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Abstract. The aim of the present study was to explore the 
feasibility of using deep learning, such as artificial intel-
ligence (AI), to classify cervical squamous epithelial lesions 
(SILs) from colposcopy images combined with human papil-
loma virus (HPV) types. Among 330 patients who underwent 
colposcopy and biopsy performed by gynecological oncolo-
gists, a total of 253 patients with confirmed HPV typing tests 
were enrolled in the present study. Of these patients, 210 were 
diagnosed with high-grade SIL (HSIL) and 43 were diagnosed 
with low‑grade SIL (LSIL). An original AI classifier with a 
convolutional neural network catenating with an HPV tensor 
was developed and trained. The accuracy of the AI classifier and 
gynecological oncologists was 0.941 and 0.843, respectively. 
The AI classifier performed better compared with the oncolo-
gists, although not significantly. The sensitivity, specificity, 
positive predictive value, negative predictive value, Youden's J 
index and the area under the receiver-operating characteristic 
curve ± standard error for AI colposcopy combined with HPV 
types and pathological results were 0.956 (43/45), 0.833 (5/6), 
0.977 (43/44), 0.714 (5/7), 0.789 and 0.963±0.026, respectively. 
Although further study is required, the clinical use of AI for 
the classification of HSIL/LSIL by both colposcopy and HPV 
type may be feasible.

Introduction

Recently, artificial intelligence (AI) has made remarkable 
progress in medicine. Humanity will undergo a dramatic and 
irreversible change when AI becomes very advanced, which 

will likely occur in this century (1). AI has exceeded human 
experts in the field of games with perfect results (2), revealing 
novel strategies or findings. Therefore, as AI may be able to 
recognize certain information that conventional procedures 
cannot, it may also provide more precise diagnosis in practical 
medicine. Additionally, AI may be able to assist clinicians in 
practical medicine, reducing time and effort. For example, 
it has been reported that using AI-assisted colposcopy may 
reduce the time and effort it takes for a gynecologist to become 
a colposcopy expert, resulting in more time to improve other 
skills, training and activities (3). Moreover, the use of AI for 
predicting live births from blastocysts, to a level similar to 
that of specialists, may result in time saved for embryologists, 
reducing the financial costs of training (4). The aim of the 
present study was to investigate the feasibility of applying deep 
learning, a type of AI using both image and non-image infor-
mation simultaneously, for gynecological clinical practice.

Uterine cervical cancer is a major public health problem as 
it is the third most common cancer in women and the leading 
cause of cancer-associated mortality among women in Central 
America, South-Central Asia, Middle and Western Africa and 
Melanesia (5). New methodologies to prevent cervical cancer 
should be made available and accessible to women in all 
countries (5).

Colposcopy is a well-established procedure for examining 
the uterine cervix under magnification (6‑8). When lesions 
are treated with 3-5% acetic acid, colposcopy can detect 
and recognize cervical intraepithelial neoplasia (CIN) (6). 
Classification systems, such as the Bethesda system estab-
lished in 2002, are used to categorize lesions as low-grade 
squamous intraepithelial lesions (LSILs) or high-grade SILs 
(HSILs) (9,10), previously referred to as CIN1 and CIN2/CIN3, 
respectively (9). In clinical practice, distinguishing HSIL from 
LSIL in biopsy specimens is important as further examination 
or treatment, such as conization, may be required for HSIL.

In 2003, Burd (11) revealed that the Human papilloma 
virus (HPV) is essential to the transformation of the cervical 
epithelium. Based on genomic differences, DNA sequencing 
has identified >200 types of HPV, which can be grouped into 
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low-risk (including types 6, 11, 42, 43 and 44) and high-risk 
(including types 16, 18, 31, 33, 34, 35, 39, 45, 51, 52, 56, 58, 59, 
66, 68 and 70) HPV. In the high-risk group, certain HPV types 
are less frequently identified in cancers but are often present in 
SIL cells. The risk of progression for HPV types 16 and 18 is 
greater by ~40% compared with that for other HPV types (11). 
Thus, HPV types may be associated with SILs because high-risk 
HPV may be more detectable in HSILs compared with LSILs. 
Information on HPV types may be beneficial to SIL diagnosis. 
However, the possibility of combining colposcopy findings 
with HPV types has not been previously explored.

