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Abstract

Objective

To determine the effects of exogenous glucagon-like peptide-2 (GLP-2), with or without

massive distal bowel resection, on adaptation of jejunal mucosa, enteric neurons, gut hor-

mones and tissue reserves in rats.

Background

GLP-2 is a gut hormone known to be trophic for small bowel mucosa, and to mimic intestinal

adaptation in short bowel syndrome (SBS). However, the effects of exogenous GLP-2 and

SBS on enteric neurons are unclear.

Methods

Sprague Dawley rats were randomized to four treatments: Transected Bowel (TB) (n = 8),

TB + GLP-2 (2.5 nmol/kg/h, n = 8), SBS (n = 5), or SBS + GLP-2 (2.5 nmol/kg/h, n = 9). SBS

groups underwent a 60% jejunoileal resection with cecectomy and jejunocolic anastomosis.

All rats were maintained on parenteral nutrition for 7 d. Parameters measured included gut

morphometry, qPCR for hexose transporter (SGLT-1, GLUT-2, GLUT-5) and GLP-2 recep-

tor mRNA, whole mount immunohistochemistry for neurons (HuC/D, VIP, nNOS), plasma

glucose, gut hormones, and body composition.

Results

Resection increased the proportion of nNOS immunopositive myenteric neurons, intestinal

muscularis propria thickness and crypt cell proliferation, which were not recapitulated by

GLP-2 therapy. Exogenous GLP-2 increased jejunal mucosal surface area without affecting

enteric VIP or nNOS neuronal immunopositivity, attenuated resection-induced reductions in

jejunal hexose transporter abundance (SGLT-1, GLUT-2), increased plasma amylin and
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decreased peptide YY concentrations. Exogenous GLP-2 attenuated resection-induced

increases in blood glucose and body fat loss.

Conclusions

Exogenous GLP-2 stimulates jejunal adaptation independent of enteric neuronal VIP or

nNOS changes, and has divergent effects on plasma amylin and peptide YY concentrations.

The novel ability of exogenous GLP-2 to modulate resection-induced changes in peripheral

glucose and lipid reserves may be important in understanding the whole-body response fol-

lowing intestinal resection, and is worthy of further study.

Introduction

Neonatal short bowel syndrome (SBS) occurs after massive resection of the small bowel for

various pathologies, including necrotizing enterocolitis, atresias and midgut volvulus. SBS may

lead to intestinal failure when there is inadequate bowel length necessary for survival, resulting

in severe diarrhea, electrolyte abnormalities and failure to thrive. Initial management involves

correction of electrolyte, acid base and fluid imbalances, along with nutritional support. Total

parenteral nutrition (TPN) is used to provide calories until intestinal adaptation occurs. Intes-

tinal adaptation is defined by increases in mucosal surface area for digestion and absorption,

as well as functional modifications to bowel motility, digestive enzyme activity and nutrient

transporter expression [1, 2]. Intraluminal nutrients are potent stimuli for adaptation, trigger-

ing the release of enteric hormones such as glucagon-like peptide-2 (GLP-2) [3, 4].

Glucagon-like peptide-2 is a 33 amino acid proglucagon-derived gut hormone that is syn-

thesized and secreted from enteroendocrine L-cells of the terminal ileum and colon [3, 5].

GLP-2 has been implicated as a key player in the adaptive process and a potential therapy for

SBS [6]. Treatment with exogenous GLP-2 has been shown to be intestinotrophic with effects

on mucosal surface area, proliferation, apoptosis, permeability, motility and blood flow [7, 8].

GLP-2 acts through a GLP-2 receptor (GLP-2R) that is found primarily in the gut, but also in

the brain. In the gastrointestinal tract, GLP-2R has been reported to be localized to subepithe-

lial myofibroblasts and enteric neurons, but not intestinal epithelial cells [9–14].

There is substantial evidence suggesting that the actions of GLP-2 on mucosal adaptation

are signalled, in part, by the enteric nervous system (ENS). GLP-2R have been colocalized to

ENS neurons expressing choline-acetyltransferase, vasoactive intestinal peptide (VIP) and

nitric oxide synthase (NOS) [15, 16]. It has been suggested that GLP-2 promotes intestinal

adaptation by inhibiting excitatory neurons and stimulating inhibitory neurons, resulting in

increased mesenteric vascular flow and reduced intestinal motility [15–18]. We have previ-

ously shown that GLP-2 treatment alters submucosal neuronal populations in vitro by increas-

ing the proportion of VIP and neuronal NOS (nNOS) expression, and stimulates VIP

immunopositivity in vivo in colitis models [19, 20].

In addition to well-described intestinotrophic effects, murine studies indicate that central

GLP-2 action through pro-opiomelanocortin neurons decreases hepatic glucose production

and increases glucose clearance by peripheral tissues [14]. Infusion of GLP-2 in humans with

SBS has been shown to have no effect on fasting or post-prandial blood glucose levels; thus, the

role of GLP-2 in glycemic control remains unclear [21]. Importantly, the effects of exogenous

GLP-2 and bowel resection, alone and in combination, on morphology of the submucosal and
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myenteric neuronal plexuses of the gut, as well as glucose homeostasis, have yet to be

determined.

In this study, using a model of fasting rats maintained solely on TPN, we determined

whether bowel resection and GLP-2 treatment induce adaptive changes in the intestinal

mucosa and ENS, and assessed changes in circulating glucose, gut hormones and body compo-

sition. We hypothesized that exogenous GLP-2 recapitulates the native adaptive response after

massive distal resection via an increase in the proportion of VIP and nNOS expressing neu-

rons. We also hypothesized that both exogenous GLP-2 and resection would modulate the cir-

culating concentrations of other gut peptides and glucose, as well as alter body composition.

