

OPEN d ACCESS

Crystal structure of catena-poly[[(3-tertbutylpyridine- κN)(4-tert-butylpyridine- κN)cadmium]-di- μ -thiocyanato- $\kappa^2 N$:S; κ^2 S:N]

Julia Werner,^a* Thorben Reinert,^b Inke Jess^a and Christian Näther^a

^aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Strasse 2, 24118 Kiel, Germany, and ^bInstitut für Physikalische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Strasse 1, 24118 Kiel, Germany. *Correspondence e-mail: jwerner@ac.uni-kiel.de

Received 25 October 2014; accepted 10 November 2014

Edited by S. Parkin, University of Kentucky, USA

In the crystal structure of the title compound, $[Cd(NCS)_2(C_9H_{13}N)_2]_n$, the Cd^{II} cations are coordinated in a slightly distorted octahedral geometry by one 3-*tert*-butyl-pyridine ligand, one 4-*tert*-butylpyridine ligand and two pairs of translationally-equivalent μ -1,3-bridging thiocyanate ligands, all of which are in general positions. These μ -1,3-bridging thiocyante anions bridge the Cd^{II} cations, forming chains that propagate parallel to the *b* axis.

Keywords: crystal structure; cadmium coordination polymer; μ -1,3-thiocyanate anions.

CCDC reference: 1033510

1. Related literature

For related crystal structures with μ -1,3-bridging thiocyanate anions, see: Banerjee *et al.* (2005); Reinert *et al.* (2012*a,b*); Tahli *et al.* (2011).

V = 2260.51 (15) Å³

 $0.16 \times 0.12 \times 0.09 \text{ mm}$

25365 measured reflections

5407 independent reflections

4159 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 1.16 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.044$

Z = 4

2. Experimental

2.1. Crystal data $[Cd(NCS)_2(C_9H_{13}N)_2]$ $M_r = 498.97$ Monoclinic, $P2_1/c$ a = 20.0917 (8) Å b = 5.9503 (2) Å c = 21.0198 (9) Å $\beta = 115.902$ (3)°

2.2. Data collection

STOE IPDS-2 diffractometer
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe
& Cie, 2008)
$T_{\min} = 0.760, T_{\max} = 0.895$

2.3. Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	244 parameters
$wR(F^2) = 0.084$	H-atom parameters constrained
S = 1.14	$\Delta \rho_{\rm max} = 0.41 \text{ e} \text{ Å}^{-3}$
5407 reflections	$\Delta \rho_{\rm min} = -0.50 \text{ e } \text{\AA}^{-3}$

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Acknowledgements

We gratefully acknowledge financial support by the DFG (project No. NA 720/5–1) and the State of Schleswig–Holstein. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

Supporting information for this paper is available from the IUCr electronic archives (Reference: PK2535).

References

Banerjee, S., Wu, B., Lassahn, P.-G., Janiak, C. & Ghosh, A. (2005). Inorg. Chim. Acta, 358, 535–544. Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Reinert, T., Jess, I. & Näther, C. (2012a). Acta Cryst. E68, m1372.

Reinert, T., Jess, I. & Näther, C. (2012b). Acta Cryst. E68, m1333.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.
- Tahli, A., Maclaren, J. K., Boldog, I. & Janiak, C. (2011). *Inorg. Chim. Acta*, **374**, 506–513.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2014). E70, m403-m404 [doi:10.1107/S1600536814024647]

Crystal structure of *catena*-poly[[(3-*tert*-butylpyridine- κN)(4-*tert*-butylpyridine- κN)cadmium]-di- μ -thiocyanato- $\kappa^2 N$:S; $\kappa^2 S$:N]

Julia Werner, Thorben Reinert, Inke Jess and Christian Näther

S1. Structural commentary

S2. Synthesis and crystallization

CdSO₄·8/3H₂O was purchased from Merck, and 4-*tert*-butylpyridine and Ba(NCS)₂·3H₂O were purchased from Alfa Aesar. The 4-*tert*-butylpyridine has a purity of only 97% and is contaminated with 3-*tert*-butylpyridine, which cannot be separated. Cd(NCS)₂ was synthesized by stirring 17.5 g (57.00 mmol) Ba(NCS)₂·3H₂O and 14.6 g (57.00 mmol) CdSO₄·8/3H₂O in 300 mL H₂O at RT for three hours. The white residue of BaSO₄ was filtered off and the solvent was evaporated by heating. The homogeneity of the product was investigated by X-ray powder diffraction and elemental analysis. The title compound was prepared by the reaction of (0.15 mmol) 34.3 mg Cd(NCS)₂ and (0.15 mmol) 22.2 μ L 4-tert-butylpyridine in 1.0 mL H₂O at 80 °C in a closed 10 mL glass culture tube. After several days, colorless crystalline blocks were obtained.