Deep learning with a convolutional neural network (12,13) 
to the realm of AI was applied to develop an original classifier 
for predicting HSIL or LSIL from colposcopy images (3) and 
HPV types. The aim of the present study was to determine 
whether AI could accurately evaluate colposcopy findings 
(combined with HPV types), compared with conventional 
colposcopy findings by gynecologic oncologists, and also to 
investigate the feasibility of applying deep learning (a class of 
AI using both image and non-image information simultane-
ously) in clinical gynecological clinical practice.

Materials and methods

Patients. The present study used fully de‑identified patient data 
and was approved by the Institutional Review Board of Shikoku 
Cancer Center (approval no. 2017-81). The study was explained 
to patients who were not limited by age, had no prior treatment 
of the uterine cervix and had advanced lesions of the cervix 
biopsied at Shikoku Cancer Center between January 2012 and 
December 2017. Patients were directed to a website with addi-
tional information, including an opt-out option for the study. As 
the present study was a fully de‑identified retrospective study, the 
Institutional Review Board of Shikoku Cancer Center approved 
the informed consent by the explanation including the opt-out 
option for patients to choose to withdraw from this study as 
informed consent. HPV tests had been performed in routine 
examination for patients with abnormal cervical cytology reports 
or abnormal colposcopy findings indicating neoplastic disease 
diagnosed by gynecological oncologists at Shikoku Cancer 
Center. HPV tests were not performed specifically for this study. 
Gynecological oncologists determined the necessity for biopsy in 
routine conventional practice for patients with abnormal cervical 
cytology reports of ASC-US, LSIL, HSIL, atypical squamous 
cells cannot ruled out HSIL (ASC-H), squamous cell carcinoma 
(SCC), adenocarcinoma in situ (AIS), atypical glandular cells 
(AGC) and adenocarcinoma (Adenoca), as well as for patients 
with abnormal cervical cytology reports or abnormal colpos-
copy findings indicating neoplastic disease such as LSIL/CIN1, 
HSIL/CIN2 and HSIL/CIN3. HPV types were tested by either 
one of the following commercially available PCR-based assay 
kits: Cobas® 4800 system HPV (Roche Diagnostics), which 
detects high-risk HPV genotypes such as 16, 18, 31, 33, 35, 39, 
45, 51, 52, 56, 58, 59, 66 and 68; or Amplicor® HPV (Roche 
Diagnostics), which detects high‑risk HPV genotypes such as 16, 
18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59 and 68. The design of 
the study was based on the routine practice at Shikoku Cancer 
Center. A total of 253 patients who underwent cervical punch 
biopsy combined with HPV typing test and had an image of 
colposcopy captured were enrolled in this study.

Images. Colposcopy images of lesions processed with 3% 
acetic acid prior to biopsy were captured, cropped and saved 
in JPEG format. The image data were input retrospectively for 
deep learning.

AI preparation. All de‑identified images saved offline were 
transferred to the AI system. For the test dataset, 20% of the 
images were randomly selected; the remaining images were 
used as the training dataset. Next, 80% of the training dataset 
images were used to train the AI classifier, and the remaining 
images were used as the validation dataset. Thus, these 
datasets did not overlap. The AI classifier was trained using 
a training dataset and simultaneously validated and tested 
using the test dataset. The training datasets were augmented, 
because colposcopy image processing of arbitrary degrees of 
rotation can yield images resulting in different vector data for 
the same category.

AI classifier. Classifier programs were developed using 
supervised deep learning with a convolutional neural network 
architecture (12,14) catenated with a HPV type tensor. A 
number of convolutional neural networks were tested by 
varying image size (50x50, 75x75 and 100x100 pixels), L2 
regularization (15,16) and architectures consisting of a combi-
nation of convolution layers with kernels (17-19), pooling 
layers (20-23), flattened layers (24), linear layers (25,26), 
rectified linear unit layers (27,28), catenated layers, batch 
normalization layers (29) and a softmax layer (30,31) which 
demonstrated the probability of LSIL or HSIL from an image 
(Table I).

