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Pyridoxamine alleviates mechanical
allodynia by suppressing the spinal receptor
for advanced glycation end product-nuclear
factor-jB/extracellular signal-regulated
kinase signaling pathway in diabetic rats

Xin Zhang1,2 , Li Xu1, Weiyun Chen1, Xuerong Yu1, Le Shen1 ,
and Yuguang Huang1

Abstract

Diabetic neuropathic pain is a common complication of diabetes mellitus and requires a substantial amount of societal

resources. Pyridoxamine is an inhibitor of advanced glycation and lipoxidation end products. Several animal and clinical

studies have confirmed that pyridoxamine can inhibit a range of pathological changes in diabetes-induced organ injury and

alleviate certain kinds of neuropathic pain. However, no studies have attempted to explore the effects of pyridoxamine on

diabetic neuropathic pain. We conducted animal experiments to examine whether pyridoxamine could alleviate diabetic

neuropathic pain and to explore the mechanism underlying these effects. Adult male Sprague Dawley rats were randomly

assigned to the normalþ sterile water group, diabeticþ sterile water group, diabeticþ pyridoxamine100 group, diabeticþ
pyridoxamine200 group, diabeticþ pyridoxamine400 group, or normalþ pyridoxamine group. The rats in the diabeticþ
pyridoxamine100, diabeticþ pyridoxamine200, diabeticþ pyridoxamine400, and normalþ pyridoxamine groups received

pyridoxamine at dosages of 100mg/kg/day, 200mg/kg/day, 400mg/kg/day, and 400mg/kg/day, respectively, via intragastric

administration. The rats in the other groups received water daily. Pyridoxamine alleviated diabetic neuropathic pain at least

partially by suppressing the activity of the spinal receptor for advanced glycation end products-nuclear factor-jB/
extracellular signal-regulated kinase signaling pathway; additionally, pyridoxamine decreased advanced glycation end

product-modified low-density lipoprotein, oxidized low-density lipoprotein, and interleukin-1b levels in the serum. The

immunofluorescence staining results revealed that most phosphorylated nuclear factor-jB was localized to neuronal cells

and not to microglia or astrocytes; this pattern may be associated with the upregulated expression of pain-related proteins.

The abovementioned results indicate that pyridoxamine is a promising choice for the clinical treatment of diabetic neuro-

pathic pain. Further investigations need to be carried out to confirm the benefits of pyridoxamine.
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Introduction

The global epidemic of diabetes mellitus (DM) imposes

tremendous burdens on patients and society at large.

Diabetic neuropathic pain (DNP) is a common compli-

cation of DM that occurs in 11% to 21% of DM

patients,1 producing symptoms of numbness, pain, and

paresthesia. DNP treatment consists of two major meth-

ods: glycemic control and interventions targeting patho-

physiological mechanisms.2,3

High blood glucose (BG) levels create an appropriate

environment for the occurrence of some chemical mod-

ifications—for example, glycoxidation and advanced

glycosylation. Advanced glycosylation occurs through

a series of chemical reactions. In the early stage of the

process, glucose forms reversible advanced glycosylation

products with proteins. If these proteins have sufficiently

long half-lives, the early advanced glycosylation prod-

ucts will transform into more stable products called

advanced glycation end products (AGEs).4 The

advanced glycosylation of proteins is believed to be an

important cause of diabetic complications. The forma-

tion of endogenous AGEs can lead to the activation of

several inflammatory signaling pathways.5 Brederson

et al.6 found that a monoclonal antibody against the

receptor for advanced glycation end products (RAGE)

attenuated inflammatory and neuropathic pain in mice,

indicating that the binding of AGEs to RAGE may be

associated with neuropathic pain.
Approaches to the treatment of DNP are multimodal