Materials and methods

Animals

Animal studies were conducted with the approval of the Animal Care Committee at the Uni-

versity of Calgary (Study #AC12-0103) in strict accordance with the Canadian Council for

Animal Care. Male Sprague Dawley rats (Charles River, Trois-Rivières, QC) weighing 225 to

275 g were housed in cages with free access to chow and water. Animals were acclimatized to

their environment for 5 d prior to experimentation under standardized temperature, humidity

and 12 h light-dark cycles.

Surgical procedures

The timeline of experimental procedures is shown in Fig 1. Thirty rats were randomized to

four treatment groups: (1) transected bowel (TB, n = 8), (2) TB GLP-2 (n = 8), (3) short bowel

syndrome (SBS, n = 5), and (4) SBS GLP-2 (n = 9). Animals received either a sham laparotomy

with bowel transection (TB) or a 60% jejunoileal resection with cecectomy (SBS), and were

subsequently treated with or without GLP-2 (human recombinant GLP-2 (1–33); NPS Phar-

maceuticals, Mississauga, ON). Surgical procedures were adapted from previously published

techniques [22, 23]. Animals were fasted for 24 h prior to surgery until sacrifice, with free

access to water. All procedures were performed using aseptic technique with the aid of surgical

telescopes (Designs for Vision, Ronkonkoma, NY) under isoflurane anesthesia (1.5%; Pharma-

ceutical Partners of Canada, Richmond Hill, ON) and oxygen (0.6 L/min). Subcutaneous cefa-

zolin (50 mg/kg; Pharmaceutical Partners of Canada, Richmond Hill, ON) was administered

for surgical prophylaxis prior to skin incision. A silastic central venous catheter (CVC, 1.65

mm outer diameter, 0.76 mm inner diameter; Dow Corning, Midland, MI) was tunnelled

from the back, anchored using a tethered metal sheath (Harvard Apparatus Canada, Saint-

Laurent, QC) and 4–0 silk (Ethicon, Somerville, NJ), then inserted into the right jugular vein.

The CVC was attached to a standard free swivel device (Harvard Apparatus Canada, Saint-

Laurent, QC) and infused with heparinized saline (1.5 U heparin/mL normal saline, 1 mL/h;

LEO Pharma Inc, Thornhill, ON). After laparotomy, the jejunum was transected 40 cm from

the ligament of Treitz. For TB groups, the jejunum was reanastomosed immediately. For SBS

animals, an approximate 60% jejunoileal resection with cecectomy was performed from the

jejunal transection to 1 cm distal to the cecum, followed by a jejunocolic anastomosis. The

length of resected bowel was not measured, as the length of remaining jejunum was kept con-

stant. An interrupted Gambee appositional technique with 7–0 polypropylene (Ethicon, San

Lorenzo, Puerto Rico) was used for all anastomoses [24]. Mesenteric vessels were controlled

using 4–0 silk ties, and the mesenteric defect was closed using 7–0 polypropylene. Hemostasis

was ensured and the animal was resuscitated with 5 mL of warm intraperitoneal saline prior to

a layered abdominal closure using 4–0 polyglactin (Ethicon, Somerville, NJ). Animals were

placed in individual cages and the CVC was reconnected for continuous infusion of TPN.

GLP-2 and resection-induced adaptation
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Fig 1. Timeline for experimental procedures. Rats were kept NPO from one day before surgery until the end of experimentation, and

maintained on TPN for 7 d after surgery for bowel transection or resection (A). GLP-2 rats were given recombinant human GLP-2 (1–33)

mixed into the daily volume of TPN as a continuous infusion (2.5 nmol/kg/h). Fat, protein and carbohydrate content in TPN were advanced

step-wise to reach 100% of daily calories (250 kcal/kg/d) by POD 2 (B). Abbreviations: nil per os (NPO), post-operative day (POD).

https://doi.org/10.1371/journal.pone.0181453.g001
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Total parenteral nutrition

Rats received nutritional support consisting of 14% protein, 62% carbohydrate and 24% fat

(250 kcal/kg/d) as a continuous infusion of TPN. TPN solutions were adapted from previously

published protocols and prepared aseptically in advance, using 8.5% Travasol, 70% dextrose,

20% Intralipid, commercial multivitamins and trace elements (Baxter Corporation, Toronto,

ON) [6, 25]. Heparin (1.5 U/mL) and cefazolin (50 mg/kg/d) were added to the TPN for pro-

phylaxis until sacrifice. GLP-2 treated animals were given recombinant human GLP-2 (1–33)

as a continuous infusion (2.5 nmol/kg/h) mixed into the daily volume of TPN using a PHD

Ultra Syringe Pump (Harvard Apparatus Canada, Saint-Laurent, QC) to mimic GLP-2 levels

attained from resected animals in previous studies [6]. Animals were maintained with 40% of

their daily caloric requirements via TPN for the first 12 h, then advanced step-wise to 66% on

POD 1, and 100% on POD 2 until sacrifice on POD 7 to mitigate risks of hyperglycemia and

hypertriglyceridemia (Fig 1B).

Tissue sampling

On POD 7, rats received intravenous injection of 5-bromo-2’-deoxyuridine (BrdU, 100 mg/kg;

Sigma-Aldrich, St. Louis, MO) 1 h prior to sacrifice for further immunohistochemical analysis.