Cross-validation (32-34), which is a method for model 
selection, was applied to identify the optimal machine 
learning method. The suitable number of images for the 
training data was determined using the 5-fold cross-validation 
method, which reveals the optimal number of training data 
and can be used to avoid overfitting, a modeling error that 
occurs when a classifier is too closely fit to a limited set of 
data points (35-40). After the optimal number of training data 
was calculated, the classifier that exhibited the highest accu-
racy was selected. Conventional colposcopy diagnosis and AI 
colposcopy diagnosis-catenated HPV types in the test dataset 
were compared. A flow chart of the development of the AI 
classifier is presented in Fig. 1.

Development environment. The following development envi-
ronment was used: A Macintosh running OS X 10.14.5 (Apple, 
Inc.) and Mathematica 12.0.0.0 (Wolfram Research, Inc.).

Statistical analysis. The laboratory and AI classifier data 
were compared using Mathematica 12.0.0.0 (Wolfram 
Research, Inc.). The Cochran Armitage test, Cohen's κ, χ2 test 
and Fisher's exact test were used. P<0.05 was considered to 
indicate a statistically significant difference.

Results

The number of patients with cytology reports were stratified 
as follows: HSIL, 149; LSIL, 75; AUC‑US, 43; ASC‑H, 38; 
SCC, 18; AGC, 2; AIS; 2; Adenoca, 2; NILM, 8. Mean ± stan-
dard deviation, median and range of patient age in the HSIL 
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vs. LSIL groups were 31.66±5.01 vs. 33.75±8.94, 32 vs. 33 and 
19-46 vs. 19-62, respectively. The pathological diagnoses and 
the corresponding number of patients who underwent punch 
biopsy were as follows: HSIL, 213; LSIL, 97; squamous cell 
carcinoma, 12; adenocarcinoma, 5; adenocarcinoma in situ, 
2; and microinvasive squamous cell carcinoma, 1 (Table II). 
The HPV types of the patients were as follows: Type 16, 87; 
type 18, 8; type 16 and 18, 4; high‑risk HPV but not type 16 or 
18, 159; and HPV negative, 13. A total of 57 patients (17.2%) 
did not receive a HPV type test. Conventional colposcopy 
diagnoses based on pathological results and HPV types are 
presented in Tables III and IV. A total of 20/273 patients had 
no image data.

A total of 253 patients with colposcopy images, patholog-
ical LSIL or HSIL and known HPV types were finally enrolled 
in this study. The ages of patients with pathological HSIL and 
LSIL were 31.66±4.83 and 30.12±5.10 (mean ± standard devia-
tion), respectively (data not shown). The median age (range) of 
pathological HSIL and LSIL were 32 (19-46) and 33 (19-62), 
respectively (data not shown). HPV types were reclassified 
as follows: Type 16 or 18 were considered high-risk HPV, 
and not type 16 or 18 was considered to represent low-risk 
HPV/HPV-negative due to the limited number of available 
HPV types and pathological results. HPV-negative described 
the absence of high-risk HPV, not type 16 or 18.

The numbers of patients with type 16 and/or 18, high-risk 
HPV but not type 16 or 18 and HPV-negative were 85, 156 
and 12, respectively (Table II). The numbers of patients with 
HSIL and LSIL were 210 and 43, respectively. Among the 210 
pathological HSIL cases, the numbers of type 16 and/or 18, 
high-risk HPV but not type 16 or 18 and HPV-negative were 
81, 123 and 6, respectively. Among the 43 pathological LSIL 

cases, the numbers of type 16 and/or 18, high-risk HPV but not 
type 16 or 18 and HPV-negative were 4, 33 and 6, respectively. 
The HPV types were associated with the pathological results 
(P<6.70x10-6; Cochran Armitage test). HPV‑negative results 
were observed in 2.85% (6/210) and 14.00% (6/43) of HSIL and 
LSIL, respectively. In the present study, type 16- or 18-posi-
tive HPV in pathological HSIL and LSIL were observed in 
38.6 and 9.3% of cases, respectively. The incidence of type 
16 and/or 18 positivity in pathological HSIL was significantly 
higher, compared with that in LSIL (P<0.0005; Fisher's exact 
test with Yates's correction).