and multidisciplinary.7 Anticonvulsants, antidepres-

sants, and opioids are the primary pharmacological

choices for DNP treatment. Pyridoxamine is a derivative

of vitamin B6 and plays important roles in whole-body

metabolism.8 Pyridoxamine is also an inhibitor of AGEs

and advanced lipoxidation end products (ALEs). In sev-

eral studies, pyridoxamine treatment significantly

improved the kidney function of diabetic rats,9 reverted

the methylglyoxal-induced impairment of survival path-

ways during heart ischemia,10 and provided protection

in animal models of diabetic retinopathy.11 Yu et al.12

reported that systematic administration of B vitamins

(B1, B6, and B12) may effectively reduce neuropathic

pain after spinal cord ischemia/reperfusion injury, and

a randomized, double-blind, placebo-controlled trial

showed that an AGE inhibitor (benfotiamine [50mg]þ
pyridoxamine [50mg]þmethylcobalamin [500 mg])
decreased pain and inflammation in osteoarthritis

patients.13 The results of these studies indicate that pyr-

idoxamine may be valuable in the treatment of pain.

However, no studies have investigated pyridoxamine as

a treatment for DNP. Therefore, we designed a study to

examine whether pyridoxamine could alleviate DNP and

explored the mechanism underlying these effects.

Materials and Methods

Animals

Adult male Sprague Dawley rats (220–250 g, 6–7weeks)
were used in this study. The study protocol was
approved by the Ethical Committee for Animal
Experimentation of the Peking Union Medical College
Hospital. Rats were housed at 23� 1�C under a 12-h
light/dark cycle for 3 to 5 days before being used in the
experimental procedures. To investigate the dose-
dependent efficacy of pyridoxamine, we randomly
assigned the animals to the normalþ sterile water
(NW) group, diabeticþ sterile water (DW) group, dia-
beticþ pyridoxamine100 (DP100) group, diabeticþ
pyridoxamine200 (DP200) group, diabeticþpyridox-
amine400 (DP400) group, or normalþ pyridoxamine
(NP) group.

Model of DNP

The animals were fasted for 12 h before the induction of
diabetes. Each rat in the DW and DP groups received a
single intraperitoneal injection of streptozotocin (STZ)
(Sigma–Aldrich, St. Louis, USA) at a dose of 60mg/kg
body weight. The STZ was freshly dissolved in citrate
buffer (pH¼ 4.5) at a concentration of 1%. The rats in
the NW and NP groups were injected with citrate buffer
alone. Three days after the STZ injection, diabetes was
confirmed if the BG concentration was >16.7mmol/L,
as determined using a glucometer (Sinocare, Changsha,
China). The threshold for the diabetic BG level was
determined by referring to research articles related to
DNP.14–16 The rats in the DP100, DP200, DP400, and
NP groups received pyridoxamine at dosages of 100,
200, 400, and 400mg/kg/day, respectively, by intragas-
tric administration. The rats in the other groups received
water every day. The experimental protocol is summa-
rized in Figure 1.

Behavioral testing

The paw withdrawal mechanical threshold (PWMT) was
measured using an electronic von Frey esthesiometer
(IITC Life Science, CA, USA) consisting of a hand-
held force transducer and a fixed tungsten wire tip

Figure 1. Experimental protocol.
BG: blood glucose; PWMT: paw withdrawal mechanical threshold;
PWTL: paw withdrawal thermal latency; STZ: streptozotocin; Ig:
intragastric; SDH: spinal dorsal horn.
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with a diameter of 200 mm. Each rat was placed in a

chamber (11� 21� 25 cm) with a wire grid floor for at

least 30min. The researcher applied the tip vertically to

the plantar surface of the hind paw with a gradually

increasing force until paw withdrawal was elicited. The

maximum force was automatically recorded. The aver-

age of three successful readings was used as the PWMT.
A radiant thermal stimulator (BME-410A, China)

was used to assess thermal hyperalgesia. Each rat was

placed in a chamber (11� 21� 25 cm) on a 2-mm thick

glass platform for at least 30min before testing. The

researcher focused a radiant heat source located below

the glass on the plantar surface of the hind paw. The

time to the end point of lifting or licking of the hind

paw was recorded, and the average of three successful

readings was used as the paw withdrawal thermal laten-

cy (PWTL).