Animals were anesthetised with inhaled isoflurane (1.5%), weighed and sacrificed by exsangui-

nation in the morning on POD 7. Prior to death, blood was collected by direct cardiac puncture

and glucose concentration was immediately determined using a hand-held Accu-Chek Glucose

Meter (Roche Diagnostics, Laval, QC). The remaining sample was immediately aliquoted into

tubes containing diprotin-A (0.1 mM; Sigma-Aldrich Inc, St. Louis, MO) and aprotinin (500

KU/mL blood; Bayer Inc, Toronto, ON) for plasma GLP-2 quantification, and tubes containing

a cocktail of dipeptidyl peptidase-IV inhibitor (10 μL/mL blood; Millipore Corporation, Biller-

ica, CA) and protease inhibitors (10 μL/mL blood; Sigma, St. Louis, MO) for other hormone

assays. Samples were centrifuged at 2500 g for 10 min at 4˚C and the plasma stored at -80˚C

until analysis. Plasma GLP-2 concentrations were measured using a GLP-2 (1–33) specific

radioimmunoassay with intra-assay coefficient of variation of 5%, as previously described [26].

Plasma concentrations of active GLP-1, insulin, total peptide YY (PYY) and amylin were mea-

sured using a customized Milliplex rat gut hormone panel on a Luminex Bio-Plex 200 platform

with intra-assay coefficient of variation 3.8% to 10.6% (Millipore, Luminex Co, Austin, TX).

Gross morphometry was quantified by removing remaining bowel from the ligament of

Treitz to the rectum, excluding the mesentery. The remnant jejunum and colon, devoid of

enteric contents, were weighed and midpoint circumference measured. Representative seg-

ments of the jejunum (proximal 10 cm distal to ligament of Treitz) and colon (proximal 10 cm

after discarding 0.5 cm distal to anastomosis) were fixed in 10% formalin (EMD Chemicals

Inc, Gibbstown, NJ) for histology, placed into RNALater buffer (Ambion Inc, Austin TX) and

stored at -80˚C for semi-quantitative polymerase chain reaction (qPCR), or fixed in Zamboni’s

solution (Newcomer Supply, Middleton, WI) overnight at 4˚C for whole mount

immunohistochemistry.

Body composition

After tissue collection, carcasses were placed individually into plastic bags, sealed and frozen at

-20˚C for quantitative magnetic resonance measurements of fluid, fat and lean body mass.

Specimens were thawed to room temperature and scanned over 2 min for body composition

using the Minispec LF110 Body Composition Analyzer (Bruker Ltd, Milton, ON) following

previously published procedures [27]. Given the short duration of treatment intervention, the

changes in individual body compartments were expressed as a percentage of the total.

GLP-2 and resection-induced adaptation
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Histology and immunohistochemistry

Paraffin sections (6 μm) of jejunum and colon were stained with hematoxylin and eosin. Mea-

surements of villus height, villus width, crypt width and muscularis propria thickness were

recorded from 10 representative, well-oriented villus/crypt units, and jejunal mucosal-to-sero-

sal amplification ratios and mucosal surface areas calculated as previously described [28].

Crypt cell proliferation was quantified using BrdU as a marker of active cell division, adapted

from previous protocols [29]. Deparaffinised sections were incubated in citric acid (0.01 M,

pH 6.0; Fisher Scientific, Fairlawn, NJ) for 90 s, 1% TritonX100 (Fisher Scientific, Orange

County, NY) in phosphate buffered saline (Sigma-Aldrich Inc, St. Louis, MO) for 10 min at

room temperature, treated with serial concentrations of HCl (1 N for 10 min on ice, 2 N for 10

min at room temperature, 2 N for 20 min at 37˚C; VWR International, West Chester, PA),

then borate buffer (0.1 M, pH 8.5; Fisher Scientific, Fairlawn, NJ) for 12 min at room tempera-

ture. Samples were incubated in 10% normal horse serum (Sigma-Aldrich, St. Louis, MO) for

5 min, then with anti-BrdU-biotin (#ab2284, 1:250; Abcam, Toronto, ON) overnight, followed

by 3% hydrogen peroxide (Sigma-Aldrich, St. Louis, MO) for 20 min, detected with ABC-kit

(Vector Laboratories, Burlingame, CA) for 30 min, and finally counterstained with hematoxy-

lin for nuclei; all steps at room temperature. Ten representative, well-oriented crypts were

inspected for BrdU-stained nuclei and total nuclei to determine the crypt cell proliferation

index (CCPI) by an observer blinded to the treatment groups. Measurements and images were

taken using an Axiovert S100TV microscope (Carl Zeiss, Thornwood, NY) and DFC490 digital

imaging system (Leica Microsystems, Vertrieb, Germany).

Semi-quantitative polymerase chain reaction (qPCR)

qPCR was performed for sodium-glucose linked transporter-1 (SGLT-1), glucose transporter-

2 and 5 (GLUT-2, GLUT-5), and GLP-2R in the jejunum, using 18S ribosomal RNA as the

endogenous control, following our published procedures [30]. Total mRNA was isolated from

each bowel segment using QIAzol Lysis Reagent and miRNeasy Mini Kit (Qiagen Inc,

Toronto, ON) according to the manufacturer’s instructions, and quantified using a nanoVette

DU 730 spectrophotometer (Beckman Coulter Inc, Indianapolis, IN). Samples were diluted to

a uniform concentration of 250 ng/μL with RNAse free water (Qiagen Inc, Toronto, ON),

treated with DNAse (Invitrogen, Burlington, ON) and ethylenediaminetetraacetic acid (Invi-

trogen, Burlington, ON), then reverse transcribed using SuperScript II (Invitrogen, Burling-

ton, ON) in a Mastercycler Pro Ep Realplex Thermocycler (Eppendorf, Mississauga, ON) as

previously described [30]. qPCR was performed using Power SYBR Green Master Mix

(Applied Biosystems Inc, Burlington, ON) in a Mastercycler Ep Gradient Thermocycler Detec-

tion System (Eppendorf, Mississauga, ON) using specific primers for SGLT-1, GLUT-2,

GLUT-5, GLP-2R and 18S after optimization for amplification efficiency (90% to 110%).

