 

      𝐑𝑡+1 = Normalize(𝐑𝑡+1) 

 

   3d. Check for convergence:  

      if abs(Err(𝐖𝑡+1, 𝐑𝑡+1), Err(𝐖𝑡, 𝐑𝑡)) < 𝜀 

          break 

      end 

      𝑡 = 𝑡 + 1 

end 

 

4. Output: 

Converged 𝐖 ∈ ℝ+
𝐾×𝐶 and 𝐑 ∈ ℝ+

C×N 
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Supplementary Table 1. Dataset splits on the samples of normal controls and tumor tissues. 

Category Normal BRCA COAD LUNG LIHC PRAD 

All 656 775 293 821 375 484 

Train 263 311 118 329 151 194 

Validate 65 77 29 82 37 48 

Test 328 387 146 410 187 242 

Supplementary Table 2. The probabilities of each copy number for 10%, 30% and 50% copy 

number variation (CNV) events. 

𝑐𝑘 0 1 2 3 4 5 

CNV-10% 0.002 0.053 0.9 0.035 0.008 0.002 

CNV-30% 0.005 0.16 0.7 0.105 0.025 0.005 

CNV-50% 0.008 0.266 0.5 0.178 0.04 0.008 

Supplementary Table 3. The quantitative distribution of simulation plasma samples for each 

category used in different experiments. 𝜃𝑇 denotes tumor fraction while sample number of each 

tumor (five types) is equal. 

Experiments Dataset Normal Each Tumor All 

Deconvolution 
Train 400 400 2,400 

Validation 100 100 600 

Diagnosis A Train (all tumor fractions) 200 40 400 

Diagnosis B Train (𝜃𝑇 > 0.1) 200 32 360 

Deconvolution 

Diagnosis A & B 
Test 400 400 2,400 
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Supplementary Table 4. The quantitative distribution of available samples in each real dataset 

that is adopted in this study. 

Name Journal Year Accession 

#  

Data type # Samples # 

Sites/Regions 

Hannum et al. 7 Molecular Cell 2013 GSE40279 Blood DNA 656 Normal  450K 

Moss et al. 8 Nature 

Communications 

2018 GSE12212

6 

cfDNA 12 Normal 450K 

Gordevičius et al. 10 Clinical Cancer 

Research 

2018 GSE10846

2 

cfDNA 29 Prostate 450K 

Hlady et al. 11 Theranostics 2019 GSE12937

4 

cfDNA 22 HCC 

&Cirrhosis 

21 Cirrhosis 

450K 

Xu et al.13 Nature Materials 2017 Supplemen

t 

cfDNA 835 normal  

1,050 HCC 

10 

Chen et al.12 Nature 

Communications 

2020 Supplemen

t 

cfDNA 414 normal 

7 Colorectal 

56 Lung 

23 Liver 

68 Esophageal 

69 Stomach 

595 
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Supplementary Fig. 1 The statistics of NSCLC patients with tumor-derived mutations in 

Lung-CLiP1. The proportion (purple) in the graph is calculated in each stage of cancer according 

to the number of patients with tumor-derived mutations (red) dividing the total number of NSCLC 

patients (blue). Source data are provided as a Source Data file. 
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   C. Simulated cfDNA sample set  for cancer patients (one repeat)

A. Tumor tissue
DNA sample set

B. Normal blood
DNA sample set

Simulated 
cfDNA 
sample    

• Training samples for NNLS and CancerLocator
    1. Tumor tissue samples: 
    2. Normal blood samples: 
• Training samples for SRFD_Bayes and SVM/RF/MLP:
    1. Simulated cancer cfDNA samples: 
    2. Normal blood samples: 

Simulated 
cfDNA 
sample    

Simulated 
cfDNA 
sample    

Simulated 
cfDNA 
sample    

Simulated 
cfDNA 
sample    

Simulated 
cfDNA 
sample    

Random samplingRandom sampling

Cancer type 1 Cancer type 2 Cancer type T

 

Supplementary Fig. 2 Visualization for the generation of simulated plasma data. Considering 

the copy number variant (CNV) events, the methylation level of simulated cfDNA sample on each 

methylation site can be given by Equation S1. Tumor tissue samples and normal blood samples are 

applied as training samples for the reference-based approaches, including NNLS and CancerLocator. 

The simulated cancer cfDNA samples and normal blood samples are exploited by SRFD-Bayes to 

directly learn a reference for Bayesian diagnostic model training, and simultaneously employed by 

other machine learning approaches, including support vector machine (SVM), random forest (RF), 

and multi-layer perception (MLP), to build corresponding diagnostic models. 
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Supplementary Fig. 3 Top-1 TS methylation markers for different tumor type, including 

BRCA, COAD, LUNG and LIHC. The boxes are bounded by the first and third quartile with a 

horizontal line at the median and whiskers extend to the maximum and minimum values. Source 

data are provided as a Source Data file. n denotes the number of independent samples. 
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Supplementary Fig. 4 Experimental results on parameter configuration. The root mean square 

error (RMSE) of predicted source fractions on the validation dataset that summarized in different 

configurations of pattern number and marker number. White/yellow boxes suggest the minimum 

RMSE in each experimental group. The best performance is achieved when using Top-50 markers, 