Western blot analysis

L3-5 spinal dorsal horns (SDHs) were harvested from

rats anesthetized with sodium pentobarbital (60mg/kg

body weight) and then homogenized in RIPA buffer

(CWBio, Beijing, China) supplemented with protease

inhibitors and phosphatase inhibitors. After centrifuga-

tion (12,000� g for 15min), the supernatants were col-

lected and denatured in SDS-polyacrylamide gel

electrophoresis (SDS-PAGE) loading buffer (Applygen,

Beijing, China) for 10min at 100�C. Tissue extracts were
electrophoresed on 10% SDS-PAGE gels and subse-

quently transferred to polyvinylidene difluoride mem-

branes (Millipore, Billerica, USA). The membranes

were blocked with 5% nonfat dry milk or 5% bovine

serum albumin (BSA) in Tris-buffered saline with

Tween 20 for 1 h before incubation with primary anti-

bodies at 4�C overnight. The following primary antibod-

ies were applied: anti-RAGE (Bioss, Beijing, China),

anti-nuclear factor (NF)-jB (Cell Signaling Technology

(CST), Boston, USA), anti-phosphorylated (p-) NF-jB
(CST, Boston, USA), anti-extracellular signal-regulated

kinase (ERK; CST, Boston, USA), anti-p-ERK (CST,

Boston, USA), anti-p38 (CST, Boston, USA), anti-p-p38

(CST, Boston, USA), anti-c-Jun N-terminal kinase

(JNK; CST, Boston, USA), anti-p-JNK (CST, Boston,

USA), and anti-b-actin (ZSGB-BIO, Beijing, China).

The membranes were washed (three times for 10min

each) and incubated with the corresponding secondary

antibodies for 1 h at room temperature. Signals were

detected by a SuperEnhanced chemiluminescence detec-

tion kit (Applygen, Beijing, China), and protein bands

were visualized with a Tanon 5800 multichannel chemi-

luminescence imaging system (Tanon, Shanghai, China).

ImageJ software (version 1.45 s; NIH, Bethesda, USA)

was used to quantitatively analyze the band densities.

Immunofluorescence staining

Animals were anesthetized with sodium pentobarbital
(60mg/kg body weight) and perfused with phosphate-
buffered saline (PBS) followed by fresh 4% paraformal-
dehyde. L3-5 SDHs were collected from rats, fixed in 4%
paraformaldehyde overnight and cryopreserved in 30%
sucrose at 4�C overnight. Tissues were mounted and sec-
tioned on a cryostat at a thickness of 12 mm. Tissue sec-
tions were permeabilized with 0.3% Triton X-100
(Amresco, Solon, USA) in PBS for 15min, followed by
antigen retrieval with Quick Antigen Retrieval Solution
for Frozen Sections (Beyotime, Jiangsu, China). Then,
the sections were incubated with 3% BSA for 1 h at
room temperature and then with primary antibodies
overnight at 4�C. The following primary antibodies
were used: anti-glial fibrillary acidic protein (GFAP;
Abcam, Cambridge, UK), anti-ionized calcium binding
adaptor molecule 1 (IBA1; Abcam, Cambridge, UK),
anti-NeuN (Abcam, Cambridge, UK), anti-p-NF-jB
(Abcam, Cambridge, UK) and anti-RAGE (Abcam,
Cambridge, UK). The tissue sections were washed
three times and incubated with the appropriate second-
ary antibodies for 1 h at room temperature. After the
slides were washed in PBS, coverslips were applied
with mounting medium with DAPI (ZSGB-BIO,
Beijing, China). The sections were examined on an
Olympus fluorescence microscope (Olympus, Tokyo,
Japan).

Enzyme-linked immunosorbent assay (ELISA)

The levels of interleukin-1b (IL-1b) and tumor necrosis
factor-a (TNF-a) in the SDH and the levels of oxidized
low-density lipoprotein (ox-LDL), AGE-modified low-
density lipoprotein (AGE-LDL), and IL-1b in the
serum were quantified using ELISA kits according to
the manufacturer’s instructions. The ox-LDL and
AGE-LDL ELISA kits were purchased from Xinqidi
Biological Technology (Wuhan, China). The IL-1b and
TNF-a ELISA kits were purchased from Shanghai
Jianglai Biotech (Shanghai, China). Serum samples
were collected four weeks after STZ injection. Tissue
cytokine concentrations were expressed as pg protein/
mL sample.