Primer sets were synthesized (University Core DNA Services, Calgary, AB) based on sequences

listed in Table 1. Samples were run in duplicate under the following conditions: initial dena-

turation (50˚C for 2 min, 95˚C for 10 min), 40 cycles of amplification (denaturation at 95˚C

for 15 s, primer-specific annealing temperature between 55˚C to 65˚C for 1 min), and final

melting (95˚C for 15 s, 60˚C for 15 s, ramping for 20 min up to 95˚C for 15 s). Target gene

abundance was calculated as a relative fold-change based on the ΔΔCt method [31].

Neuronal whole mount immunohistochemistry

After overnight incubation in Zamboni’s fixative at 4˚C, tissues were dissected to isolate the

submucosal and myenteric plexuses separately, and costained with HuC/D-VIP or HuC/D-

nNOS as adapted from previous methods [19]. Whole mounts were incubated in monoclonal

GLP-2 and resection-induced adaptation
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anti-HuC/D (1:100, #A-21271; Molecular Probes, Eugene, OR) and polyclonal anti-VIP

(1:400, #B34-1; Cedarlane, Burlington, ON) or polyclonal anti-nNOS (1:800, #B220-1; Cedar-

lane, Burlington, ON) overnight at 4˚C, detected with polyclonal anti-mouse 488 (1:100, #715-

545-151; Jackson ImmunoResearch, West Grove, PA) and polyclonal anti-rabbit Cy3 (1:1000,

#111-165-144; Jackson ImmunoResearch, West Grove, PA) for 2 h at room temperature, and

mounted onto slides with FluorSave (Calbiochem, EMD Chemicals Inc, Gibbstown, NJ). Five

random high powered fields (HPF) from each specimen were assessed for ENS morphology.

The number of ganglia per HPF and the total number of HuC/D staining neurons per ganglia

were quantified. The proportion of neurons that costained for VIP or nNOS was deduced by

dividing the number of VIP or nNOS positive neurons by the number of HuC/D staining neu-

rons for each ganglia within a HPF, and the mean proportion from each HPF was then calcu-

lated. Measurements were recorded using an Axiovert S100TV fluorescence microscope (Carl

Zeiss, Thornwood, NY), and images captured using a Nikon Eclipse E400 with Digital Sight

and NIS-Elements BR 3.0 digital imaging software (Nikon Canada Inc, Mississauga, ON).

Statistical analysis

Results are expressed as means ± SD. Data were analyzed using two-way ANOVA to determine

the main effects of resection (TB versus SBS) and exogenous GLP-2 (presence versus absence

of GLP-2 in TPN), as well as the interaction of resection and GLP-2 together. Planned compar-

isons of treatment means were evaluated by unpaired t-tests. Correlations between bowel and

neuronal morphology were determined using univariate linear regression. All statistical tests

were performed using GraphPad Prism 6.0 statistical software (GraphPad, San Diego, CA).

P< 0.05 was deemed statistically significant.

Results

Plasma hormones and glucose

We found a significant resection × GLP-2 interaction on plasma concentrations of GLP-2 and

glucose (Fig 2, Table 2). Treatment with exogenous GLP-2 increased plasma GLP-2 concentra-

tions in both TB and SBS groups, while bowel resection alone reduced plasma GLP-2. GLP-2

infusion decreased blood glucose concentrations in the TB groups. Bowel resection resulted in

an increase in blood glucose compared to TB that was attenuated by GLP-2 treatment. The

main effects of GLP-2 on plasma PYY concentrations, as well as the main effects of GLP-2 and

Table 1. Target and endogenous control gene primer sequences and annealing temperatures for qPCR.

Primer Sequence Annealing Temperature (˚C) Species Accession #

SGLT-1 (F) CCAAGCCCATCCCAGACGTACACC 55 Rat NM_013033.2

(R) CTTCCTTAGTCATCTTCGGTCCTT

GLUT-2 (F) TTTGCAGTAGGCGGAATGG 60 Rat NM_012879.2

(R) GCCAACATGGCTTTGATCCTT

GLUT-5 (F) TGCAGAGCAACGATGGAGAAA 59 Rat NM_031741.1

(R) ACAGCAGCGTCAGGGTGAAG

GLP-2R (F) ACCTTGCAGCTGATGTACAC 65 Rat NM_021848.1

(R) CAGCCAGAACTTTCAGGATG

18S (F) ACGGACCAGAGCGAAAGCAT 60 Rat M11188.1

(R) TGTCAATCCTGTCCGTGTCC

Abbreviations: forward (F), reverse (R).

https://doi.org/10.1371/journal.pone.0181453.t001
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resection on amylin, were significant by two-way ANOVA (Table 2). Exogenous GLP-2

decreased plasma PYY concentrations, but increased amylin in TB animals and had no effect

on GLP-1 or insulin. Bowel resection reduced plasma amylin, but had no effect on GLP-1,

insulin or PYY. The raw data for these observations and all the findings from this study can be

found at https://doi.org/10.6084/m9.figshare.4832648.v1.

