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Abstract: In this review, we provide an overview of the current knowledge on the role of different
classes of non-coding RNAs for islet and (3-cell development, maturation and function. MicroRNAs
(miRNAs), a prominent class of small RNAs, have been investigated for more than two decades and
patterns of the roles of different miRNAs in pancreatic fetal development, islet and (3-cell maturation
and function are now emerging. Specific miRNAs are dynamically regulated throughout the period
of pancreas development, during islet and f-cell differentiation as well as in the perinatal period,
where a burst of 3-cell replication takes place. The role of long non-coding RNAs (IncRNA) in islet
and f3-cells is less investigated than for miRNAs, but knowledge is increasing rapidly. The advent of
ultra-deep RNA sequencing has enabled the identification of highly islet- or 3-cell-selective IncRNA
transcripts expressed at low levels. Their roles in islet cells are currently only characterized for
a few of these IncRNAs, and these are often associated with (3-cell super-enhancers and regulate
neighboring gene activity. Moreover, ncRNAs present in imprinted regions are involved in pancreas
development and (3-cell function. Altogether, these observations support significant and important
actions of ncRNAs in 3-cell development and function.

Keywords: non-coding RNAs; long non-coding RN As; long intergenic non-coding RNAs; microRNA;
small nucleolar RNAs; piwi associated RNAs; circular RNAs; (3-cell; x-cell; islets of Langerhans;
pancreas; fetal development

1. Introduction to Pancreas and Islet Cell Development

The pancreas is a unique organ in our body consisting of two major compartments: The exocrine
pancreas and the endocrine pancreas. The exocrine pancreas is composed of acinar cells, which
produce digestive enzymes; and an intricate network of pancreatic ducts that carry these enzymes to
the intestine in order to aid in digestion of the ingested food. The endocrine pancreas, also known
as the “Islets of Langerhans”, is interspersed within the exocrine portion of the pancreas. Islets
constitute a group of cells and can be considered as mini-organs themselves owing to the varied
nature and function of islet cells. Each islet is composed of hormone-secreting as well as vascular
endothelial and neural cells. The five hormone-producing cells within the islets secrete glucagon
(x-cells), insulin ([3-cells), somatostatin (5-cells), pancreatic polypeptide (PP-cells) and ghrelin (e-cells),
that are necessary/important in glucose homeostasis and metabolism.

Pancreas development is an orchestrated process that involves highly regulated expression of
several transcription factors at the spatio-temporal level. This phenomenon is well studied in mouse
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models; however, limited availability of human fetal specimen has restricted detailed studies on
human pancreas development. Nonetheless, there is a major overlap between these transcription
factors between humans and rodents [1-8] (Figure 1). The pancreas is an endocrine organ that develops
from the primitive gut tube in the form of a dorsal bud and a ventral bud (mouse embryonic (E) day
9-10; human 28-31 days post coitum (dpc)) arising at the junction of foregut and midgut [9] (Figure 1).
The two mesodermal structures; notochord and the dorsal aorta signal to the prospective pancreatic
epithelium, activating a cascade of downstream transcription factors and signaling molecules, that
induce the initial expression of Pancreas and duodenal homeobox gene 1 (Pdx1, also known as insulin
promoter factor 1 (IPF1)) [10-12]. In the undifferentiated epithelium (mouse E12.5; human 32-35 dpc),
single endocrine cells are scattered within the ventral and dorsal pancreatic buds. Between mouse E12.5
to E16.5 (human 35-58 dpc) the pancreatic buds begin to undergo extensive branching morphogenesis
and commit to endocrine or exocrine cell lineages, which further proliferate, expand and differentiate.
Both pancreatic buds continue to grow independently until the secondary transition occurs, where
the stomach and duodenum rotate and bring the dorsal and ventral buds in close proximity. Both
buds then fuse by mouse E15-16.5 (human 53-58 dpc) and now constitute the definitive pancreas
(Figure 1). Eventually, the dorsal bud becomes the tail, body and accessory pancreatic duct of the
definitive pancreas, while the ventral bud forms the pancreas head and main pancreatic duct. By this
time, the pancreatic endocrine precursors migrate in response to various paracrine as well as autocrine
signals and cluster together to form islet-like structures.

The mesenchyme surrounding the pancreatic epithelium secretes several growth/differentiation
factors that promote the maturation of endocrine progenitor cells. These growth/differentiation factors,
along with the interactions of progenitor cells with neighboring cells as well as with the matrix provide
cues for final stages of maturation into functional hormone-producing islets of Langerhans.

A
FARRN P

I \ PR \

o B - ~Liver, ¥ Liver,

(1 dver)

v i !

Foregut \ _ === !
i “.Stomach” *

-

G B

o o
Progenitor
=ndocrine cel

Islets of
Langerhans
Endocrine
pancreas
Patterne
epithelium

Gut tube/ Pancreaticbud Undifferentiated Endocrine and exocrine Developed Pancreas
Endodermal epithelium epithelium differentiation

epithelium

Mouse E8-8.5 Mouse E9-10 Mouse E12.5 Mouse E12.5-16.5 Mouse E19

Human 25-27dpc  Human28-31dpc  Human 32-35dpc Human 35-58 dpc Human 59 dpc

CS10 €S11-12 €512-15 €S15-23 Cs24

Figure 1. Cont.



Non-coding RNA 2018, 4, 41 3 of 25

B
Hnf6 Isl1 Hesl Sox9  Igf2 Ins
Foxa2 HB9 Mist1 Sox4  Gshl Geg
Sox17 Hex Gatad Ngn3  Gsh2 Sst
Pdx1 Prox1 Gatab Hes1  Reg3A Ppy
Hnf1p HNF4a Glis3 NeuroD Pcsk1 Ghrl
Hnfla Brnd Sox9 Pax2 Pcsk2 Hes3
Gata4 Pdx1 Ngn3 Brn-4 Gatab
Gata6 Ptfla Ptfla Noval Lmx1B
Glis3 Hnf1p Pax6 Glis3 Lmx1A
Aire Hnfla Nkx2.2 Nkx2.2 Glutl
Foxa2 NeuroD Nkx6.1 Glut2
Gatad Pax4 Gek
Gatab Pax6 Cdx2/3
Hnfe Arx Tir3
Glis3 MafA MafA
Sox9 MafB MafB
Ngn3 Foxa2 Nkx2.2
Hes1l Ucn3
NeuroD Prox1
Pax6 Gatad
Nkx2.2 Gatab

Figure 1. (A) Diagram of the major morphogenic events during islet development. (B) A cascade of
different transcription factors, hormones and cell specific markers are expressed within different stages
of pancreatic development that are responsible for the morphogenic events leading to islet formation
and cellular differentiation. The diagram was inspired by [6,13]. DP, Dorsal pancreatic bud; VP, Ventral
pancreatic bud; GB, Gall bladder; dpc, days post conception; CS, Cambridge stage.