Statistical analysis

Data are presented as the mean� standard deviation
(SD). The western blot and ELISA data were analyzed
using one-way analysis of variance (ANOVA) with
Dunnett’s test. Two-way ANOVA was used to analyze
the BG, weight, and mechanical pain threshold data.
Fisher’s exact test was used to analyze the immunofluo-
rescence staining data. P< 0.05 was considered statisti-
cally significant.
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Results

Effects of pyridoxamine on BG, weight, and
neuropathic pain

Before the STZ-mediated induction of diabetes, the BG
level and weight of the rats in each group were normal
and not significantly different among the groups. One
week after STZ injection, however, the BG levels in the
DW, DP100, DP200, and DP400 groups were significantly
higher than those in the NW group (Figure 2(a)). The
rate of weight gain in the DW, DP100, DP200, and DP400

groups was much slower than that in the NW group, and
the mean weights of rats in the DW, DP100, DP200, and
DP400 groups were significantly lower than those of
rats in the NW group one week after STZ injection
(Figure 2(b)).

The baseline PWMT was similar among the six
groups. Compared with rats in the NW group, rats in
the DW group exhibited a decrease in PWMT one week
after STZ injection, and the difference between these
groups was statistically significant at two weeks.
The administration of pyridoxamine at dosages of
200mg/kg/day and 400mg/kg/day significantly inhibited
the decrease in PWMT in diabetic rats, and these effects
lasted for at least four weeks; however, no significant
differences were observed between the DP200 and
DP400 groups. The administration of pyridoxamine at
a dosage of 100mg/kg/day did not inhibit the decrease

in PWMT in diabetic rats. No significant differences
were found between the NP group and the NW group
during the four weeks (Figure 2(c)).

Compared to the NW group, the DW group exhibited
a mild decrease in PWTL two weeks after STZ injection;
however, the difference was not significant (Figure 2(d)).

Pyridoxamine inhibited RAGE/NF-jB expression in the
SDH of diabetic rats

RAGE is involved in the pathophysiological changes in
many diabetic complications, such as diabetes-associated
osteoporosis,17 diabetic nephropathy,18 and vascular cal-
cification.19 Because pyridoxamine did not affect base-
line pain sensitivity in nondiabetic animals and because
the optimal dosage was 200mg/kg/day, we investigated
the changes in RAGE expression in the SDH of rats
in the NW, DW, and DP200 groups via western blot
analysis. RAGE expression was significantly upregu-
lated in the DW group compared with that in the NW
group, and pyridoxamine inhibited RAGE expression in
the SDH of diabetic rats (Figure 3(a)).

NF-jB is activated when AGEs (and other ligands)
bind to RAGE.20 Therefore, total NF-jB and p-NF-jB
levels were measured via western blot analysis. Diabetes
significantly increased the phosphorylation of NF-jB in
the DW group compared to that in the NW group, and
the treatment of diabetic rats with pyridoxamine signif-
icantly attenuated this increase (Figure 3(b)).

Figure 2. Changes in baseline characteristics in the six groups of rats. (a) BG levels in the six groups were measured over the 28-day
observation period. (b) Weight changes in the six groups during the observation period. (c) Changes in the PWMT values in the six groups.
(d) Changes in the PWTL values in the six groups. *P< 0.05 vs. the NW group, #P< 0.05 vs. the DW group. N¼ 8 in all the groups.
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IL-1b and TNF-a expression was not upregulated in

the SDH of diabetic rats

The expression of IL-1b and TNF-a is upregulated when

NF-jB is activated.21,22 Therefore, we measured the con-

centrations of IL-1b and TNF-a in the SDH of rats in

the three groups using ELISA kits. However, no differ-

ences were found among the three groups (Figure 4).