7 normal patterns and 2 tumor patterns. 
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Supplementary Fig. 5 Experimental results on parameter study of CancerLocator. A parameter 

study of CancerLocator on a critical parameter, which acted as a tumor fraction threshold to 

distinguish cancer patients from normal controls, was implemented to achieve its best performance 

in simulation dataset. Error bars (in mean and standard deviation) were obtained by statistically 

repeating experiments 100 times. Source data are provided as a Source Data file. 
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Supplementary Fig. 6 Comparison of overall deconvolution performance on simulation 

datasets with 10% CNV events and 50% CNV events. The performance was evaluated by the 

predicted normal fractions for healthy individuals, source fractions and tumor fractions for cancer 

patients, respectively. We repeated every experimental group 100 times, each with a random training 

dataset, to determine the average performance as well as the robustness between different 

approaches. Error bars (in mean and standard deviation) were obtained by statistically repeating 

experiments 100 times. Source data are provided as a Source Data file. 
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Supplementary Fig. 7 The comparison of detailed deconvolution performance achieved by 

different approaches on simulation tumor samples with 10% CNV events and 50% CNV 

events. Scatter and box plots exhibit the correlations between predicted tumor fractions and their 

ground truth, in which the black lines and red points denote 𝑦 = 𝑥 and outliers, respectively. Blue 

font suggests the best performance. n = 200 independent experiments for each box. The boxes are 

bounded by the first and third quartile with a horizontal line at the median and whiskers extend to 

the maximum and minimum values. Source data are provided as a Source Data file. 
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Supplementary Fig. 8 Comparison of localization performance on cancer samples with tumor 

fraction more than 0.1 (𝜃𝑇 > 0.1). The performance is evaluated in four intervals with (0.1, 0.2], 

(0.2, 0.3], (0.3, 0.4], (0.4, 0.5], and compared between our approach (SRFD-Bayes) as well as other 

approaches, including CancerLocator, RF, MLP and SVM. n = 100 independent experiments for 

each box. The boxes are bounded by the first and third quartile with a horizontal line at the median 

and whiskers extend to the maximum and minimum values. Source data are provided as a Source 

Data file. 
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Supplementary Fig. 9 AUC performance comparison on patient cfDNA when using different 

number of samples and markers for training of SRFD. The performance evaluation of 

classifying cirrhosis patients and the patients with both cirrhosis as well as HCC when using 

different number of markers (a) and samples (b) for training of SRFD. a The AUC values calculated 

by exploiting predicted tumor fractions to classify cirrhosis patients and the patients with both 

cirrhosis and HCC increased as the number of markers grew, and then gradually leveled off when 

more than Top-50 markers were adopted. The best performance of 0.758 was achieved by employing 

the Top-50 markers, which was consistent with the experimental results on simulation dataset in Fig. 

2d. b When fixing the marker number as Top-50, the mean AUC values and its robustness improved 

as the sample number grew. The best mean AUC of 0.758 was achieved at the number of 400 

samples for each category, which also matched the diagnostic results shown in Fig. 2e. n = 100 

independent experiments. The boxes are bounded by the first and third quartile with a horizontal 

line at the median and whiskers extend to the maximum and minimum values. Source data are 

provided as a Source Data file. 
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Supplementary Fig. 10 AUC performance comparison of distinguishing cancer patients from 

normal controls when using different number of samples for training of SRFD and SRFD-

Bayes. a Experimental results for Xu et al. dataset (the number of entire training samples from 

cancer patients is 704). b Experimental results for Chen et al. dataset (the number of entire training 

samples from cancer patients is 113). The training cases were randomly resampled from the entire 

training dataset (from 1% to 80%), each with 100 repeats. The statistical performance indicated that 

the mean AUC values of both SRFD and SRFD-Bayes improved as the number of samples increased, 

while their standard deviation gradually reduced, suggesting a more robust performance. Error bars 

(in mean and standard deviation) were obtained by statistically repeating experiments 100 times. 

Source data are provided as a Source Data file.  
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Supplementary Fig. 11 Diagnostic performance on pre-diagnosis patients. a Diagnostic result, 

visualized by confusion matrix, on pre-diagnosis patients. Only late-stage patients and a random 

half of normal controls are utilized as training samples for model establishment. b The detection 

sensitivity of pre-diagnosis participants and early-stage patients at a specificity of 94.7% 
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Supplementary Fig. 12 Diagnostic results before and after synthetic oversampling strategy. 

The diagnostic results are illustrated by confusion matrix before (a) and after (b) synthetic 

oversampling, on normal controls and early-stage patients. Only late-stage patients and a random 

half of normal controls are utilized as training samples for model establishment. 
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Supplementary Fig. 13 The comparison of diagnostic performance among different 

approaches. a The diagnostic accuracy of all approaches validated on test dataset before (gray) and 

after (purple) the synthetic oversampling strategy, in which the training dataset contains a random 

half of each category. Each line paired with two dots suggests a repeated experiment (n = 10). b The 

comparison of diagnostic accuracy between two different situations (after synthetic oversampling), 

where a random half (blue dots) or late-stage patients (yellow triangles) are utilized for training. 

Error bars (in mean and standard deviation) were obtained by statistically repeating experiments 10 

times. Source data are provided as a Source Data file.  
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Supplementary Fig. 14 The schematic diagram of TS and TD markers as well as the 

visualization of the discriminability. a The schematic diagram of TS and TD markers. b The 

visualization of the two extreme situations where the discriminability 𝒟 = 0 or 𝒟 = 1. The boxes 

are bounded by the first and third quartile with a horizontal line at the median and whiskers extend 

to the maximum and minimum values. 
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