S3. Refinement

Carbon-bound H atoms were positioned with idealized geometry and refined with $U_{iso}(H) = 1.2 U_{eq}(C)$ using a riding model with C—H = 0.95 Å for aromatic and C—H = 0.99 Å for methyl H atoms.

Figure 1

Crystal structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Symmetry code: i: (x, y+1, z); ii: (x, y-1, z).

catena-Poly[[(3-*tert*-butylpyridine- κN)(4-*tert*-butylpyridine- κN)cadmium]-di- μ -thiocyanato- $\kappa^2 N$:S; κ^2 S:N]

Crystal data	
$[Cd(NCS)_2(C_9H_{13}N)_2]$ $M_r = 498.97$ Monoclinic, $P2_1/c$ Hall symbol: P 2ybc	F(000) = 1016 $D_x = 1.466 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Call parameters from 25365 reflections
Than symbol: 4 2ybc a = 20.0917 (8) Å b = 5.9503 (2) Å c = 21.0198 (9) Å $\beta = 115.902$ (3)° V = 2260.51 (15) Å ³ Z = 4	$\theta = 2.0-28.0^{\circ}$ $\mu = 1.16 \text{ mm}^{-1}$ T = 293 K Block, colourless $0.16 \times 0.12 \times 0.09 \text{ mm}$
Data collection STOE IPDS-2 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans	Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008) $T_{min} = 0.760, T_{max} = 0.895$ 25365 measured reflections 5407 independent reflections