Phosphorylated NF-jB and RAGE were mainly

localized in neuronal cells in the SDH of diabetic rats

We used immunofluorescence staining to identify the cell

type in which NF-jB was phosphorylated. The micro-

glial marker IBA1 showed almost no colocalization with

p-NF-jB, and the astrocyte marker GFAP was not colo-

calized with p-NF-jB. In contrast, the neuronal marker

NeuN displayed the best colocalization with p-NF-jB
(Figure 5). Our experiments revealed that most p-NF-

jB was localized in neuronal cells and not in microglia

or astrocytes.
In addition, we explored the subcellular distribution

of RAGE and found results similar to those obtained for

p-NF-jB (Figure 6).

Pyridoxamine suppressed ERK phosphorylation in the
SDH of diabetic rats

Mitogen-activated protein kinases (MAPKs) are activat-
ed in the SDH of diabetic rats and contribute to diabetic
mechanical hyperalgesia.23 We therefore examined the
phosphorylation status of ERK, p38, and JNK in the
SDH of rats in the NW, DW, and DP200 groups.
Diabetes significantly increased ERK, p38, and JNK
phosphorylation in the SDH. Treatment with pyridox-
amine significantly inhibited the increase in p-ERK in
the SDH but did not affect the phosphorylation of
JNK or p38 (Figure 7).

Pyridoxamine reduced the AGE-LDL, ox-LDL, and IL-
1b concentrations in the serum of diabetic rats

AGE-LDL and ox-LDL interact with monocytes, mac-
rophages, or endothelial cells, leading to oxidative and
inflammatory responses.24–26 We measured the AGE-
LDL and ox-LDL concentrations in the serum of rats
in the three groups and found that pyridoxamine sup-
pressed the diabetes-induced increase in AGE-LDL and
ox-LDL concentrations (Figure 8(a) and (b)).

IL-1b levels are elevated early in the course of type 1
diabetes (T1D), possibly contributing to T1D progres-
sion27 and neuropathic pain.28 Our results showed that

Figure 3. Expression of RAGE/NF-jB in the three groups. (a) Representative western blots and statistical graphs showing the RAGE
protein levels in the SDH of rats in the three groups. (b) Representative western blots and statistical graphs showing the expression of
p-NF-jB in the SDH of rats in the three groups. The band densities were normalized to those of the NW group. *P< 0.05 vs. the NW
group, #P< 0.05 vs. the DW group. N¼ 5 per group.
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IL-1b levels were elevated in the serum of rats in the DW

group and that pyridoxamine inhibited this increase

(Figure 8(c)).

Discussion

Previous studies have reported that pyridoxamine may

be useful in relieving the pain associated with spinal cord

ischemia/reperfusion injury and osteoarthritis.12,13 The

objective of this study was to explore whether pyridox-

amine, an inhibitor of protein glycation, could relieve

DNP and systemic inflammation. To our knowledge,

this study is the first to investigate the effect of pyridox-

amine on DNP and to explore its underlying mecha-

nisms. We demonstrated that pyridoxamine

administration alleviated DNP at least partially by sup-

pressing spinal RAGE-NF-jB/ERK signaling and ame-

liorated systemic inflammation by reducing the serum

concentrations of AGE-LDL, ox-LDL, and IL-1b in
diabetic rats.

We used three dosages (100mg/kg/day, 200mg/kg/
day, and 400mg/kg/day) to explore the dose-dependent
effects of pyridoxamine on DNP. Both the group that
received 200mg/kg/day and the group that received
400mg/kg/day showed significant improvements in
DNP; however, there were no significant differences in
DNP between these two groups. We selected the pyridox-
amine dosage of 200mg/kg/day by referring to other pub-
lished articles.29–31 Furthermore, this dosage has been
shown to significantly inhibit methylglyoxal-induced
AGE formation and RAGE activation,10,32 and a previ-
ous study demonstrated that RAGE activation is associ-
ated with mechanical allodynia.33 Therefore, we chose
200mg/kg/day as the optimal dosage of pyridoxamine.

Previous literature suggests that STZ-treated animals
uniformly exhibit thermal hypersensitivity. We tried

Figure 5. Distribution of p-NF-jB immunoreactivity in different cells in the SDH of diabetic rats. Representative images showing the
double immunofluorescence staining of p-NF-jB (red) and IBA1 (green), GFAP (green) or NeuN (green). *P< 0.05 vs. IBA1 coexpression,
#P< 0.05 vs. GFAP coexpression.