Pancreas organogenesis follows an intricate pattern of endocrine gene expression. Various
transcription factors (such as Pdx1, Ngn3, NeuroD1, NKX2.2, Pax6, Isl1) reported at different stages of
pancreas development are shown in Figure 1 and reviewed in detail elsewhere [1,2]. These transcription
factors have different expression patterns, with some are seen for a very short timeframe, some continue
longer while some others, such as Pdx1, are seen from early development and also in the adult
B-cells. The five different hormone-producing cells start appearing as single cells at different stages
with glucagon-producing cells being detected at E9.5; insulin-producing cells detectable by E10.5;
somatostatin-producing cells at E14.5. Ghrelin-producing ¢ cells and pancreatic polypeptide-secreting
PP cells develop in later stages as close to the day of birth in mice [9]. The careful orchestration of
multiple pancreatic transcription factors, thus drives the differentiation of committed islet progenitor
cells, to form the islet micro-organ. It is now emerging that other molecules, mainly the non-coding
RNAs (ncRNAs), also play an important regulatory role in pancreas and islet-cell development.

2. A Primer on Short and Long Non-Coding RNAs

2.1. Categorization of Non-Coding RNAs

Non-coding RNA, commonly described as RNA that is not translated or does not encode for a
protein, were initially considered to be non-functional [14]. However, over the years, a majority of
complex organisms have shown that they transcribe ncRNAs. Many of these ncRNAs transcribed are
alternatively spliced and/or processed into smaller products in the genome. A large portion of the
human genome is made up of genes that do not code for any protein (Figure 2). Non-coding RNAs
such as microRNAs (miRNAs), small nucleolar RNAs (snoRNAs), long non-coding RNAs (IncRNAs),
circular RNAs (circRNAs), PIWI-interacting RNAs (piRNAs) and other species of regulatory ncRNAs
appear to regulate signaling pathways that influence different cellular processes [15-18]. In addition,
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several non-coding RNAs have been identified to be associated with numerous physiological and
pathological processes, leading to different diseases [17,19,20].
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Figure 2. Pie charts showing the percentage of (A) the different genes and (B) different RNA types from
the human reference genome (GRCh38.p12) following the RefSeq annotation assembly. The annotations
are available from the genome database part of the NCBI database, and the data depicted above are
from the Annotation Release 109 (https:/ /www.ncbinlm.nih.gov/search/?term=human+genome and
https:/ /www.ncbi.nlm.nih.gov/genome/annotation_euk/Homo_sapiens/109/).

Each of these ncRNA species has been identified to regulate cellular activities such as snoRNA
in RNA modification [21-25], piRNA on transposon silencing [26-28], IncRNA and circRNA in
translation [29] and other regulatory functions [30], and lastly, miRNAs on gene silencing (RNA
interference) [18,31] and gene regulation [32-34]. In spite of their known functions, ncRNAs have been
described to interact with each other, forming a complex regulatory network [35]. This section will
highlight some of the different ncRNA species with regard to categorization and known function.

snoRNAs, predominantly located in the nucleolus, are ncRNAs of ~60-300 nucleotides (nt)
length, and have complementarities mainly to mature ribosomal RNAs (rRNAs) involved in the
post-transcription modification of ribosomal and small nuclear RNA expression [36,37]. There are two
classes of snoRNAs—box C/D antisense and H/ACA snoRNAs, distinguished by their structural
properties [22]. The C/D antisense box snoRNAs, which contain two short sequence motifs (box C
and box D), are known to guide methylation within the pre-rRNA sequence via the regular RNA
duplex formation around the methylation site [21,22]. The H/ ACA snoRNAs, contain an ACA motif
positioned three nucleotides from 3’ tail end and an H motif in the hinge region [23,24]. In the terminal
hairpin at the 5" and/or 3’ of the H/ACA structural internal loop, is a pseudouridylation site. This site
targets uridine by base-pair interaction with rRNAs, acting as a rRNA pseudo-uridylation guide [25].

piRNAs are 24-35 nt long ncRNAs, identified mainly in the animal germline [26,38,39]. piRNAs
form the piRNA-induced silencing complex (piRISC), which recognises and silences transposable
elements (TEs) so as to protect the integrity of the genome [28,40]. piRNAs are generated through
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two distinct molecular mechanisms, primary and secondary (ping-pong) pathways [40]. The primary
pathway of piRNA is an initiation phase, through which thousands of precursor/primary piRNAs
displaying a bias uridine (U) are generated. These piRNAs then bind to Piwi proteins, to allow
Piwi to enter the nucleus and mediate silencing [39-42]. The secondary piRNA ping-pong pathway,
in Drosophila encoded Piwi proteins contains two main effectors—Aubergine (Aub) and Argonaute
3 (Ago3). The Aub-piRISCs initiates along with the Ago3 to produce secondary piRNAs, which
cycles a ping-pong piRNA characteristic feature of 1U/10A partners and a 10-nt 5’ overlap. These
two effectors act complementary to cleave sense and antisense transposon transcripts through Slicer
activities silencing transposons [43,44]. In the case of the mouse piRNA pathway it is implicated in
the establishment of the DNA methylation pattern essential for TE repression, while this function is
apparently lacking in Drosophila [40,45,46].

circRNAs are ncRNAs which have 3’ head and 5’ tail ends covalently linked creating a covalently
closed loop type of RNA [47,48]. Many studies have profiled circRNAs in eukaryotes (such as
human [49-52] and mice [52,53]). In eukaryotic cells, circRNAs are formed through inverted splicing
(/back splicing) resulting in exons of genes to attach the head to tail (forming a circRNA) [54].
circRNAs have been considered to have a potential regulatory function in translation, through acting
as sponges to sequester miRNAs (~22 nt long ncRNA, which are described in more detail in the later
sections) [51,55,56].

IncRNAs are in general distinguished as ncRNAs which are >200 nts long and characterized
based on their location mostly encoded by intergenic regions (long intergenic/intervening (i) RNAs)
and some overlapping the protein-coding genes [29,57]. IncRNAs have been categorized into different
groups based on their genomic context, as-standalone, pseudogenic (promoter-associated), intronic
nested antisense, terminal antisense and divergent [58]. Standalone IncRNAs are located in sequence
space which do not overlap protein-coding genes in transcription, this includes some lincRNA [59].
While IncRNA, which lay intronic overlapping with natural antisense transcripts in varying degrees
from none, are termed as divergent, terminal (partial overlap) and or nested (complete overlap) [58].
IncRNAs can also be pseudogenic (overlapping with pseudogenes) [60,61]. IncRNAs have been
shown to be target transcriptional activators and repressors to regulate transcription [62]. Whilst
post-transcriptionally, IncRNAs have been shown to be involved in pre-mRNA splicing [63,64]
and translation [65]. In addition similar to circRNNAs, IncRNAs alter protein translation (as well as
degradation) for example through acting to sequester miRNAs from protein or mRNA targets [66,67].
IncRNAs, similar to circRNAs discussed above, have also been shown to act as miRNNA sponges.
A classic example is the interaction between the pseudogene PTENPI and its tumor suppressor
parental gene PTEN [68]. The PTEN high homology 3'UTR region of PTENPI contains perfectly
conserved seed matches for the PTEN-targeting miR-17, miR-21, miR-214, miR-19 and miR-26 families.
These microRNAs regulate the tumor suppressor gene PTEN. In prostate cancer cells, the knockdown
(KD) of PTENP1 leads to an increase in these microRNAs and decreased PTEN levels, resulting in
increased cell proliferation [68].