4159 reflections with $I > 2\sigma(I)$	$h = -26 \rightarrow 26$
$R_{\rm int} = 0.044$	$k = -7 \longrightarrow 7$
$\theta_{\max} = 28.0^{\circ}, \ \theta_{\min} = 2.0^{\circ}$	$l = -27 \rightarrow 27$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.046$	Hydrogen site location: inferred from
$wR(F^2) = 0.084$	neighbouring sites
S = 1.14	H-atom parameters constrained
5407 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0326P)^2 + 0.8678P]$
244 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.50 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cd1	0.732991 (14)	0.24172 (4)	0.269228 (13)	0.04067 (8)
N1	0.67220 (19)	0.5638 (5)	0.20986 (17)	0.0535 (7)
C1	0.65872 (17)	0.7440 (6)	0.18809 (16)	0.0415 (6)
S1	0.63714 (5)	0.99805 (14)	0.15449 (5)	0.0484 (2)
N2	0.79392 (17)	-0.0756 (5)	0.32949 (17)	0.0514 (7)
C2	0.80555 (17)	-0.2557 (6)	0.35212 (16)	0.0421 (6)
S2	0.82427 (6)	-0.51157 (15)	0.38460 (5)	0.0554 (2)
N11	0.81232 (17)	0.2863 (5)	0.21360 (15)	0.0482 (7)
C11	0.8505 (3)	0.4716 (7)	0.2206 (2)	0.0724 (13)
H11	0.8473	0.5835	0.2501	0.087*
C12	0.8948 (3)	0.5105 (7)	0.1870 (2)	0.0713 (13)
H12	0.9209	0.6449	0.1950	0.086*
C13	0.9014 (2)	0.3547 (6)	0.14183 (19)	0.0443 (7)
C14	0.8606 (2)	0.1617 (7)	0.1342 (3)	0.0638 (11)
H14	0.8622	0.0474	0.1047	0.077*
C15	0.8174 (2)	0.1363 (7)	0.1698 (2)	0.0638 (11)
H15	0.7901	0.0047	0.1623	0.077*
C16	0.9479 (2)	0.3988 (7)	0.1019 (2)	0.0509 (8)
C17	0.9747 (3)	0.1778 (9)	0.0830 (3)	0.0847 (15)
H17A	1.0038	0.2105	0.0580	0.127*
H17B	0.9328	0.0882	0.0536	0.127*
H17C	1.0043	0.0967	0.1255	0.127*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C18	0.8990 (3)	0.5207 (10)	0.0334 (3)	0.0867 (16)
H18A	0.9269	0.5508	0.0072	0.130*
H18B	0.8821	0.6598	0.0444	0.130*
H18C	0.8571	0.4282	0.0056	0.130*
C19	1.0150 (3)	0.5424 (10)	0.1453 (3)	0.0862 (16)
H19A	1.0432	0.5674	0.1191	0.129*
H19B	1.0452	0.4664	0.1888	0.129*
H19C	0.9990	0.6840	0.1557	0.129*
N21	0.64660 (16)	0.2045 (5)	0.31532 (16)	0.0470 (7)
C21	0.5826 (2)	0.3142 (7)	0.2852 (2)	0.0546 (9)
H21	0.5733	0.4039	0.2459	0.066*
C22	0.5296 (2)	0.2999 (7)	0.3098 (2)	0.0629 (11)
H22	0.4855	0.3795	0.2879	0.076*
C23	0.5429 (2)	0.1660 (7)	0.3673 (2)	0.0573 (10)
H23	0.5075	0.1554	0.3846	0.069*
C24	0.60838 (19)	0.0467 (6)	0.39999 (18)	0.0454 (8)
C25	0.6582 (2)	0.0755 (6)	0.37141 (19)	0.0473 (8)
H25	0.7030	-0.0005	0.3928	0.057*
C26	0.6255 (2)	-0.0980 (7)	0.4648 (2)	0.0587 (10)
C27	0.6837 (4)	-0.2738 (12)	0.4745 (4)	0.133 (3)
H27A	0.6662	-0.3706	0.4339	0.200*
H27B	0.6933	-0.3611	0.5160	0.200*
H27C	0.7285	-0.2011	0.4797	0.200*
C28	0.6512 (6)	0.0518 (13)	0.5280 (3)	0.171 (4)
H28A	0.6627	-0.0373	0.5696	0.257*
H28B	0.6127	0.1569	0.5223	0.257*
H28C	0.6945	0.1319	0.5327	0.257*
C29	0.5577 (3)	-0.2282 (11)	0.4579 (4)	0.1055 (19)
H29A	0.5416	-0.3255	0.4175	0.158*
H29B	0.5188	-0.1249	0.4521	0.158*
H29C	0.5699	-0.3165	0.4997	0.158*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
Cd1	0.04773 (12)	0.03305 (11)	0.04745 (12)	0.00141 (12)	0.02654 (10)	0.00495 (11)
N1	0.064 (2)	0.0352 (15)	0.0566 (18)	0.0003 (14)	0.0216 (16)	0.0037 (14)
C1	0.0434 (15)	0.0405 (15)	0.0407 (15)	-0.0062 (17)	0.0185 (13)	-0.0032 (17)
S1	0.0550 (5)	0.0374 (4)	0.0470 (5)	0.0007 (4)	0.0167 (4)	0.0063 (4)
N2	0.0536 (18)	0.0355 (14)	0.0603 (19)	0.0036 (13)	0.0204 (15)	0.0053 (14)
C2	0.0422 (15)	0.0421 (16)	0.0425 (15)	-0.0014 (17)	0.0190 (13)	-0.0044 (17)
S2	0.0675 (6)	0.0385 (4)	0.0481 (5)	-0.0007 (4)	0.0141 (5)	0.0058 (4)
N11	0.0579 (17)	0.0447 (16)	0.0456 (15)	-0.0034 (14)	0.0260 (14)	-0.0023 (13)
C11	0.108 (4)	0.055 (2)	0.084 (3)	-0.028 (2)	0.070 (3)	-0.024 (2)
C12	0.097 (3)	0.057 (2)	0.086 (3)	-0.032(2)	0.065 (3)	-0.021 (2)
C13	0.0418 (18)	0.0475 (18)	0.0463 (19)	0.0013 (15)	0.0218 (16)	0.0042 (15)
C14	0.069 (3)	0.055 (2)	0.090 (3)	-0.017 (2)	0.055 (3)	-0.023 (2)
C15	0.063 (2)	0.052 (2)	0.088 (3)	-0.017 (2)	0.044 (2)	-0.011 (2)