Figure 4. Concentrations of IL-1b and TNF-a in the SDH of rats in the three groups. (a) Concentrations of IL-1b. (b) Concentrations of
TNF-a. N¼ 5 per group.
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Figure 7. Expression of activated MAPKs in the SDH of rats in the three groups. (a) Representative western blots and statistical graphs
showing the expression of p-ERK. (b) Representative western blots and statistical graphs showing the expression of p-p38. (c)
Representative western blots and statistical graphs showing the expression of p-JNK. The band densities were normalized to those of the
NW group. *P< 0.05 vs. the NW group, #P< 0.05 vs. the DW group. N¼ 5 per group.

Figure 6. Distribution of RAGE immunoreactivity in different cells in the SDH of diabetic rats. Representative images showing double
immunofluorescence staining of RAGE (red) and IBA1 (green), GFAP (green) or NeuN (green). *P< 0.05 vs. IBA1 coexpression, #P< 0.05
vs. GFAP coexpression.

Zhang et al. 7



many methods, such as keeping the glass dry, using a
fixed-power heat source, and testing when the rats were
calm, to control the factors that may affect the PWTL
results. However, we found no significant differences in
the PWTL between the NW group and DW group. A
PubMed search identified one other published article
showing similar results.34 Unknown factors may have
resulted in the lack of differences in the PWTL between
the NW and DW groups.

RAGE is a transmembrane receptor that belongs to
the immunoglobulin gene superfamily. RAGE ligands
include AGEs, high mobility group box 1 (HMGB1),
S100/calgranulins, and b-amyloid, most of which can
induce inflammatory and cell migration processes.35 In
addition to its classical effects, RAGE was found in
recent studies to be associated with the occurrence of
neuropathic pain. The levels of methylglyoxal, RAGE,
and phosphorylated signal transducer and activator of
transcription 3 (p-STAT3) were increased in the dorsal
horn of bortezomib-treated rats, and these increases
were accompanied by obvious mechanical allodynia.
However, the intrathecal injection of a methylglyoxal
scavenger, RAGE blocker or STAT3 inhibitor attenuat-
ed the bortezomib-induced mechanical allodynia and
central sensitization.33 Therefore, RAGE/STAT3 path-
way activation plays important roles in bortezomib-
induced mechanical allodynia. Another study indicated
that RAGE mRNA expression in the lumbar dorsal root
ganglion (DRG) was higher in injured rodents than in
sham-injured rodents by postinjury day 28 and that
RAGE antibody administration alleviated mechanical
hyperalgesia.36 Our results showed that RAGE expres-
sion was upregulated in the dorsal horn of rats 28 days
after STZ injection and that pyridoxamine administra-
tion abrogated this change. We ascribed this phenome-
non to the AGE-scavenging ability of pyridoxamine.
Together, these results suggest that RAGE may play
important roles in the mechanism underlying neuropath-
ic pain.

Upon RAGE stimulation, the transcription factor
NF-jB is activated,37,38 and activated NF-jB can

upregulate the expression of RAGE via a positive feed-
back loop.20,39 In this study, spinal RAGE expression
was significantly higher in the DW group than in the
NW group, and pyridoxamine administration inhibited
spinal RAGE expression. NF-jB phosphorylation
showed similar trends to RAGE expression. These
results indicated that pyridoxamine inhibited the
RAGE/NF-jB positive feedback loop, which was prob-
ably one of the mechanisms by which it alleviated DNP.

NF-jB activation in glial cells can induce inflamma-
tion and pain.40 However, we found minimal levels of
p-NF-jB in glial cells in the SDH of diabetic rats, and
IL-1b and TNF-a levels were not increased in the SDH
of diabetic rats. The western blotting and immunofluo-
rescence staining results showed that diabetes increased
the phosphorylation of NF-jB in neurons. Previous
studies have reported that NF-jB activation in neurons
is associated with neuroprotection41 and with learning
and memory.42 One study reported that in DRG neu-
rons, p65 can interact with the P2X3 receptor gene pro-
moter and contribute to P2X3 receptor sensitization and
diabetic pain hypersensitivity.43 The NF-jB signaling
pathway is also involved in the upregulation of Nav1.7
in DRG neurons in rats with diabetic neuropathy.44

Therefore, the activation of NF-jB in spinal neurons
may be associated with the upregulation of pain-
related proteins; further investigation is necessary to
interpret the meaning of this change.