2.2. MicroRNA Biogenesis and Function

The small endogenous miRNAs, ~22 nucleotides in length, belong to a class of non-coding
RNAs first discovered in 1993 [69]. MicroRNAs predominately function as post-transcriptional gene
regulators. More than 2600 mature miRNAs have been identified in humans (miRBase, version
22, accessed June 2018). It was estimated that up to 30% of protein-coding genes are regulated by
miRNAs [70]. Each miRNA is predicted to have multiple potential target messenger RNAs (mRNAs)
and a single gene can be modulated by several miRNAs [71], hence increasing the complexity through
which miRNAs can fine-tune gene expression.

The canonical biogenesis and processing of miRNAs is tightly regulated at multiple stages
(Figure 3). The majority of miRNA sequences are found in introns of non-coding or coding transcripts
although some miRNAs are encoded within exons [72]. Some miRNAs have their own promotor,
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or if the miRNA resides within the introns of a protein-coding gene, the promotor of the host gene
can be shared. A primary miRNA (pri-miRNA) is transcribed from miRNA genes by either RNA
polymerase II, and to a lesser extent RNA polymerase III. Pri-miRNAs form an imperfect stem-loop
hairpin structure with a poly(A) tail and cap typically over 1 kb in length [73]. After transcription,
the pri-miRNA is endonucleolytically cleaved by the microprocessor complex comprised of the
RNase III Drosha enzyme and co-factor DiGeorge syndrome critical region 8 (DGCRS), resulting
in a precursor miRNA (pre-miRNA) transcript of 60-110 nucleotides in length with a short 3’
overhang [74-76]. Correctly processed pre-miRNA is next exported out of the nucleus upon recognition
of the 3'overhang by a nuclear pore complex consisting of exportin-5 (EXP5) and GTP-binding
nuclear protein RANeGTP [77,78]. Once in the cytoplasm, another protein complex containing the
enzyme Dicer further cleaves and process the RNA-duplex releasing a small double-stranded miRNA
complex [79]. Subsequently, the RNA duplex is loaded onto the RNA-induced silencing complex
(RISC) aided by Argonaute (AGO) 2 protein, TAR RNA-binding protein (TRBP) and protein activator of
interferon-induced protein kinase EIF2AK2 (PRKRA) [80,81]. Selection of the mature single-stranded
miRNA and removal of the passenger strand usually depends on the relative thermodynamic
stability of the two ends of the small RNA duplex with a lower stability favoring selection [82].
Yet, the passenger strand can also be active in mRNA silencing although most often to a lesser extent
than the mature major strand miRNA [83]. After strand selection, RISC in combination with the
mature miRNA identifies possible target mRNA through sequence complementary of the miRNA
seed sequence to the 3/ untranslated region (UTR) of the target mRNA. The seed sequence consists
of 6-8 nucleotides at the 5’ end of the miRNA and it is thought that perfect complementary base
pairing between the miRNA and mRNA results in a rapid degradation of the mRNA transcript. Partial
complementarity between the miRNA:mRNA complex prevents the protein translation process and
subsequently initiates cognate mRNA degradation.
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Figure 3. The biogenesis of miRNAs. A schematic depicting the biogenesis and function of a mature
miRNA. Primary miRNA (pri-miRNA) is transcribed in the nucleus and processed by Drosha and
DiGeorge syndrome critical region 8 (DGCRS). The precursor miRNA (pre-miRNA) is then exported
by exportin-5 (EXP-5) out into the cytoplasm. Here, the pre-miRNA is further cleaved by Dicer to yield
a double-stranded miRNA duplex. After strand selection, the mature miRNA associates with the RISC.
The degree of complementarity between the miRNA and the target mRNA determines whether the
mRNA is degraded or the translation process is blocked.
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Although considered as highly stable cellular molecules, active miRNA degradation has been
demonstrated. However, little is known of degradation dynamics, half-life and turnover of most
miRNAs. The stability and turnover of selected miRNAs has been linked to specific stages in the
cell cycle [84,85], growth factor signalling [86], neuronal activity [87] and highly complementary
mRNA targets [88]. In contrast to mRNA, miRNAs have 5’ and 3’ unprotected ends rendering them
accessible to exoribonuclease activity. Selective exonucleolytic decay of miRNAs mediated by the
3'-5" exoribonucleases XRN-1 along with ribosomal RNA-processing protein 41 (RRP41)—a core
component of the exosome complex—has been identified [89]. Without affecting pri- or pre-miRNAs,
the interferon-inducible 3’-to-5' exoribonuclease human polynucleotide phosphorylase (hPNPase
(0ld-35)) degrades certain mature miRNAs [90]. Non-templated addition of adenosines to the 3’ end of
mature mammalian miRNAs have both been observed to promote selective miRNA stability [91] and
degradation [92]. Modification of the 3’ end of either pre-miRNA or mature miRNA by addition of
uridines is implicated in miRNA degradation [93,94].

The recent discovery that miRNAs are intracellularly sorted and subsequently selectively secreted
into the extracellular space has suggested that miRNAs participate in and are essential for cell-to-cell
communication [95,96]. Encapsulated in either microvesicles (MVs) or exosomes [95,97] or bound to
AGO2 [98] or lipoproteins [99,100] miRNAs can be taken up by either neighbouring or distant cells
and exert their functions there. Multivesicular bodies (MVBs) are a specialised subset of endosomes
containing multiple small vesicles. Exosomes (<100 nm in size) derived from MVBs are released upon
MVBs'’ fusion with the plasma membrane. Formed by outward budding of the plasma membrane,
microvesicles (MVs) (100 nm-1 mm in size) are released into the extracellular space. The miRNA
content within the exosomes does not merely reflect the miRNA composition of the parent cell
suggesting that exosomal miRNA transfer is a selective process [101-103]. How miRNAs enter
exosomes and MVs and how these processes are regulated, is not characterized.

Exosomes/microvesicles not only help the transfer of miRNAs but they also protect them from
RNase degradation. Due to their high stability and resistance in degradation by endogenous nucleases,
the microRNAs eventually end up at abundant levels in several body fluids, including peripheral
circulation [104]. Since miRNAs are selectively secreted into exosomes, which may be recognized by
their surface proteins, exosomes constitute an attractive category of biomarkers with perhaps superior
tissue specific reporting [105]. Specific circulating miRNNAs have been related to development of
type 1 diabetes [106-109], although the identity of the miRNAs reported are not consistent between
studies, more studies are needed in order to reconcile differences in findings. Nonetheless these
finding have opened up a possibility of using miRNAs as predictors of future diabetes or diabetic
complications, especially with the advent of newer and faster technologies to detect them with high
specificity and reproducibility.

More interesting perhaps, is the report that exosomal miRNAs also confer cells with a functional
mean for signal transfer to neighbouring cells and cell types. This is illustrated by the finding that
lymphocytes secreted exosomes near pancreatic 3-cells, which contribute to the induction of 3-cell
apoptosis in type 1 diabetes [110-112].