Fig 2. Plasma hormone and glucose concentrations. Rats were subjected to bowel transection or resection, then maintained with TPN

for 7 d with or without exogenous GLP-2. The fasting plasma concentrations include GLP-2 (A), glucose (B), GLP-1 (C), insulin (D), PYY (E),

and amylin (F). Values are means±SD. Labelled means with different superscripts were significantly different (P < 0.05). TB (n = 6–7), TB

GLP-2 (n = 7), SBS (n = 3–5), SBS GLP-2 (n = 5–7).

https://doi.org/10.1371/journal.pone.0181453.g002
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Body weight and composition

There were differing effects of resection and exogenous GLP-2 on body weight and composi-

tion (Fig 3, Table 2). Bowel resection significantly decreased weight gain compared to TB

groups, while exogenous GLP-2 treatment had no effect. Bowel resection resulted in a decrease

in body fat percent with a reciprocal increase in lean percent composition, which were both

attenuated by GLP-2 treatment. Exogenous GLP-2 alone had no impact on body composition

(fluid, fat or lean percent) in TB animals.

Bowel morphology and crypt cell proliferation

Compared to TB rats, treatment with exogenous GLP-2 increased the total pre-anastomotic

jejunal weight, length and mucosal surface area, and proximal jejunal weight, villus height,

crypt width, mucosal-to-serosal amplification ratio and mucosal surface area (Table 3). Resec-

tion alone increased jejunal crypt width, jejunal and colonic muscularis propria thickness,

and, in GLP-2 treated animals, also increased proximal jejunal weight. Jejunal circumference

and villus width, and colonic length and circumference did not change with GLP-2 treatment

or resection. Bowel resection increased colon weight, and jejunal and colonic CCPI, compared

to TB, while exogenous GLP-2 had no effect.

Table 2. Significance of main effects and interactions of resection with GLP-2 on all endpoints depicted in figures.

Significance by Two-Way ANOVA (P-value)1

Resection GLP-2 Resection × GLP-2

Plasma Variables

GLP-2 0.0559 <0.0001 0.0351

Glucose 0.0427 <0.0001 0.0210

GLP-1 0.5666 0.8167 0.7408

Insulin 0.3639 0.1332 0.3876

PYY 0.1364 0.0372 0.7790

Amylin <0.0001 0.0122 0.8017

Body Weight and Composition

Weight gain <0.0001 0.6278 0.2689

Fluid% 0.3827 0.7303 0.2126

Fat% <0.0001 0.1867 0.0268

Lean% 0.0017 0.3819 0.0185

Hexose Transporter and GLP-2 Receptor mRNA

SGLT-1 0.0841 0.1215 0.5207

GLUT-2 0.0015 0.0415 0.4076

GLUT-5 0.1305 0.5344 0.3787

GLP-2R 0.3809 0.0002 0.0003

Myenteric Plexus Immunopositivity

Jejunum nNOS:HuC/D 0.0133 0.8381 0.7381

Colon nNOS:HuC/D <0.0001 0.4726 0.0636

1Results of two-way ANOVA examining the main effect of resection (TB versus SBS), the main effect of GLP-2 (presence versus absence of GLP-2 in

TPN), and interaction of resection and GLP-2 together.

https://doi.org/10.1371/journal.pone.0181453.t002
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qPCR

There was a significant main effect of resection and GLP-2 on GLUT-2 mRNA and a signifi-

cant interaction of resection and GLP-2 on GLP-2R mRNA in the jejunum (Table 2). Exoge-

nous GLP-2 increased SGLT-1 and GLUT-2 mRNA abundance only in resected animals.

Resection lowered mRNA abundance of GLUT-2 compared to TB (Fig 4). Although exoge-

nous GLP-2 alone had no effect on jejunal GLP-2R transcript abundance in TB, it decreased

GLP-2R mRNA in SBS groups. There were no statistically significant differences in GLUT-5

between the groups.

ENS morphology

Bowel resection increased the proportion of neurons that were costained for nNOS and HuC/

D in jejunal and colonic myenteric plexuses (Fig 5, Table 2), but not in the submucosal plexus.

Exogenous GLP-2 treatment had no effect on nNOS and HuC/D immunopositivity. There

were no differences in size and density of ganglia, nor proportions of immunopositive VIP

neurons, with resection or exogenous GLP-2. Muscularis propria thickness correlated with

myenteric nNOS:HuC/D immunopositivity in the jejunal myenteric plexus, with a non-

Fig 3. Body weight and composition. Rats were subjected to bowel transection or resection, then maintained with TPN for 7 d with or

without exogenous GLP-2. Percent weight gain (A), percent body fluid (B), percent body fat (C) and percent body lean (D) composition.

Values are means±SD. Labelled means with different superscripts were significantly different (P < 0.05). TB (n = 7), TB GLP-2 (n = 7), SBS

(n = 5), SBS GLP-2 (n = 7).

https://doi.org/10.1371/journal.pone.0181453.g003
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statistically significant correlation in the colon (Fig 6A and 6B). Jejunal and colonic CCPI were

positively associated with myenteric nNOS:HuC/D immunopositivity (Fig 6C and 6D).