Among the 210 pathological HSIL cases, 177 patients 
received a conventional colposcopy diagnosis by gynecolo-
gists of CIN2 (HSIL) or CIN3 (HSIL), 29 were diagnosed with 
CIN1 (LSIL), three were diagnosed with invasive cancer and 
one was diagnosed with cervicitis. Among the 43 pathological 
LSIL cases, 13 received a conventional colposcopy diagnosis 
by gynecologists of HSIL, 25 were diagnosed with LSIL and 
5 with cervicitis. The accurate diagnoses of HSIL and LSIL 
were 202 out of 253 (0.798). The accuracy, sensitivity, speci-
ficity, positive predictive value, negative predictive value and 
Youden's J index of the conventional colposcopy diagnosis 
for pathological HSIL were 0.828 (202/244), 0.859 (177/206), 
0.658 (25/38), 0.932 (177/190), 0.463 (25/54) and 0.517, respec-
tively.

Among the 85 cases with HPV type 16 and/or 18, 71 
received a conventional colposcopy diagnosis by gynecolo-
gists of CIN2 (HSIL) or CIN3 (HSIL), 10 were diagnosed 
with CIN1 (LSIL), two with cervicitis and two with invasive 
cancer. Among the 156 cases with HPV type 16 and/or 18, 113, 
40, 2 and 1 received a conventional colposcopy diagnosis by 
gynecologists of CIN2 (HSIL) or CIN3 (HSIL), CIN1 (LSIL), 
cervicitis and invasive cancer, respectively. Among the 12 
HPV-negative cases 6, 4 and 2 received a conventional colpos-
copy diagnosis by gynecologists of CIN2 (HSIL) or CIN3 
(HSIL), CIN1 (LSIL) and cervicitis, respectively. There are no 
relationships between HPV types and colposcopy.

The highest accuracy for HSIL of the best AI classifier 
combined with HPV types for a test dataset was 0.941 (48/51) 
when the number of the augmented training dataset was 1,212, 
the value of L2 regularization was 0.02, and the image size 
was 50x50 pixels. The accuracy, sensitivity, specificity, posi-
tive predictive value, negative predictive value, Youden's J 
index (41), the area under the receiver operating characteristic 
curve (AUC) ± standard error, the 95% confidence interval of 
the AUC and Cohen's k (42) coefficients of HSIL for the AI 
colposcopy combined with HPV types and pathological results 
are presented in Table V.

The comparison of the conventional colposcopy diagnosis 
by gynecological oncologists and the best AI classifier for the 
test dataset is presented in Table VI. As the AI classifier was 
not trained for cervicitis or invasive cancer, when the colpos-
copy diagnosis was limited to HSIL and LSIL by ignoring 
colposcopy diagnoses of cervicitis and invasive cancer, the 
Cohen's k coefficient of the colposcopy diagnosis and the AI 
classifier was 0.407. The agreement of the two methods was 
moderate (43), but not significant (P=0.077).

The comparison of the conventional colposcopy diagnosis 
by gynecological oncologists and the pathological results for 
the test dataset is presented in Table VI. The accurate number 

Table I. Architecture of the classifier.