3. MicroRNAs and Non-Coding RNAs in Fetal Pancreas and Islet Development

3.1. Stage-Specific Expression of MicroRNAs

MicroRNAs are important at multiple stages in pancreas and (-cell development, which is
demonstrated from experiments of cell and stage-specific deletion of the miRNA processing enzyme
Dicer1 [113,114]. Using Pdx1 directed Cre-recombinase mediated Dicerl deletion in mice, it was
observed that pancreas development was impaired as well as 3-cell mass was reduced, with the
phenotype being observable before birth and mice dying early in life [115]. However, when deleting
Dicerl using a rat insulin promoter (RIP) driven Cre-recombinase, expressed specifically in the
-cells, neonatal 3-cell numbers were normals, while the 3-cell mass gradually reduced with age.
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The removal of Dicerl in B-cells also lead to reduced insulin content, reduced insulin secretion and
development of diabetes during aging [116]. Another inducible mouse model of Dicerl deletion
controlled by tamoxifen-inducible Cre-recombinase expressed only in 3-cells (directed by the RIP)
showed development of glucose intolerance following two weeks of tamoxifen injections, reduced
insulin content and upregulation of insulin promoter transcriptional repressors [117]. This study was
corroborated in another inducible Dicerl deletion, which also showed decreased insulin secretion and
exocytosis, as well as a reduced insulin content and [3-cell mass. This was, furthermore, associated with
the upregulation of 3-cell disallowed gene transcripts [118,119]. Thus, taken together these studies
firmly indicate that miRNAs, as a molecular species, are very important for early pancreas and (3-cell
development, as well as the function of the mature (3-cell.

Neurogenin 3 (Ngn3) is a marker of pancreatic endocrine progenitor cells [120] seen largely
during the 2nd trimester and not at all in mature islet cells [33]. Although Ngn3 is necessary for
-cell formation during developmental stages, Ngn3 appears not to be expressed during pancreas
regeneration induced by partial pancreatectomy. Levels of miR-15a, miR-15b, miR-16 and miR-195
were increased in mouse developing and regenerating pancreas samples following assays for 283
miRNAs, and concomitantly, these miRNAs were predicted to target Ngn3 mRNA. Thus, experiments
with anti-sense treatment for miR-15a, miR-15b, miR-16 and miR-195 of single-cell suspensions
from regenerating pancreas caused re-appearance of mRNAs encoding Ngn3 and its down-stream
target NeuroD1 [33]. Therefore, miRNA mediated Ngn3 mRNA regulation could provide control of
regeneration in the adult mouse pancreas.

In the perinatal period, a burst of p-cell replication and maturation takes place in the rat
pancreas [121,122]. The miRNA profile of late developmental events in the pancreas was determined
at fetal day 20, the day of birth and two days of birth. Seven miRNAs were differentially expressed
perinatally and the localization studies showed endocrine localization of six of these miRNAs (miR-21,
-23a,-29a, -125b-5p, -376b-3p and -451), and all were expressed in exocrine cells at one time point at least.
A comparison between the mRNA and the miRNA expression pattern of perinatal pancreas showed
that up-regulated miRNAs selectively target cholesterol synthetic genes, which are down-regulated
following birth [123]. Interestingly, although total pancreas miR-375 levels were not regulated around
birth, the localization of miR-375 changed from E20 to post-natal day 2. Interestingly, while miR-375
was detectable at robust levels at all three time points, the major site of expression of miR-375 at DO
and D2 was in pancreatic exocrine cells, while expression at €20 and in adults -cells is endocrine
cells. This indicates that pancreatic endocrine cells may not always be the major source of expression
of miR-375 in pancreas and that miR-375 has a dynamic change of expression in pancreatic exocrine
tissue during the perinatal period. It is suggested that the marked change of miR-375 levels in exocrine
cells following birth could regulate processes involved in the adaptation of the exocrine pancreas to
digestion of external nutrients derived from milk, which is lipid rich [124].

miR-7 is highly expressed both in the developing and the adult pancreas of mouse and
humans [125-128]. However, miR-7 may have other roles during development compared with
adult pancreas. Delivery of antisense miR-7 in vivo to mouse fetal pancreas at E10.5 cause strongly
reduced insulin content at E17.5 as well as increased apoptosis throughout the pancreas. Accordingly,
antisense-treated mice exhibited impaired glucose intolerance, lower insulin content and fewer
-cells [129]. These observations are contrary to the findings that inhibition of miR-7 in adult mice
promotes (3-cell replication [125,126]. Inhibition of miR-7a in human dispersed islets resulted in an
impressive 30-fold increase in proliferation, indicating that miR-7 may serve as a negative regulator of
proliferation. Moreover, the mTOR pathway is activated upon miR-7 inhibition of mouse MING6 cells
and primary mouse islets via an upregulation of 5 downstream targets of the mTOR (p70S6 K, elF4E,
Mapkap1, Mknkl and Mknk?2) [126]. However, expression of miRNAs during pancreatic embryonic
development has been investigated mainly using targeted micro-array methods, in which the general
limitation is that only known miRNAs will be investigated.
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3.2. IncRNAs in Human and Mouse Pancreatic Islets

The specialized function of pancreatic 3-cells require massive amounts of insulin to be produced.
In fact, at the transcriptome level 20% of islet mRNA reads is proinsulin mRNA (45% in (3-cells) [130].
Moran et al. (2012) [130] identified 1128 transcripts as non-coding (>200 bp, no coding potential, not
overlapping coding sequences. Of these, 761 were antisense, 32 had the same direction and were
close to a neighboring gene transcription start, 335 were intergenic, and 55 were overlapping antisense
ncRNAs to coding genes. This set of curated IncRNAs was updated to ~2400 in Akerman et al.
(2017) [131]. IncRNAs generally have low expression levels (<10 RPKM), but a substantial part of the
identified IncRNAs were highly islet specific. A number of these were dynamically regulated during
mouse fetal pancreas development (at E15.5) or had altered levels in neonatal islets compared with
adult islets (investigated as mouse orthologues) [130]. For in vitro differentiated (3-like cells, patterns
of dynamic regulation were observed with most of the tested IncRNAs increasing specifically in the
functional endocrine differentiated cells and having low levels throughout differentiation. Human
islet-long noncoding RNA (HI-LNC)-45, -60, -78 and -80 are exceptions and display expression in
different stages of differentiation.

HI-LNC-67, -77 and -87 were dysregulated in ob/ob islets and HI-LNC-78 and -80 were increased
by glucose treatment of human islets (4 vs. 11 mM for 72 h). Interestingly, a significant part of the islet
specific IncRNAs were situated closely to genes known to have an important function in pancreatic
p-cells: HI-LNC-94 (RFX6), -26 (PCSK1), -75 (SOX9), -5 (ISL1), -45 (TUBB3), -100 (miR-210), -101
(PAX®6), -57 (ISL1), -66 (NEUROD1), -65 (S1X9), -103 (ABCCS8). Moreover, there is an enrichment of islet
IncRNAs in (3-cell super enhancers, and also coincidence of the chromosomal localization of many
islet IncRNAs and the presence of genetic susceptibility loci for type 2 diabetes [132,133].

