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Abstract

Fear is a response to impending threat that prepares a subject to make
appropriate defensive responses, whether to freeze, fight, or flee to safety.
The neural circuits that underpin how subjects learn about cues that signal
threat, and make defensive responses, have been studied using Pavlovian
fear conditioning in laboratory rodents as well as humans. These studies
have established the amygdala as a key player in the circuits that process
fear and led to a model where fear learning results from long-term
potentiation of inputs that convey information about the conditioned
stimulus to the amygdala. In this review, we describe the circuits in the
basolateral amygdala that mediate fear learning and its expression as the
conditioned response. We argue that while the evidence linking synaptic
plasticity in the basolateral amygdala to fear learning is strong, there is still
no mechanism that fully explains the changes that underpin fear
conditioning.
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Introduction

Fear is a response to impending threat that prepares a subject to
make appropriate defensive responses. Conserved across spe-
cies, it describes a physiological state preparing the animal
to freeze, fight, or flee to safety and, in humans, is accom-
panied by affective feelings of dread and anticipation. Our
physiological understanding of fear and the neural circuits
that underpin it have largely been studied using the Pavlo-
vian paradigm of fear conditioning'. In this paradigm, subjects,
typically laboratory rodents, are exposed to a neutral sensory
stimulus, such as a light, odor, or tone (the conditioned stimu-
lus [CS]) that is contingently paired with an aversive one (the
unconditioned stimulus [US]), typically a footshock. Following
a number of pairings, sometimes just one, subjects exhibit
defensive responses when exposed to the CS alone (the condi-
tioned response [CR]). This learning is rapid and long lasting:
presentation of the same CS days, weeks, or months after its
conditioning continues to evoke defensive responses. Thus, fear
conditioning is a form of associative learning in which pairing
the CS with the US forms a memory trace that is later retrieved
by the CS alone. As such, understanding the biology that under-
pins fear learning will not only help us understand fear but also
provide insight into memory formation, storage, and retrieval.
While there are differences between the subjective state of
fear and anxiety’, there are similarities in the accompanying
physiological response, and the two states share neural
circuits*”. Thus, understanding the neural circuits that medi-
ate fear may also help to unravel those that underpin anxiety
disorders.

Like all learning, fear conditioning has three phases: acquisi-
tion, during which a sensory input; the CS, becomes associated
with an aversive outcome; storage, in which a memory trace is
formed; and retrieval, when the memory trace is retrieved and
initiates defensive responses. Early lesion experiments estab-
lished that the amygdala, a region in the mid-temporal lobe, is an
essential component of the circuits that mediate fear learning®’.
The amygdala is a heterogeneous structure made of a number
of nuclei that receive input from a host of cortical and subcor-
tical areas and have extensive internuclear connectivity®. Of
these, the best understood are the basolateral amygdala (BLA)
and central amygdala (CeA), which form the main input and
output structures of the amygdala, respectively*'". CS and
US information converge in the BLA*'', and contingent acti-
vation of these inputs forms a memory trace that may even be
stored there'””*. Subsequent presentation of the CS activates
circuits in the BLA, and projections from the BLA to the
CeA drive defensive behaviors. While it is becoming increas-
ingly clear that the CeA also plays a role in fear learning'>'’,
much work has gone into understanding the acquisition and
processing of information in the BLA during fear learning and
expression. In this brief review, we focus on the BLA and its
role in a commonly studied form of associated learning: cued
auditory fear conditioning.

The basolateral amygdala
The BLA is located in the mid-temporal pole and anatomi-
cally divided into the lateral (LA) and basal (BA) nuclei. The
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LA is situated dorsal to the BA and is subdivided into the dorso-
lateral (LAdl), ventrolateral (LAvl), and ventromedial nuclei'’,
while the BA consists of the basolateral nucleus (BL) and the
basomedial nuclei (BM), also known as the accessory BA
(AB)*'"*. These divisions within the BLA are cytoarchitectoni-
cally different and have different internuclear and extranuclear
connections'*"*?!. For example, the BL is subdivided into the
rostral magnocellular subdivision and the more caudal interme-
diate and parvicellular subdivisions, while the AB comprises
the magnocellular subdivision and the more medial and caudal

parvicellular subdivision®.