Discussion

In this study, we have shown that there were different effects of massive distal resection and

exogenous GLP-2 on intestinal and systemic adaptive responses. Massive distal resection, but

not exogenous GLP-2, increased jejunal and colonic muscularis propria thickness, crypt cell

proliferation and myenteric nNOS immunopositivity. Moreover, we have provided evidence

that resection-induced reductions in transcript abundance of hexose transporters and

increases in GLP-2R in remnant jejunum were attenuated by exogenous GLP-2 therapy. We

also demonstrated that resection and exogenous GLP-2 exert divergent effects on plasma con-

centrations of amylin and PYY. And, finally, we have reported for the first time that exogenous

GLP-2 attenuates resection-induced alterations in adipose reserves and blood glucose concen-

trations. Together, these results suggest that exogenous GLP-2 exerts metabolic effects beyond

its well-characterized intestinotrophic outcomes.

Table 3. Bowel morphology and crypt cell proliferation.

Transected Bowel Short Bowel Syndrome Significance by Two-Way ANOVA (P-value)1

TB TB GLP-2 SBS SBS GLP-2 Resection GLP-2 Resection × GLP-2

Total Pre-Anastomotic Jejunum

Weight (g) 2.04±0.23a 3.85±0.34b 2.19±0.48a 4.03±0.24b 0.2084 <0.0001 0.8790

Length (cm) 25.0±2.6a 32.9±2.7b 25.7±1.8a 33.9±3.3b 0.4168 <0.0001 0.8638

Mucosal SA (cm2) 197.2±38.8a 395.8±132.9b 173.8±39.8a 405.7±99.4b 0.8644 <0.0001 0.6737

Proximal 10 cm Jejunum

Weight (g) 0.83±0.09a 1.27±0.16b 0.87±0.14a 1.49±0.15c 0.0244 <0.0001 0.0983

Circumference (mm) 9±1 10±1 9±2 10±1 0.8054 0.0119 0.5510

Villus Height (μm) 355±89a 610±178b 361±82a 597±102b 0.9490 0.0001 0.8557

Villus Width (μm) 106±15 120±9 103±27 119±26 0.8505 0.0880 0.8974

Crypt Width (μm) 32±2a 39±5b 40±5b 40±5b 0.0341 0.0632 0.0991

Mucosal:Serosal Amplification Ratio 8.3±1.8a 12.0±3.4b 7.9±2.1a 11.9±3.0b 0.8346 0.0031 0.9209

Mucosal SA (cm2) 77.4±15.5a 120.4±36.5b 67.8±16.1a 119.3±24.0b 0.6244 0.0003 0.6962

Muscularis Propria Thickness (μm) 84±22a 105±32ab 132±19b 136±22b# 0.0010 0.2293 0.4173

CCPI 0.14±0.07a 0.21±0.06ab 0.25±0.06bc 0.28±0.06c 0.0011 0.0631 0.5136

Colon

Weight (g) 1.08±0.10a 1.09±0.14a 1.42±0.15b 1.46±0.16b <0.0001 0.6059 0.7761

Length (cm) 11.9±1.1 12.4±1.5 12.5±1.4 12.2±0.9 0.7159 0.8270 0.4261

Circumference (mm) 14±1 14±2 15±3 12±2 0.7008 0.0645 0.1337

Muscularis Propria Thickness (μm) 116±33a 119±20a 162±35b 149±25b 0.0027 0.6351 0.4729

CCPI 0.04±0.04a 0.03±0.01a 0.11±0.08b 0.14±0.04b <0.0001 0.8173 0.3522

Morphometry and CCPI data for jejunum (total small bowel distal to ligament of Treitz and proximal to anastomosis [= total pre-anastomotic jejunum] and 10

cm length of small bowel distal to ligament of Treitz [= proximal 10 cm jejunum]) and colon (from ascending colon to rectum) derived from the following

sample sizes: TB (n = 5–7), TB GLP-2 (n = 6–7), SBS (n = 4–5), SBS GLP-2 (n = 7). CCPI was calculated from the number of BrdU positive nuclei / total

nuclei per crypt. Values are means±SD. Labelled means with different superscripts were significantly different (P < 0.05).
# denotes P = 0.06 versus TB GLP-2.
1Results of two-way ANOVA examining the main effect of resection (TB versus SBS), the main effect of GLP-2 (presence versus absence of GLP-2 in

TPN), and interaction of resection and GLP-2 together.

Abbreviations: surface area (SA).

https://doi.org/10.1371/journal.pone.0181453.t003
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Exogenous GLP-2 had more potent intestinotrophic effects compared to bowel resection

alone, increasing small bowel weight, length, villus height, crypt width and mucosal surface

area. As jejunal CCPI remained unchanged, the trophic effects of exogenous GLP-2 infusion

may have been due to reduced apoptosis [32]. Isolated bowel resection had fewer effects on

small bowel morphology, consistent with reports describing inadequate native jejunal adapta-

tion after massive ileocecal resection [33, 34]. This was in contrast to what we and others have

demonstrated previously, noting striking increases in jejunal villus height or width, mucosal

weight, DNA and protein content, and maltase activity after massive distal resection [23, 35].