To investigate in detail the -cell transcriptome, Ku et al. (2012) FACS-sorted (-cells from
MIP-GFP mice and sequenced poly-adenylated RNAs to first identify 3-cell enriched transcripts and
second to identify long ncRNAs [134]. Using this approach 1359 high-confidence IncRNA genes were
identified, of which 160 showed very high (3-cell specificity (>200 fold enrichment in {3-cells) and 108
ncRNAs were only detected in -cells. This number of 3-cell long ncRNAs is very similar to that
identified by Moran et al. (2012) [130]. Another study identified a set of 145 mouse IncRNAs using
high-stringency criteria from high-purity sorted alpha and (3-cells and also noted that the loci of these
islet ncRNAs were highly enriched for binding sites of Pdx1, Nkx6.1, MafA and NeuroD1, as well
as their expression levels being highly correlated with the expression levels of their closest neighbor
genes [135].

Akerman et al. (2017) performed loss-of-function characterization of 12 IncRNAs by artificial
microRNA mediated KD in EndoC BH1 human insulinoma cells [131]. 12 IncRNAs were selected
for investigation based on the details in Moran et al. (2012) [130]; HI-LNC-12, -15, -25, -30, -70, -71,
-75, -76, -78, -79, -80, -85. This selection was based on islet and (-cell enrichment, expression in
EndoC cells and presence of chromatin marks indicating active promoters; moreover the 12 IncRNAs
were selected due to close proximity to genes known to be important in (3-cells. Working from the
underlying hypothesis that IncRNAs work by modulating the transcriptome, the authors measured
the transcriptomic effects of individual IncRNA KD. Here, HI-LNC-12, -15, -30, -78, -80 and -71 had
measurable effects on steady-state mRNA levels in the range observed for 3-cell transcription factors
such as PDX1 and HNF1A. HI-LNC-12, -78 and -71 KD impaired glucose stimulated insulin secretion
(GSIS) and insulin content of EndoC cells and many of these IncRNAs had expression levels that were
highly correlated with each other and with (3-cell transcription factors (GLIS3, HNF1A, NKX2.2, PDX1,
MAFB). In particular, HI-LNC-78 correlated with these transcription factors, while HI-LNC-25 did
not [131].

The tested HI-LNCs also regulated genes in pathways controlling insulin secretion and regulated
a largely overlapping gene set as these (3-cell transcription factors. HI-LNCs more often than by chance
regulated genes associated with enhancer clusters of islet chromatin. Gene-module co-expression
analysis of human islet RN A-seq data indicated that HI-LNC-12, -15, -71, -78, and -80 were part of a
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transcriptional regulatory network with the transcription factors investigated (MAFB, GLIS3, HNF1A,
PDX1, NKX2.2). They then proceeded to functionally investigate the specific functional effects of
HI-LNC-71 (which they termed PLUTO for PDX1 locus upstream transcript one) on PDX1 levels.
The KD of PLUTO decreased PDX1 mRNA levels in EndoC cells and dispersed human islet cells,
while the converse was not observed. Down-regulation of PLUTO using CRISPRi also decreased PDX1
levels and the regulome of PLUTO was highly overlapping that of PDX1. Mechanistically, PLUTO
transcript KD decreased the physical association of PDX1 enhancers with the PDX1 proximal promoter
and transcription initiation site. Thus, it was concluded that PLUTO acts as a scaffold to assist the
formation of a tight chromatin structural assembly on the PDX1 promoter [131]. It will be interesting
to learn which parts of the PLUTO transcript that mediates this scaffolding effect and whether PLUTO
also assists as a scaffolding RNA in other (3-cell enhancer complexes.

Mouse flincl is the syntenic orthologue of HI-LNC15, which was demonstrated to control NKX2.2
levels in EndoC cells and whose transcript also correlated significantly with NKX2.2 mRNA levels [136].
HI-LNC-15 was also part of the same network of (3-cell transcription factors as HI-LNC-12, -71, -78,
and -80 [131]. Blincl is a 6.8-kb spliced non-coding transcript located in a region of open chromatin
~20 kb upstream of Nkx2.2. Similar to HI-LNC-15, BLINC1 is enriched in islet tissue, and it is
localized to the nucleus. SIRNA mediated down-regulation of flincl in MING6 cells decreased in Nkx2.2
mRNA levels. Removal of flincl by knock-out (KO) in mice resulted in mild glucose intolerance,
a lower number of insulin positive 3-cells and a markedly increased amount of somatostatin positive
d-cells. The expression of Blincl in the fetal stages and the altered transcriptional program observed in
Blincl KO pancreata supports a role in the correct specification of endocrine precursor cells during
the secondary transition of the pancreas [136], which is highly important for 3-cell differentiation
(Figure 1). Moreover, the regulatory potential of lincl was highly associated with neighboring loci,
suggesting that this ncRNA acts mainly in cis.

Mouse flinc2 and -3 were also recently described [137]. Blinc2 is upregulated in high-fat diet
responders and in db/db, and correlated positively with increased weight and glycemia, although
moderately with insulin levels, while the opposite was observed for 3linc3. Both IncRNAs were
enriched in islets, and especially in p-cells. Blinc2 was increased in islets by glucose culture and
palmitate treatment, while 3linc3 was not regulated by glucose and decreased by palmitate. Human
BLINC 3 was similarly regulated as linc3 and decreased in type 2 diabetes (T2D), and human islet
expression levels of BLINC 3 correlated negatively with BMI and HbA1c of the donors. Functional
investigations of Blinc2 and -3 in mouse MING6B cells indicated that over-expression of flinc2 increased
apoptosis, while depletion of 3linc3 increased apoptosis. Thus, due to their regulation by nutrients and
effects on pancreatic (3-cells these IncRNAs are good candidates for having a role in development tof
-cell dysfunction and T2D. However, it is not possible to easily identify the ncRNAs in the Genome
Browser (https://genome.ucsc.edu/) based on their chromosomal localizations, as these IncRNAs are
not annotated. This highlight an issue with ncRNA research in the sense that it can pose challenges
for replication of findings by others, if databases, such as Genome Browser or Incrnadb.org are not
continuously updated with these results.

3.3. piRNAs in Pancreatic Islets

Piwi interacting RNAs (piRNAs) are present in pancreatic islets and (3-cells [138]. Comparing
PiRNA expression of rat isolated islets from adult and P10 animals revealed multiple piRNA species
that were markedly decreased in adult rat islets. In islets from GK rats, DQ751874 was decreased,
while DQ746748 and DQ732700 piRNAs were increased compared with control islets. RNAi mediated
depletion of Piwi2 and Piwi4 mRNAs, also decreased the level of these piRNAs. Further studies
investigating functional impact of Piwi2 and Piwi4 depletion in dispersed rat islet cells showed that
GSIS was decreased and that these protected against cytokine-induced apoptosis, while proliferation
was unaffected. Over-expression of DQ746748 and DQ732700 piRNAs also had no impact on apoptosis
or proliferation but decreased GSIS, while the mechanisms through which this happens were not
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characterized. Published studies of piRNA mediated effects in pancreatic 3-cells are very rare,
and seeing as these are both dynamically regulated in pancreatic islets or 3-cells and have functional
effects on insulin release, it will be relevant to study this category of ncRNAs further.