Fear conditioning: acquisition

Associative fear learning has an absolute requirement for CS—
US contingency—that is, a temporal relationship between the
two stimuli, and learning is weakened when this contingency
is broken'. In auditory fear conditioning, the CS (tones) and US
(footshock) inputs converge on to single neurons in the LA,
The prevailing model for associative learning is that conjunc-
tion of CS and US input results in long-term potentiation
(LTP)»* of synapses carrying CS information, and this under-
pins the memory of the aversive nature of the CS™''?~. CS
and US inputs use glutamate as the excitatory transmitter, and
these inputs form classical dual-component glutamatergic syn-
apses that express postsynaptic AMPA and N-methyl-D-aspartate
(NMDA) receptors’’’!. NMDA receptors are calcium-permeable,
cationic ion channels that are open only when the glutamate
site on the receptor is occupied and the membrane potential is
depolarised**. Thus, these receptors are coincidence detectors™,
and cytosolic calcium delivered by their activity is required
for many forms of synaptic plasticity”*. Fear conditioning
requires NMDA receptor activity in the BLA”=, and CS inputs
are known to undergo plasticity following fear learning*'.
Thus, it is generally accepted that NMDA receptor-dependent
LTP underpins Pavlovian fear conditioning''***=*. 1In this
model, the CS engages glutamatergic synapses, and the
US provides the coincident depolarizing signal that drives
NMDA receptor activity, triggering LTP of inputs carrying CS
information'*%3%,

While this model is compatible with much of the literature and
provides a plausible model for fear learning, how CS-US pair-
ings result in LTP of synapses carrying CS input is not clear. In
most auditory fear conditioning protocols, the CS lasts several
seconds and then co-terminates with the US (known as delay
fear conditioning). Typically, a 10-second CS is used, with the
US being presented in the last 1 second and co-terminating
with the CS. However, in LA principal neurons, the response to
prolonged auditory stimulation is transient, lasting at most
several hundred milliseconds”***’. Whole cell recordings in vivo
also show auditory evoked synaptic activity to last only a short
period of time”, suggesting that synapses carrying CS informa-
tion are not active at the time the US signal arrives in the BLA.
Moreover, when the CS and US are separated by a brief period
of time, a procedure called trace conditioning, fear conditioning
can still be induced*. While trace conditioning with a long trace
interval (>5 seconds) engages the hippocampus™*, perhaps
indicating a different form of learning, this does not happen
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with short (<3 seconds) trace intervals. In these experiments,
although the interval between the CS and US is short, the offset
time constant of synaptic NMDA receptors in the BLA is much
shorter (in the order of ~100 milliseconds)!, meaning that
with trace intervals of >1 second, ionotropic glutamate receptors
mediating CS information are again not engaged when the US
signal arrives. Thus, one requirement for NMDA receptor-
dependent LTP, receptor engagement by glutamate, is not met.
Furthermore, while neurons in the BLA receive both CS and US
input, some neurons that change their response to the CS appear
to not respond to the US*’, an observation that challenges the
requirement of contingent input onto single neurons.

Finally, it is well established that the recent history of the
CS is an important determinant in learning. One example is
the blocking effect’, in which a compound CS (light + tone)
is paired with the US. If one of the CSs (e.g. the tone) has pre-
viously been paired with the US, subjects do not develop
defensive responses to the light”**. This result suggests that fac-
tors other than a close temporal relationship between the CS
and US are required in fear associative learning. Interestingly,
the US has been found to activate several ascending systems
that release neuromodulators such as noradrenaline™ and
acetylcholine’®, and these systems are known to be involved in
fear learning. However, how activation of these neuromodu-
latory systems modulates NMDA receptor-driven plasticity
evoked during acquisition is not currently clear. In summary,
in cued fear conditioning, it is clear that CS-US contingency is
necessary for associative learning, and while the idea that syn-
aptic plasticity (LTP) within the BLA underpins learning is very
compelling, how this plasticity is evoked is still not clear.

Fear conditioning: the role of inhibition

The BLA is a cortical-like structure, with the majority of
neurons (principal or pyramidal) being glutamatergic and the
rest (~20%) being GABAergic inhibitory interneurons’=".

Although relatively a smaller population, interneurons power-
fully regulate the excitability of principal cells'>**-**. Thus, within
the BLA, principal cells have very low resting firing rates®
and single interneurons can block their activity®. The impor-
tance of inhibition in fear learning was established early with
experiments showing that pharmacologically enhancing inhibi-
tion in the BLA is anxiolytic and can block fear learning®,
and in vitro studies show that plasticity of thalamic and
cortical input to BLA principal cells is strongly modulated by
inhibition®*"%%,