Input Image Input HPV Type

  1. Convolutional layer -
  2. Rectified linear unit layer ‑
  3. Pooling layer -
  4. Convolutional layer -
  5. Rectified linear unit layer ‑
  6. Pooling layer -
  7. Flattening layer -
  8. Linear layer -
  9. Rectified linear unit layer ‑
10. Linear layer 1. HPV type
Catenated layer
Batch normalization layer
Linear layer
Softmax layer
Output

The classifier consisted of a combination of 10 layers of a convolu-
tional neural network and a single layer of an HPV type tensor. The 
image processing and HPV type tensor were combined at the cate-
nated layer. ‘‑ʼ, no HPV type combined with the layer; HPV, human 
papilloma virus.
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of HSIL and LSIL by conventional colposcopy for the test 
dataset was 43 of 51 (0.843). The conventional colposcopy 
results for the test dataset and for all of the datasets were not 
significantly different, and the time required for classification 
was <0.2 sec per patient.

Discussion

In the present study, a classifier was developed using deep 
learning with convolutional neural networks using images of 
cervical SILs combined with HPV types to predict the patho-
logical diagnosis. The accuracy for the test dataset achieved by 
the classifier and by gynecological oncologists was 0.941 and 
0.843, respectively; the latter accuracy was calculated tentatively, 
and these two accuracies could not be compared as the AI was 

trained for HSIL and LSIL classes, whereas colposcopy could 
identify lesions such as cervicitis, invasive cancer and adenocar-
cinoma. The numbers of accurate HSIL and LSIL diagnoses by 
conventional colposcopy for the test dataset were 43 out of 51 
and for all datasets were and 202 out of 253. Compared with the 
classifier, the conventional colposcopy results for the test dataset 
and for all of the datasets were not significantly different, 
which suggested that the AI classifier using deep learning with 
convolutional neural networks using images of cervical SILs 
combined with HPV types was not inferior to conventional 
colposcopy performed by gynecologic oncologists.

In the present study, 12 cases of pathological HSIL and LSIL 
were HPV-negative, although both HPV type information and 
colposcopy images were used for analysis. These cases may 
have represented false negatives as HPV infection is essential to 

Figure 1. Development the AI classifier with deep learning for colposcopy images and HPV types. HPV, human papilloma virus; LSIL, low‑grade squamous 
intraepithelial lesion; HSIL, high‑grade squamous intraepithelial lesion; AI, artificial intelligence.
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the transformation of cervical epithelial cells (11) and the HPV 
detection kits that were commercially available and widely used 
result in <3.1% of false negatives in pathological HSIL in Japan 
as stated by the manufacturer. The data not excluded as only a 
small number of HPV‑negative cases were identified. Previous 
studies have reported 8-13% of false negative results for HPV 
detection (44-46). Lee et al (47) reported that the classic nested 
PCR and Sanger DNA sequencing technology for routine HPV 
testing exhibited that a true negative HPV PCR invariably indi-
cated the absence of precancerous cells in the cytology samples.

The accuracy of 0.941 was an acceptable result of the 
classifier for deep learning. In medicine, several studies 
have used AI for deep learning with convolutional neural 
networks (48,49). The accuracy values of AI with deep learning 
have been published and include 0.997 for the histopathological 
diagnosis of breast cancer (50), 0.980 for the morphological 
quality of blastocysts and evaluation by an embryologist (51), 
0.640-0.880 for predicting live birth from a blastocyst image 
of patients by age (4,52), 0.650 for predicting live birth without 
aneuploidy from a blastocyst image (53), 0.823 (3), 0.720 (54) 
and 0.500 (55) for colposcopy, 0.830 to 0.900 for the early 
diagnosis of Alzheimer's disease (56), 0.830 for urological 

dysfunctions (57) and 0.830 for the diagnostic imaging of 
orthopedic trauma (58). A number of studies have reported a 
limitation of conventional colposcopy. A study of the accuracy 
of biopsy under colposcopy reported a total biopsy failure rate, 
comprising both non-biopsy and incorrect selection of biopsy 
site, of 0.200 in CIN1, 0.110 in CIN2 and 0.090 in CIN3 (59). 
The colposcopic impression of high-grade CIN had a speci-
ficity of 0.880 and a sensitivity of 0.540, as determined by nine 
expert colposcopists in 100 cervigrams (60). The sensitivity of 
an online colpophotographic assessment of HSIL by 20 colpos-
copists was 0.390 (61). Thus, conventional colposcopy does not 
provide good sensitivity, even when performed by colposcopy 
specialists. By contrast, the accuracy and sensitivity reported 
in this study for predicting HSIL from colposcopy images 
combined with HPV types using deep learning were 0.941 
and 0.956, respectively, which appears to be satisfactory. 
Since the classifier was not trained in colposcopy findings 
such as mosaic acetowhite epithelium and punctuation, it may 
recognize certain morphological features of cervical SILs by 
itself. It is also possible that the AI classifier may recognize 
features that colposcopists do not, such as relative or absolute 
brightness of acetowhite, complexity of the shape of the lesion, 