C16	0.048 (2)	0.059 (2)	0.053 (2)	0.0025 (17)	0.0279 (17)	0.0068 (17)
C17	0.087 (3)	0.081 (3)	0.115 (4)	0.013 (3)	0.071 (3)	0.004 (3)
C18	0.082 (3)	0.117 (4)	0.074 (3)	0.019 (3)	0.047 (3)	0.038 (3)
C19	0.064 (3)	0.111 (4)	0.097 (4)	-0.026 (3)	0.047 (3)	-0.013 (3)
N21	0.0460 (15)	0.0488 (17)	0.0530 (16)	0.0030 (13)	0.0278 (14)	0.0065 (13)
C21	0.052 (2)	0.060 (2)	0.054 (2)	0.0076 (17)	0.0246 (18)	0.0103 (17)
C22	0.046 (2)	0.074 (3)	0.071 (3)	0.0149 (19)	0.0288 (19)	0.013 (2)
C23	0.048 (2)	0.075 (2)	0.058 (2)	-0.0019 (19)	0.0309 (19)	-0.0028 (19)
C24	0.0450 (18)	0.055 (2)	0.0395 (17)	-0.0068 (16)	0.0220 (15)	-0.0049 (15)
C25	0.0436 (18)	0.054 (2)	0.0477 (19)	0.0038 (16)	0.0230 (16)	0.0046 (16)
C26	0.063 (2)	0.071 (3)	0.049 (2)	-0.007 (2)	0.0303 (19)	0.0052 (19)
C27	0.118 (5)	0.159 (7)	0.151 (6)	0.059 (5)	0.084 (5)	0.103 (5)
C28	0.323 (12)	0.124 (6)	0.047 (3)	-0.086 (7)	0.063 (5)	-0.013 (3)
C29	0.094 (4)	0.110 (5)	0.124 (5)	-0.012 (4)	0.058 (4)	0.038 (4)

Geometric parameters (Å, °)

Cd1—N2	2.305 (3)	C18—H18A	0.9600	
Cd1—N1	2.322 (3)	C18—H18B	0.9600	
Cd1—N21	2.339 (3)	C18—H18C	0.9600	
Cd1—N11	2.368 (3)	C19—H19A	0.9600	
Cd1—S2 ⁱ	2.7412 (10)	C19—H19B	0.9600	
Cd1—S1 ⁱⁱ	2.7513 (10)	C19—H19C	0.9600	
N1-C1	1.151 (4)	N21—C21	1.330 (5)	
C1—S1	1.644 (4)	N21—C25	1.339 (4)	
S1—Cd1 ⁱ	2.7513 (10)	C21—C22	1.375 (5)	
N2-C2	1.154 (4)	C21—H21	0.9300	
C2—S2	1.644 (4)	C22—C23	1.374 (6)	
S2—Cd1 ⁱⁱ	2.7412 (10)	C22—H22	0.9300	
N11—C11	1.314 (5)	C23—C24	1.385 (5)	
N11—C15	1.319 (5)	C23—H23	0.9300	
C11—C12	1.378 (5)	C24—C25	1.384 (4)	
C11—H11	0.9300	C24—C26	1.518 (5)	
C12—C13	1.373 (5)	C25—H25	0.9300	
С12—Н12	0.9300	C26—C28	1.492 (7)	
C13—C14	1.379 (5)	C26—C27	1.514 (7)	
C13—C16	1.527 (5)	C26—C29	1.518 (6)	
C14—C15	1.379 (5)	C27—H27A	0.9600	
C14—H14	0.9300	C27—H27B	0.9600	
С15—Н15	0.9300	С27—Н27С	0.9600	
C16—C19	1.519 (6)	C28—H28A	0.9600	
C16—C18	1.525 (6)	C28—H28B	0.9600	
C16—C17	1.537 (6)	C28—H28C	0.9600	
С17—Н17А	0.9600	C29—H29A	0.9600	
С17—Н17В	0.9600	C29—H29B	0.9600	
С17—Н17С	0.9600	С29—Н29С	0.9600	
N2—Cd1—N1	179.28 (11)	H18A—C18—H18B	109.5	