Similar to the cortex, interneurons are divided into distinct fami-
lies based on expression of cytosolic markers and synaptic
connections'>**~72. Of these, the major population are interneu-
rons that express calbindin and those that express calretinin’*".
These groups can be further subdivided based on their expres-
sion of neuropeptides such as somatostatin (SOM) or the
calcium-binding protein parvalbumin (PV)"¢72 " with PV
interneurons being more numerous in the BA as compared to the
LA™, Recent work has focused on these latter two families,

15,59,75

which have distinct subcellular targets on principal neurons .
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PV interneurons innervate the somatic and proximal dendritic
compartment, as well as the axon initial segment’*”, the likely
site of action potential generation, while SOM interneurons
target the distal dendritic tree. Both PV and SOM interneu-
rons provide feedforward as well as feedback inhibition. In the
LA, fast spiking interneurons (likely PV interneurons) have
been found to receive cortical and thalamic inputs, again indicat-
ing a role in feedforward inhibition®*>. While the exact source
of afferent inputs to these interneuron types has not been fully
characterized, PV interneurons in the BA have been suggested
to have both feedforward® and feedback connections”.

More recently, in vivo recordings are beginning to establish
how local interneuron circuits modulate learning. During audi-
tory fear conditioning, PV interneurons in the BLA are excited
by auditory input (CS) while SOM interneurons are inhibited”.
In contrast, PV interneurons are inhibited by footshocks (US)*.
Since SOM interneurons in the BLA receive inhibitory input
from PV interneurons®, the inhibition of SOM interneurons dur-
ing CS presentation is proposed to be mediated by PV cells
driven by the CS*. Functionally, the CS is thought to support
principal neuron dendritic depolarization by disinhibition of SOM
interneurons. Finally, input to interneurons can also undergo syn-
aptic plasticity®*, and there are clear changes to inhibitory cir-
cuitry following fear conditioning®*. In summary, inhibition
in the BLA is a strong regulator of principal cell activity, and it
is clear that inhibitory microcircuits play crucial and cell type-
specific roles in fear conditioning®. However, how the activity of
these microcircuits establishes CS—US contingency is not clear.

Fear conditioning: expression

Within the BLA, auditory input is concentrated in the LA*" and
behavioral tests found that pretraining lesions of the LA, but
not the BL** BM®, or entire BA”, blocks auditory fear con-
ditioning. As described above, this learning is thought to result
from the plasticity of synapses made by CS input to princi-
pal neurons in the LA. Consistent with this result, inhibition
of pyramidal neurons in the LA, but not the BA, impairs fear
learning”. Following associative learning, fear memory is
thought to be stored as a network of excitatory neurons that has
been called the engram™. Individual neurons within the net-
work appear to be allocated by their excitability during fear
acquisition”, and inactivation of this network of neurons dis-
rupts memory retrieval”. This engram has been associated
with pyramidal neurons in the LA”. However, following fear
conditioning, a network of neurons driven by the CS has also
been identified in the BA™.

The primary target of auditory input is the LA, and the main tar-
get for LA pyramidal neurons is the BA™, which in turn send
afferents to the CeM”’, the main output station of amygdala to
hypothalamus and brainstem®”. As expected, single unit record-
ings show selective increase of CS evoked spike firing after audi-
tory fear conditioning in the LA'**!% Tn agreement with the
anatomy, a significant number of neurons in the BL and BM also
acquire CS responsiveness following fear conditioning*~>*!'.
Inactivation of either the BL or the BM individually has lit-
tle impact on fear expression, but inactivation of the entire BA
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abolishes fear expression’’. These results have led to a model
of fear conditioning in which learning requires the LA, fear
expression is gated by BLA projections to the central amy-
gdala, and downstream projections from the central amygdala
initiate the physiological responses underlying the defensive
responses elicited by the CS*'.

Conclusions

In summary, the BLA is a complex structure that plays a central
role in cued auditory fear conditioning. During learning, CS and
US inputs converge in the LA, and the acquisition of fear mem-
ory is driven by contingent CS-US activity that results in an
enhanced CS input by a mechanism that requires local inhibitory
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circuits and activation of NMDA receptors. This enhanced CS
activity results in the formation of a memory trace or engram
within the BLA. Following fear conditioning, subsequent pres-
entation of the CS retrieves the memory trace by activating
a network of neurons in the BA, and the resultant output drives
the CeA, initiating the conditioned response. While the evi-
dence for this general model is compelling, the details of the
mechanisms that initiate synaptic plasticity, how this plasticity
establishes the engram, and the role of local inhibition are not
fully understood, and indeed the current literature provides
some conflicting observations. With the rapid development of
new techniques to interrogate neural function, we have no doubt
that these issues are ripe to be settled.
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