3.4. Pancreatic Islet Circular RNAs

Stoll et al. (2018) identified 3441 circular RNAs as being expressed in human islet, and 497 of
them had exact orthologues expressed in mouse islets [139]. The ciRS-7 (CDR1as), originally described
in brain tissue [55], is also expressed in pancreatic 3-cells, where its over-expression upregulates islet
cell insulin secretion and insulin content [140] and KD reduces insulin secretion, insulin content and
decreases prolactin induced proliferation of MIN6B cells and isolated rat islets [139] by, at least in part,
binding available to miR-7. The most abundant islet circular RNA species is circHIPK3, which was
decreased in db/db islets. Moreover, depletion of circHIPK3 resulted in increased apoptosis, decreased
proliferation and GSIS. CircHIPK3 depletion caused a decrease in the expression of a number of (3-cell
genes involved in insulin secretion and also decreased the levels of the linear HIPK3 transcript [139].
As reported for other circular RNAs, circHIPK3 appeared to act in part by microRNA sponging of
miR-124-3p, miR-29-3p, miR-338-3p and miR-30, all of which are miRNAs which may play a role in
either (3-cell development, function, proliferation or survival [113,141-145]. Other circRNAs, such
as MAN1A2, RHOBTB3 and RMST are also highly expressed in pancreatic islets, while the circRNA
derived from TGFBR3 was highly 3-cell selective, and the cirRNAs from FAP, SYTL5, PTPRT, STK32B,
and BVES were highly alpha cell selective [146].

3.5. NcRNAs in Pancreatic Alpha Cells versus B-Cells

Since more research tools and models exist for the study of pancreatic 3-cells, more knowledge
regarding miRNAs has been accumulated on (3-cells than for other islet cell types. Thus, expression
studies have generally been performed in isolated islets, followed up with functional studies in
dispersed islet cells or insulin-secreting cell lines such as MIN6 and INS-1 832/13. The differential
miRNA expression in islets from T2D human donors, and/or diabetic animal models, has been
investigated in several studies and has recently been reviewed [147].

A few studies have investigated cell sorted mature «- and (-islet cell fractions. An RNA
sequencing study of sorted human alpha and 3-cells revealed that 328 of the 384 unique miRNAs
were shared [148]. miR-375, miR-7-5p, miR-148a-3p, miR-26a-5p, miR-127-3p, miR-27b-3p, miR-192-5p,
miR-143-3p and the let-7 family were among the most highly expressed miRNAs in whole islets and
isolated {3-cells. Another study, based on a polymerase chain reaction (PCR)-based miRNA array
platform, identified 141 miRNAs as being expressed, in which 134 were preferentially expressed in
[-cells whereas only 7 were more expressed in alpha cells [149]. Clearly, more knowledge about the
role of miRNAs and other non-coding RNAs in alpha cells are needed, however, research in this area
is severely hampered by the lack of widely available cell line models for alpha cells [113].

3.6. Imprinted ncRNAs and B-Cell Development

[3-Cell dedifferentiation occurs in human T2D as well as in mouse [150,151]. Using small
RNA sequencing to identify non-coding RNAs altered in human T2D, Kameswaran et al. (2014)
investigated a cluster of miRNAs that were consistently decreased in type 2 diabetic islets [152,153].
Interestingly, these miRNAs mapped to a common region on chromosome 14q32, which is known to
be imprinted [153,154] (Figure 4). Genomic imprinting is an epigenetic mechanism that results in only
one of the two parental alleles being expressed. Only about 100 human genes are imprinted with most
of these being conserved between humans and rodent. Imprinted loci contain parental allele-specific
differences in DNA methylation patterns at specific imprinting control regions (ICRs). These
differentially methylated regions (DMRs) are known to regulate the expression of imprinted genes.
Imprinted genomic regions often contain non-coding RNAs—both IncRNAs and miRNAs—which
have been demonstrated to play a role in the maintenance of the imprinted state of the region [155].



Non-coding RNA 2018, 4, 41 12 of 25

The imprinted human chromosome 14q32 (chromosome 12 in mice, chromosome 6 in rats) region is
flanked by the genes delta-like homolog 1 (DLK1) and type 3 iodothyronine deiodinase 3 (DIO3), which
are paternally expressed (Figure 4). Within the DLK1-DIO3 region, there is a number of ncRNAs: MEG3
(called GtI2 in mouse) [156], MEGS (called Bsr in rat and Rian in mouse), and antisense RTL1, C/D
snoRNAs and a very large miRNA cluster [157]. This miRNA cluster is currently the largest known in
the human genome and contains 53 miRNAs on the forward strand and 1 on the reverse strand.

Chromosome 14, build hg38 Forward strand

100.7 Mb 101.6 Mb [

Reverse strand

miR-2392  miR-770 miR-370 miR-1247
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miR-431,-433,
m -127,-432,-136 T SNORD-11S
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miR-379,-411,-299,-380,-1197,-323a,-758 Single microRNA
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Figure 4. An overview of the imprinted genomic region on human chromosome 14 between DLK1 and
DIO3. Genes marked in green are paternally expressed and genes marked in orange are maternally
expressed. DMR: the MEG3 differentially methylated region. Shown are also single miRNAs,
the miRNA clusters, SNORD genes and other ncRNAs. Redrawn and updated with inspiration
from Benetatos et al. (2013) [157].

The T2D down-regulated miRNAs in the DLK1-DIO3 region are generally very highly expressed
in islets and enriched in (-cells [152]. Moreover, this cluster is also down-regulated in rat newborn
pancreas following maternal gestational obesity [158]. Bsr (the rat ncRNA homolog of human MEGS)
was also suppressed by gestational obesity, and in vitro studies of isolated neonatal rat islets exposed
to cytotoxic cytokines showed that these suppressed the expression levels of Bsr in a dose and
time-dependent fashion [158]. Functional target RNA identification using the HITS-CLIP method
identified the TP53INP1 mRNA as being a target of miR-495, one of the T2D and gestational obesity
suppressed miRNAs [152,158]. The protein TP53INP1 is induced by p53, plays a role in 3-cell
stress response and is located in the genetic T2D susceptibility region [159]. The MEG3 DMR of
the DLK1-DIO3 imprinted region shows increased methylation levels in human T2D islets [152].
Targeted methylation of the promoter of MEG3 in the DMR, resulted in a decreased transcript of the
maternal transcripts in this region. Moreover, this was accompanied by an increased sensitivity to
cytotoxic cytokines and decreased binding of 3-cell transcription factors [160]. Thus, the transcriptional
activity of the imprinted DLK1-DIO3 region is suppressed in T2D and by fetal-maternal programming.