Table II. Patients with pathological results confirmed by punch biopsy and different HPV types.

 Pathological results
 -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
   Microinvasive Invasive
HPV type HSIL LSIL SCC SCC Adenocarcinoma in situ Adenocarcinoma

Not available    3 54 0 0 0 0
HPV-negative    6   6 0 0 0 1
High risk but not type 16 or 18 123 33 1 2 0 0
Type 16   75   2 0 8 0 2
Type 18     5   2 0 0 2 1
Type 16+18     1   0 0 2 0 1

HPV, human papilloma virus; LSIL, low‑grade squamous intraepithelial lesion; HSIL, high‑grade squamous intraepithelial lesion; 
SCC, squamous cell carcinoma.

Table III. Patients with pathological results confirmed by punch biopsy and conventional colposcopy diagnosis by gynecologic 
oncologists.

 Colposcopy diagnosis
 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Pathological results CIN1 (LSIL) CIN2 (HSIL) CIN3 (HSIL) Cervicitis Invasive cancer

HSIL 32 63 114 1 3
LSIL 70 17 5 5 0
Microinvasive SCC 0 0 1 0 0
Invasive SCC 0 0 4 0 8
Adenocarcinoma in situ 0 0 2 0 0
Adenocarcinoma 0 0 1 0 4

LSIL, low‑grade squamous intraepithelial lesion; HSIL, high‑grade squamous intraepithelial lesion; SCC, squamous cell carcinoma; 
CIN, cervical intraepithelial neoplasia.
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quantitative marginal evaluation of borders and distribution 
of punctuation density. The pathological results in the present 
study were obtained and defined by punch biopsy as it was 
not recommended for patients with CIN1 (LSIL) diagnosed 
by colposcopy to undergo conization or hysterectomy. The 
advanced lesion would have been revealed if the pathological 
results were defined by conization or hysterectomy rather than 
by punch biopsy; thus, both conventional colposcopy and the 
AI classifier may have demonstrated different results. When 
AI is used for advanced diseases, such as squamous cell carci-
noma and adenocarcinoma, the pathological diagnosis should 
be provided by conization or hysterectomy.

It is important for clinicians to distinguish HSIL from LSIL 
in biopsy specimens in clinical practice as further examination 
or treatment, such as conization, may be required for HSIL. 
The clinician should consider biopsy when a reliable classifier 
indicates HSIL in clinical practice. The classifier developed in 
the present study may help untrained gynecologists avoid or 
reduce the risk of misidentifying HSIL. When the performance 
of the AI classifier is further improved in accuracy, sensitivity 
and specificity for classifying SILs, gynecologists may be 
able to obtain more precise classification without requiring a 
colposcopy specialist.

Several reasons for obtaining high accuracy by AI were 
considered in the present study. First, the association between 
the pathological results, colposcopy diagnosis and HPV types 
was important. The pathological results were affected by the 
HPV types. However, no association was identified between 
HPV types and the results of colposcopy. Thus, HPV types 
and colposcopy were associated with pathological results, but 
not with each other. In our preliminary study, the accuracy 
achieved by deep learning with only images of colposcopy 
was 0.823 (data not shown). Thus, the association among the 
pathological results, colposcopy diagnosis and HPV type may 
be a reason for high accuracy.