N2—Cd1—N21	90.40 (11)	C16—C18—H18C	109.5
N1—Cd1—N21	89.39 (11)	H18A—C18—H18C	109.5
N2—Cd1—N11	93.03 (11)	H18B—C18—H18C	109.5
N1—Cd1—N11	87.23 (11)	C16—C19—H19A	109.5
N21—Cd1—N11	175.34 (11)	C16—C19—H19B	109.5
$N2$ — $Cd1$ — $S2^i$	87.88 (8)	H19A—C19—H19B	109.5
$N1$ — $Cd1$ — $S2^i$	91.43 (8)	C16—C19—H19C	109.5
N21—Cd1—S2 ⁱ	90.86 (8)	H19A—C19—H19C	109.5
N11—Cd1—S2 ⁱ	92.42 (8)	H19B—C19—H19C	109.5
N2—Cd1—S1 ⁱⁱ	92.89 (8)	C21—N21—C25	117.4 (3)
N1—Cd1—S1 ⁱⁱ	87.79 (8)	C21—N21—Cd1	119.6 (2)
N21—Cd1—S1 ⁱⁱ	87.21 (8)	C25—N21—Cd1	123.0 (2)
N11—Cd1—S1 ⁱⁱ	89.46 (8)	N21—C21—C22	122.5 (4)
S2 ⁱ —Cd1—S1 ⁱⁱ	177.92 (3)	N21—C21—H21	118.8
C1—N1—Cd1	163.7 (3)	C22—C21—H21	118.8
N1—C1—S1	178.0 (3)	C23—C22—C21	118.8 (4)
C1—S1—Cd1 ⁱ	98.96 (11)	C23—C22—H22	120.6
C2—N2—Cd1	161.9 (3)	C21—C22—H22	120.6
N2—C2—S2	178.6 (3)	C22—C23—C24	120.7 (3)
C2—S2—Cd1 ⁱⁱ	100.68 (11)	С22—С23—Н23	119.6
C11—N11—C15	115.2 (3)	C24—C23—H23	119.6
C11—N11—Cd1	121.6 (2)	C25—C24—C23	115.6 (3)
C15—N11—Cd1	122.9 (2)	C25—C24—C26	122.4 (3)
N11—C11—C12	124.1 (4)	C23—C24—C26	122.0 (3)
N11—C11—H11	118.0	N21—C25—C24	124.9 (3)
C12—C11—H11	118.0	N21—C25—H25	117.5
C13—C12—C11	121.3 (4)	C24—C25—H25	117.5
C13—C12—H12	119.3	C28—C26—C27	110.3 (6)
C11—C12—H12	119.3	C28—C26—C24	108.3 (4)
C12—C13—C14	114.3 (3)	C27—C26—C24	111.8 (3)
C12—C13—C16	122.0 (3)	C28—C26—C29	109.6 (5)
C14—C13—C16	123.6 (3)	C27—C26—C29	105.6 (5)
C13—C14—C15	120.7 (4)	C24—C26—C29	111.2 (4)
C13—C14—H14	119.6	С26—С27—Н27А	109.5
C15—C14—H14	119.6	С26—С27—Н27В	109.5
N11—C15—C14	124.3 (4)	H27A—C27—H27B	109.5
N11—C15—H15	117.8	С26—С27—Н27С	109.5
C14—C15—H15	117.8	H27A—C27—H27C	109.5
C19—C16—C18	109.7 (4)	H27B—C27—H27C	109.5
C19—C16—C13	111.2 (3)	C26—C28—H28A	109.5
C18—C16—C13	107.7 (3)	C26—C28—H28B	109.5
C19—C16—C17	108.5 (4)	H28A—C28—H28B	109.5
C18—C16—C17	108.5 (4)	C26—C28—H28C	109.5
C13—C16—C17	111.3 (3)	H28A—C28—H28C	109.5
С16—С17—Н17А	109.5	H28B—C28—H28C	109.5
С16—С17—Н17В	109.5	С26—С29—Н29А	109.5
H17A—C17—H17B	109.5	С26—С29—Н29В	109.5
C16—C17—H17C	109.5	H29A—C29—H29B	109.5

H17A—C17—H17C	109.5	C26—C29—H29C	109.5	
H17B—C17—H17C	109.5	H29A—C29—H29C	109.5	
C16—C18—H18A	109.5	H29B—C29—H29C	109.5	
C16—C18—H18B	109.5			

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) *x*, *y*-1, *z*.