Meg3 (mouse GtI2) has been shown to affect insulin biosynthesis and secretion, promote
apoptosis and decrease 3-cell maturation [161] and is also differentially expressed during embryonic
development [156]. Interestingly, this imprinted DIk1-Meg3 region, while being important for (3-cell
function and development, also constitutes a Type 1 diabetes susceptibility locus [162]

Box C/D snoRNAs participate in the post-transcriptional modification of ribosomal RNAs and
mRNAs. Bsr/MEGS contains C/D snoRNAs in 86 tandem repeats [158] (Figure 4). Another imprinted
locus, on human chromosome 15q11-q13 (Prader Willi syndrome region) also contains a large number
of tandemly repeated C/D snoRNAs. The link between genomic imprinting and tandemly repeated
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C/D snoRNAs suggest a role for them and their host non-coding genes in the mechanism of the
epigenetic imprinting process [163].

Although PWS is mostly caused by a large 5 Mb deletion of the entire PWS gene region on
chromosome 15, the identification of patients harboring smaller microdeletions has enabled the
definition of a 91 kb PWS minimum critical deletion region, which contains only three ncRNAs;
a IncRNA named IPW, a single copy snoRNA, SNORD109A and a snoRNA cluster of 30 repeated units;
SNORD116. The role of C/D box snoRNAs is usually to methylate nucleolar rRNAs prior to their
nuclear export [37], however this role has not been confirmed for SNORD116 as no specific rRNA target
of this snoRNA has been identified. Interestingly, PWS individuals display relative hypoinsulinemia,
suggesting a role for these three ncRNAs in (3-cell development and function. Investigation of a mouse
model of paternal allele deletion of SNORD116 (Snord116P—/m+) showed decreased islet size of neonatal
and adult mice. Snord116P~/"+ islets were found to have unaltered numbers of insulin positive cells,
but decreased numbers of glucagon positive cells and increased numbers of somatostatin positive
cells. While the number of 3-cells appeared normal, the level in insulin (Ins2) mRNA transcripts was
markedly decreased [164]. Moreover, Snord116” —/m+ islets were found to contain increased amounts
of polyhormonal cells at birth indicating a state of impaired endocrine cellular differentiation. These
findings suggest that the SNORD116 cluster is important for fetal 3-cell differentiation

H19 is a maternally imprinted intergenic IncRNA generated from the Igf2 locus, is highly
expressed in neonatal islets and completely suppressed in adult islets (rat), declining from P1 to
P31 [165]. This expression is dependent on the presence of E2F1 as siRNA mediated KD of E2F1
decreases H19 levels. H19 increases and is necessary for {3-cell proliferation, but does not protect
against cytokine-induced apoptosis and no change in GSIS or insulin content was observed following
over-expression. While the RISC partner Ago2 was required for the proliferative effect of H19, H19
overexpression specifically led to over-expression of miR-675-5p and depletion to reduced amounts of
miR-675-5p in dissociated islet cells. Although miR-675-5p (and -3p) levels declined from P1 to P31
in a similar fashion as H19, the effect of H19 on (3-cell proliferation was not dependent on miR-675
species as anti-miR-675-5p or -3p did not affect 3-cell proliferation. However, H19 also contains let-7
binding sites and over-expression of a H19 variant without these binding sites (H19A) did not cause
-cell proliferation in adult dissociated islet cells or rat insulinoma cells [165]. Moreover, antagonizing
all let-7 family members in adult rat islets increased [3-cell proliferation. H19 over-expression also
increased Akt phosphorylation, which was dependent on the presence of let-7 binding sites, and Akt
phosphorylation and PI3 kinase activation was required for the 3-cell proliferative effect of H19.

H19 is part of the imprinted IGF2 region, but regulating H19 levels by over-expression or siRNA
mediated degradation did not alter IGF2 mRNA levels. Thus, at the molecular level, the H19 ncRNA
generates miR-675-5p and -3p, but this mechanism is not part of the (3-cell proliferative effect of H19
and these current results demonstrate that the let-7 binding or depleting actions of H19 are involved in
-cell proliferation, which along the way involves Akt phosphorylation and PI3 kinase activity.

Thus, the possible role of imprinted regions for 3-cell development is further emphasized as these
are involved in regulating ncRNAs in pancreatic 3-cells, are regulated in T2D and by fetal gestational
programming and are linked genetically to T2D and (3-cell differentiation. However, to clarify the roles
of these regions and their ncRNAs sufficiently, more in depth functional studies are needed of their
impact on pancreas and (3-cell development as well as 3-cell survival and proliferation.

3.7. Fetal Programming and ncRNAs in Control of B-Cell Growth and Exocytosis

The functional capacity of the endocrine pancreas, 3-cell numbers, and volume, is decreased by
intrauterine fetal programming as it occurs following malnutrition such as low-protein malnutrition
or caloric restriction during late gestation. Moreover, reduced {3-cell mass in conjunction with lower
peripheral insulin sensitivity increases the risk of developing type 2 diabetes in adulthood [122,166,167].

In rat and mouse islets, which display similar phenotypes following the maternal gestational
low-protein diet, quite different miRNA profiles were observed [168,169]. While in rats at age 3 weeks,
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differentially regulated miRNAs were in general upregulated (i.e., miR-375, miR-30 and miR-200
members) [168,170], mouse islets showed a majority of down-regulated miRNAs, one of these being
miR-30b, while only miR-7, miR-99, and miR-199 were up-regulated [169]. The observed differences,
could either be due to species differences or be due to the different time points of investigation (3 weeks
versus 12 weeks).

mTOR signaling is reduced in gestational low-protein diet treated offspring mice, and the islet
miRNA profile showed enrichment for targets in mTOR signaling, which was followed up by target
validation that miR-7 targets the mTOR pathway in pancreatic islets inhibiting (3-cell proliferation
in vitro. MiR-7 family members, miR-99, mir-152, miR-199, and miR-342 were increased in islets from
3-month-old mice, and inhibiting miR-199 and miR-342 increased mTOR protein levels [126]. Thus,
miRNAs of the highly expressed miR-7 family mediate impaired 3-cell proliferation in response to
gestational low-protein diet by inhibiting the mTOR pathway. Interestingly, the fetal expression of
miR-7 is detected from E3.5 with a peak expression level at E14.5-E16.5, after which expression levels
wane. Moreover, as mentioned above, inhibiting miR-7 in vivo in the fetus using anti-sense oligos
decreased the number of (3-cells, lowered insulin content and impaired glucose tolerance in adult
mice [129]. Transgenic mouse models also support that miR-7 family members are important for the
proper mature (3-cell function. Thus, RIP-directed miR-7a over-expression in 3-cells leads to diabetes
via (3-cell dedifferentiation and impaired insulin secretion, while 3-cell miR-7 KO increased GSIS and
insulin exocytosis [171]. Of note, in this model, miR-7 alterations did not affect (3-cell mass or islet
organization, indicating that while miR-7 may be important for 3-cell mass via its fetal expression,
its role in mature 3-cells appears to be control of insulin exocytosis.