Second, AI has the ability to use images and non-image 
data simultaneously. However, AI is not established to digitize 
images to numerical data indicating the features of the images 
for multivariate analysis; AI, including deep learning, can 
acquire numerical data to indicate the features of an image and 
use the numerical data indicating the features of colposcopy 
images and the numeric tensor data of HPV types. This is an 

important feature of AI, which may be the second reason for 
high accuracy in this study from the perspective of computer 
science.

Third, in the present study, the neural network architecture 
including a batch normalization layer (29) was adequate. Neural 
network architecture is a key component of deep learning. A 
batch normalization layer was added following catenating 
information from colposcopy images and HPV types. This 
method makes normalization a part of the model architecture 
and performs the normalization for each training mini-batch. 
Batch normalization allows the use of high learning rates. This 
architecture may be the third reason for high accuracy in the 
present study.

The architecture of the neural network has been progressing. 
The LeNet study in 1998 (62) consisted of 5 layers. AlexNet 
in 2012 (30) consisted of 14, and Google Net in 2014 (26) 
was constructed from a combination of micronetworks. 
ResNet-50 in 2015 (63) consisted of modules with a shortcut 
process. Squeeze‑and‑excitation networks were first published 
in 2017 (64). However, AI for image recognition remains 

Table V. The results of the best AI classifier combined with 
HPV types and conventional colposcopy for 51 test datasets 
(20% of all qualified datasets).

  Conventional
Variable AI colposcopy

Accuracy 0.941 (48/51) 0.843 (43/51)
Sensitivity 0.956 (43/45) 0.844 (38/45)
Specificity 0.833 (5/6) 0.833 (5/6)
Positive predictive value 0.977 (43/44) 0.974 (38/39)
Negative predictive value 0.714 (5/7) 0.500 (6/12)
Youden's J index 0.789 0.677
AUC (± standard error) 0.963±0.026 N/A
Cohen's κ 0.769 0.473

AUC, area under the receiver operating characteristic curve; 
HPV, human papilloma virus; AI, artificial intelligence.

Table IV. Patients with all types of HPV and the conventional colposcopy diagnosis by gynecologic oncologists.

 Colposcopy diagnosis
 -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
HPV type CIN1 (LSIL) CIN2 (HSIL) CIN3 (HSIL) Cervicitis Invasive cancer

Not available 48 9 0 0 0
HPV-negative 4 5 1 2 1
High risk but not type 16 or 18 40 46 70 2 1
Type 16 9 18 50 1 9
Type 18 1 2 5 1 1
Type 16 + 18 0 0 1 0 3

HPV, human papilloma virus; LSIL, low‑grade squamous intraepithelial lesion; HSIL, high‑grade squamous intraepithelial lesion; CIN, cervical 
intraepithelial neoplasia.
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in development. Image information is one of the parameters 
requiring further investigation. Only 15x15 pixels have been 
used to detect cervical cancer (65); thus, image size remains an 
issue. In a previous colposcopy study, the reported accuracy for 
images of 150x150 pixels was higher compared with that for 
images of 300x300 or 32x32 pixels (55). In the present study, 
111x111, 70x70 and 50x50 pixel images were tested. A size 
of 50x50 pixels, which exhibited the best performance in the 
present study, falls within the acceptable range. Regularization 
values that are routinely used in developing AI of deep learning 
are also an important hyperparameter for constructing a good 
classifier that avoids overfitting (35‑40). Selecting the appro-
priate number of training datasets is also very important; in 
addition, the validation dataset prevents overfitting. Generally, 
more varied patterns of images may be needed for datasets as 
500-1,000 images are reportedly prepared for each class during 
image classification with deep learning (52,66). The classifier 
that uses both image and HPV types may require more images 
combined with HPV types, which may result in improvement 
in the classifier with deep learning.

In the present study, a classifier was developed based 
on deep learning that used both HPV types and images of 
uterine cervical SILs to predict pathological HSIL/LSIL. The 
accuracy of the classifier was 0.941. Although further study 
using more datasets and modified neural network architecture 
and/or hyperparameters is required to validate the classifier, 
the results of the present study demonstrated that AI may have 
a potential for clinical use in colposcopy examinations and 
may provide benefits to patients and clinicians.
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