Discrepancies in findings were likely due to differences in extent of resection, location of tran-

section in TB groups, the site of jejunal sampling and enteral nutrition. In the current study,

60% of the intestine was resected, encompassing a substantial portion of the jejunum, the

entire ileum and cecum, while jejunal specimens were sampled from the proximal 10 cm near

the duodenojejunal flexure, remote from the anastomosis (40 cm away). Our study minimised

the effect of bowel transection on endpoints compared to other reports describing tissue col-

lection closer to the anastomotic site (1 to 3 cm away) [23, 35]. Other studies have shown that

the magnitude of post-resection adaptation was greater adjacent to the anastomosis,

Fig 4. Jejunal hexose transporter and GLP-2R transcript abundance. Rats were subjected to bowel transection or resection, then

maintained with TPN for 7 d with or without exogenous GLP-2. SGLT-1 (A), GLUT-2 (B), GLUT-5 (C) and GLP-2R (D) mRNA abundance by

qPCR. Data were expressed as relative fold changes using 18S ribosomal RNA as the endogenous control. Values are means, with error

bars representing the upper and lower limits. Labelled means with different superscripts were significantly different (P < 0.05). TB (n = 7), TB

GLP-2 (n = 7), SBS (n = 5), SBS GLP-2 (n = 7).

https://doi.org/10.1371/journal.pone.0181453.g004

GLP-2 and resection-induced adaptation

PLOS ONE | https://doi.org/10.1371/journal.pone.0181453 July 24, 2017 12 / 20

https://doi.org/10.1371/journal.pone.0181453.g004
https://doi.org/10.1371/journal.pone.0181453


potentially due to inflammation and neovascularization, leading to an influx of oxygen and

nutrients [36, 37]. Moreover, it is possible that this may have also been related to stronger para-

crine stimulation by endogenous GLP-2 from remnant colon, whereas more proximal bowel

may have relied to a greater extent on endocrine effects of GLP-2. In support of this, we

observed that proximal segments of jejunum express higher abundance of GLP-2R mRNA

compared to distal segments closer to the anastomosis [38]. An additional contrasting feature

between studies includes the enteral intake of the animals—our previous report involved rats

who were fed, instead of being fasted as in the current experiment [23]. Differences in the

response to distal resection between studies may have reflected the effect of fasting on mucosal

atrophy and luminal nutrition on intestinal adaptation [2].

Fig 5. Whole mount immunohistochemistry. Rats were subjected to bowel transection or resection, then maintained with TPN for 7 d

with or without exogenous GLP-2. Proportion of nNOS staining neurons (number of nNOS positive neurons / total HuC/D neuronal nuclear

stained neurons per ganglia) in jejunal (A) and colonic (B) myenteric plexuses. Representative whole-mount immunohistochemistry for anti-

HuC/D (neuronal nuclei stain in green) and anti-nNOS (perinuclear stain in red) at 20X magnification (C). Values are means±SD. Labelled

means with different superscripts were significantly different (P < 0.05). TB (n = 4), TB GLP-2 (n = 4), SBS (n = 5), SBS GLP-2 (n = 5).

https://doi.org/10.1371/journal.pone.0181453.g005
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Along with an increase in morphological indices of mucosal growth, there also appeared to

be stimulation of functional adaptation following exogenous GLP-2 treatment. Jejunal SGLT-1

transcript level was upregulated by exogenous GLP-2 in SBS, and resection-induced decreases

in GLUT-2 mRNA abundance were attenuated by GLP-2 infusion. The lack of effects of exoge-

nous GLP-2 on hexose transporters in TB rats might reflect a ceiling of mRNA transcription in

this model. Unexpectedly, these transporters were upregulated in GLP-2 treated SBS animals

despite a decrease in GLP-2R mRNA abundance. It remains to be determined whether changes

in transcript levels are reflected in protein content of hexose transporters and GLP-2R, and

whether the intestinotrophic effects of exogenous GLP-2 are mediated through extra-intestinal

mechanisms.

This study explored the relationships between post-resection adaptation, exogenous GLP-2

and the ENS. It is interesting to note that in the resected groups, muscularis propria thickness

Fig 6. Muscularis propria thickness and crypt cell proliferation correlate with myenteric nNOS immunopositivity. Rats were

subjected to bowel transection or resection, then maintained with TPN for 7 d with or without exogenous GLP-2. Scatterplots of muscularis

propria thickness versus proportion of myenteric nNOS immunopositive neurons (number of nNOS positive neurons / total HuC/D neurons

per ganglia) in the jejunum (A) and colon (B). Scatterplots of CCPI (number of BrdU positive nuclei / total nuclei per crypt) versus proportion

of myenteric nNOS immunopositive neurons in the jejunum (C) and colon (D). TB (white circle), TB GLP-2 (black circle), SBS (white square),

SBS GLP-2 (black square). Univariate linear regression line plotted with associated R2 value, with P < 0.05 representing statistical

significance.

https://doi.org/10.1371/journal.pone.0181453.g006
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and crypt cell proliferation correlated with myenteric nNOS immunopositivity. nNOS is nor-

mally distributed in the myenteric plexus and plays a major role in inhibiting intestinal motil-

ity [39, 40]. Increased proportions of myenteric nNOS seen after resection in our experiments

is suggestive of a compensatory mechanism to reduce motility and improve absorption of

nutrients and water. Further, the correlation of nNOS with crypt cell kinetics and muscle

thickness was consistent with other reports demonstrating a regulatory role for nitric oxide

and the myenteric plexus in jejunal crypt cell proliferation [41, 42]. Although we did not detect

any changes in the ratio of VIP staining neurons, previous studies have described inhibitory

and stimulatory effects of proximal and mid bowel resection on VIP abundance in the ENS

[43, 44]. Inconsistencies in results could be due to the absence of transected bowel controls, or

the effect of location and extent of resection on specific neuroeffectors [43–46]. Interestingly,

neuronal responses evoked by intestinal resection were not recapitulated by exogenous GLP-2

infusion. Systemic exogenous GLP-2 had no effect on any neuronal parameter measured,

including the density of ganglia, neurons per ganglia, and abundance of VIP and nNOS, which

was in contrast to the stimulatory effects of exogenous GLP-2 on VIP and nNOS immunoposi-

tivity under in vitro conditions [20]. Although our observations were limited to morphological

ENS endpoints, it appears that alterations in VIP and nNOS neuronal expression were unlikely

to be mediators of the intestinotrophic effects of exogenous GLP-2. Our findings were consis-

tent with previous studies in VIP knock-out mice detailing the VIP-independent trophic

effects of GLP-2 [47].