miR-375 was increased by a gestational low-protein diet, and over-expression of miR-375 in
rat primary dissociated islets cells caused impaired islet cell proliferation and decreased insulin
secretion. Conversely, inhibition of miR-375 reversed these phenotypes [168]. Of note, when miR-375
was over-expressed in human islets cells following in vitro expansion, it enhanced the directed
re-differentiation into (3-cells, increased insulin content and markers of mature 3-cells, but also caused a
decrease in 3-cell replication [172]. Interestingly, in vitro expansion and dedifferentiation also resulted
in decreased expression of miR-7, miR-335, miR-30 and miR-200 family members as well. Thus, these
results indicate that premature expression or up-regulation of miR-375 promote the induction of a more
mature (3-cell phenotype and simultaneously reduce 3-cell proliferation and, therefore, total 3-cell
numbers, possibly acting as a switch mechanism. This may be due to interactions with targets such as
PDPK1 (3'-phosphoinositide dependent protein kinase 1); an upstream regulator of Akt and GSK3
activity [168,172,173]. Moreover, the miR-375 global KO mouse model not only displays decreased
insulin exocytosis but also has decreased (3-cell mass and 3-cell numbers [174,175]. Thus, it is possible
that miR-375 mainly controls 3-cell proliferation during fetal development, while it controls insulin
exocytosis in the mature 3-cell. Of note, miR-375 does not seem to be regulated during aging (newborn,
young, adult, old age rodents) [123,176,177], although it may change cellular expression patterns at
different time points [124].

3.8. Species Differences in ncRNAs between Mouse and Human

Although mouse and human pancreas and (3-cell development is very similar, there are some
notable differences. The differentiated adult human islet contains relatively more alpha cells than
rodent islets, and is structurally less organized [178]. During development of the human pancreatic
islet, there is an initial organization (week 14) of the endocrine cells in clusters, in which 3-cells
form a core with a periphery of alpha cells and delta cells similar to mouse. Later in week 18,
the peripheral alpha cells and delta cells migrate from the (3-cell core to form homogenous juxtaposed
islets. The homogenous islets would reintegrate and form mature islets after week 22 that resemble
adult islets [179].

Reflecting differences in pancreatic islet development, it is worth considering between species
conservation of ncRNAs as a source of these, as also reviewed recently [114]. While Moran et al.
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(2012) only investigates human cells, it has been observed that one third of the identified IncRNAs
do not have mouse orthologues [114,130], and whereas only one out of seven circRNAs were species
conserved [139]. The very low species conservation rate for IncRNAs underlines the observation that
very few IncRNAs act by extensive base pairing, but rather as scaffolds or chromatin-structuring
entities, which does not enforce a high degree of nucleotide conservation.

Several IncRNAs such as XIST [180], NEAT1 [181,182], or the cardiac mesoderm
enhancer-associated non-coding RNA (CARMEN) [183], have been shown to have conserved
loss-of-function phenotypes across species. However, while HOTAIR, a IncRNA controlled the
expression of the HOXD (homeobox D) cluster in primary human fibroblasts [184], the murine
counterpart did not regulate the HoxD cluster [185]. In cases wherein IncRNAs retain functionality
across species, it remains unclear if they act through the same targets. A previous study [186]
demonstrated that although the functionality of the IncRNAs is conserved, their binding
sites/mechanism of action could be drastically different across species. The important need of current
time is, therefore, to improve the depth and coverage of sequencing data across all species and the
availability of better computational tools to identify short stretches of conservation across species.

The majority of human miRNA families are well conserved in the mouse. Currently, miRBase
counts 2654 human and 1978 mouse mature miRNAs. However, although miRNAs are very conserved,
their target mRNAs are not conserved to the same degree. Numerous examples exist for which
pathways targeted by miRNAs may be evolutionarily conserved, but the individual target mRNAs are
not [113,123]. This underscores the need for investigation of miRNAs in the proper species context,
as in the example of islet expressed miR-206, which targets murine but not the human glucokinase [187].
Thus, species differences in islet development and function may in part arise by non-conservation of
ncRNAs and their targets.

4. Discussion and Conclusions

Research in islet and 3-cell development and function is highly relevant in respect of finding a
cure for diabetes mellitus. Technological revolution in RNA-sequencing workflows and single cell
transcriptome analyses have demonstrated the inherent heterogeneity that exists in biological systems.
Considering the cell-/tissue-specific nature of several ncRNAs [58,168,169], it is very likely that the
number of ncRNAs that make up the major classes (e.g., miRNAs, IncRNAs) would exceed the number
of protein-coding genes that have been identified in the human genome. The discovery of ncRNAs that
are directly linked to survival and function of insulin-producing cells will be critical in understanding
their potential in predicting, preventing and/or reversing diabetes. The loss of 3-cell mass associated
with both type 1 diabetes (T1D) and T2D has attracted efforts to identify alternative routes to islet
transplantation, such as that of endogenous pancreatic (3-cell regeneration as seen in rodent under both
non-diabetic as well as diabetic conditions [188,189]. In humans, the proliferation of adult pancreatic
B-cells is low to undeterminable under steady-state conditions [190-192] although generation of new
(3-cells either from replication or via neogenesis happens during pregnancy [122,193]. Finding novel
mechanisms involved in 3-cell development and regeneration could provide new paths to increase
the number of functional (3-cells in patients with diabetes or aid in generating functionally mature
(3-cells for transplantation using in vitro protocols. As the field continues to add in more information
on ncRNAs related to islet cell survival/function, approaches spanning multiple disciplines would
be necessary. Given that the majority of the diabetes-associated nucleotide variants are located in
the non-coding gene regions, integrated approaches to understanding the impact of such genomic
polymorphisms on ncRNA stability and ultimately on the translation of islet cell transcripts, would
help in understanding the role of ncRNAs in pancreatic 3-cell development and function.

The research field of non-coding RNA is rapidly expanding and is an area of intense research
activity. This is also the case with regard to ncRNAs in islet and (3-cell function and development.
Mounting evidence points to important roles of (3-cell-specific IncRNAs in regulating the chromatin
structure of active enhancers to maintain the appropriate gene expression patterns of highly
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differentiated 3-cells, and in this way support the highly differentiated stage of mature 3-cells, such as
in the example of PLUTO. However, IncRNAs may not only work as scaffolds but also as sponges for
expressed miRNAs or as host-transcripts from which miRNAs may be excised, such as for some of the
IncRNAs for imprinted regions. To add to the complexity of ncRNAs in cellular biology, it appears
that there is a large degree of interaction with regard to functional effects of different classes of
ncRNAs, since for example circRNAs as well as IncRNAs may act as miRNNA sponges, and piRNAs
may sometimes enter the RISC and function as miRNAs. Some IncRNAs are at the same time host
genes for miRNAs and may also have additional effects, for example as a scaffold and as a sponge, as in
the example of H19, which is the host gene of one miRNA and acts as a sponge for another miRNA.

Thus, although much knowledge is accumulated, a large task of functionally verifying the actions
of different ncRNAs in 3-cell development and f3-cell function remains. Moreover, since ncRNAs tend
to have very cell-specific expression profiles, there is also a large task remaining of identifying ncRNAs
in the minor cell populations of the islet and during fetal pancreas and islet development.
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