We found reduced percent body fat and increased lean percent in TPN fed rats 7 d after

bowel resection, consistent with other reports using enterally fed SBS mice after 14 d [48, 49].

Although statistically significant, it is unclear whether this increase in percent lean composi-

tion with resection is clinically relevant or whether this is a dilutional effect of losing fat at a

greater rate while preserving lean mass. It is also unknown whether these changes in body

composition persist in the long-term. Importantly, we found that GLP-2 attenuated the reduc-

tion in percent fat mass produced by SBS at study termination. These findings resemble other

reports in SBS patients wherein GLP-2 together with GLP-1, but not alone, increased adipose

mass in the short-term [21]. Our study was amongst the most detailed reports of the effects of

exogenous GLP-2 and bowel resection on secretion of other gut hormones. Previous models

have identified multiple growth factors, including insulin-like growth factor-1, keratinocyte

growth factor, epidermal growth factor and related molecules, as key mediators of intestinal

adaptation [50–54]. However, the role of other gut hormones released by enteroendocrine L-

cells, including GLP-1 and PYY, have not been well studied [55, 56]. Proglucagon mRNA and

plasma GLP-2 concentrations vary depending on the SBS resection model in rats [34, 57, 58].

In our model with massive resection of a majority of the jejunum and the entire ileocecum, we

observed an isolated reduction in plasma GLP-2 without alterations in GLP-1 or PYY levels

after 7 d; it remains to be determined whether differential elimination rates of these L-cell

products contribute to their plasma concentrations. Moreover, exogenous GLP-2 therapy

decreased PYY levels without affecting GLP-1 concentrations, suggestive of divergent negative

feedback on L-cells.

Resection and exogenous GLP-2 produced reciprocal effects on concentration of plasma

glucose and pancreatic amylin. Exogenous GLP-2 decreased resection-induced hyperglycemia

in an insulin-independent manner. In piglets maintained with TPN, GLP-2 infusion has been

shown to increase glucose uptake and metabolism by portal drained viscera [8]. Moreover,

there is evidence of GLP-2R expression in murine mesenteric fat [59]. Alternatively, previous

studies have demonstrated that intravenous GLP-2 increases peripheral glucose clearance and

insulin sensitivity in wild-type mice, but not in brain specific pro-opiomelanocortin-GLP-2R

knock-outs [14]. Taken together, these studies indicate that tissue metabolic responses with
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exogenous GLP-2 could be due to a direct GLP-2R-mediated effect on viscera and adipose tis-

sue, or via central GLP-2R-dependent signaling mechanisms. Consistent with the known role

of amylin analogues as hypoglycemic agents in diabetes mellitus, reduced plasma amylin in the

current study may have played a role in resection-induced hyperglycemia and worsening of

peripheral glucose clearance [60]. Our data demonstrated that exogenous GLP-2 is an amylin

secretagogue, and suggested that both hormones may facilitate peripheral glucose disposal and

decrease plasma glucose concentrations together. Although there were no changes in plasma

insulin levels despite known co-secretion with amylin, differences in insulin concentration fol-

lowed a similar pattern to plasma amylin between the groups, yet did not reach statistical sig-

nificance [61, 62]. However, lack of significant effects of exogenous GLP-2 infusion on plasma

insulin is consistent with previous reports in humans with SBS [21]. Previous studies investi-

gating the impact of exogenous GLP-1 on plasma amylin and insulin in diabetic rats have

shown that differential responses in the magnitude of amylin and insulin secretion are also

possible [61]. Although infusion of GLP-2 in humans with SBS does not affect overnight fast-

ing or post-prandial blood glucose levels, our results indicated that exogenous GLP-2 and

bowel resection may modulate glucose homeostasis beyond their well-described intestino-

trophic outcomes in rats maintained on TPN [21].

In summary, we demonstrated the following: (1) massive distal resection led to an increased

proportion of nNOS immunopositive myenteric neurons, thicker intestinal muscularis propria

and crypt cell proliferation which were not recapitulated by exogenous GLP-2 therapy; (2)

intestinotrophic effects of exogenous GLP-2 were apparent, but were unlikely to be associated

with alterations in VIP and nNOS expression in the ENS; (3) exogenous GLP-2 attenuated

resection-related changes in body composition; (4) exogenous GLP-2 and resection led to

reciprocal effects on amylin (increased by GLP-2, decreased by resection); and (5) exogenous

GLP-2 may have improved glycemic control and attenuated resection-induced increases in

blood glucose concentrations. Thus, our findings indicated that exogenous GLP-2 and massive

distal bowel resection exert disparate intestinal and extra-intestinal manifestations that modu-

late body composition over the short-term with clinical implications for patients with SBS.

Further studies with a longer duration of treatment may provide more insight into the impact

(and underlying mechanisms) of bowel resection and GLP-2 on the ENS and systemic metabo-

lism, including their effects on glucose and lipid metabolism in peripheral tissues.
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