MAPKs are a family of protein Ser/Thr kinases com-
prising ERK1/2, JNK1/2/3, p38 isoforms (a, b, c, and
d), and ERK5 and play important roles in proliferation,
differentiation, apoptosis, immunity, and inflamma-
tion.45–47 Several studies have indicated that the activa-
tion of MAPKs in the SDH contributes to DNP.23,48,49

Certain drugs have been shown to relieve DNP by inhib-
iting the excessive activation of MAPKs.50,51 Our results
indicate that pyridoxamine suppresses ERK phosphory-
lation in the SDH, which is likely another mechanism by
which pyridoxamine alleviates DNP. However, pyridox-
amine did not affect phosphorylation of spinal p38 or
JNK. In addition to MAPKs, the c-fos protein is also a

Figure 8. Concentrations of AGE-LDL, ox-LDL and IL-1b in the serum of rats in the three groups. (a) Concentrations of AGE-LDL. (b)
Concentrations of ox-LDL. (c) Concentrations of IL-1b. *P< 0.05 vs. the NW group, #P< 0.05 vs. the DW group. N¼ 8 per group.
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neural marker of DNP. Compared with control rats,
STZ-injected rats presented significantly more c-fos-
positive neurons.52 We also examined whether pyridox-
amine could affect the number of c-fos-positive neurons
in the SDH of diabetic rats but found that pyridoxamine
had no effect (data not shown). DNP is the result of
multiple complex mechanisms, of which pyridoxamine
affects some but not all.

RAGE signaling pathways and MAPK signaling are
closely linked. ERK phosphorylation is an important
step in the process of RAGE-mediated NF-jB activa-
tion;38,53 p38 and JNK are phosphorylated when RAGE
is activated.54 Meng et al.55 discovered that AGEs can
activate the Raf/MEK/ERK signaling pathway through
interactions with RAGE, induce autophagy, and regu-
late the proliferation and function of hFOB1.19 cells. In
our research, diabetes significantly upregulated RAGE
expression and ERK phosphorylation in the dorsal
horn, and pyridoxamine inhibited this change. By refer-
ring to the abovementioned literature, we hypothesized
that ERK phosphorylation occurs downstream of
RAGE activation.

Under conditions of high plasma glucose levels, pro-
teins can be modified by glucose and form AGEs.4 LDL
is susceptible to AGE modification, and AGE-LDL can
induce proinflammatory cytokine production in endo-
thelial cells and macrophages.56 The results of the pre-
sent study indicated that pyridoxamine can suppress the
increase in AGE-LDL levels in the serum of diabetic
rats. In addition, hyperglycemia can induce oxidative
stress in diabetic subjects.57 When lipoproteins are
exposed to reactive oxygen species (ROS), amino acid
residues on apolipoproteins may be oxidized and form
ox-LDL.58 Previous studies have shown that ox-LDL
can stimulate mononuclear macrophages and activate
the NLR family, pyrin domain-containing 3 (NLRP3)
inflammasome, leading to the production of IL-1b.59,60

In this study, pyridoxamine significantly reduced the
serum concentrations of ox-LDL and IL-1b in diabetic
rats. Systemic inflammation may contribute to the
occurrence of pain.61 The abovementioned results indi-
cate that pyridoxamine can alleviate systemic inflamma-
tion in diabetic rats, potentially contributing to the
alleviation of DNP.

Diabetic rats expressed elevated levels of IL-1b in the
serum but not dorsal horn, which seems paradoxical. We
analyzed this phenomenon and attributed it to three
causes. First, proteins in the blood were directly exposed
to high glucose conditions, and various kinds of proteins
are more susceptible to advanced glycosylation in the
blood than in the dorsal horn. Second, the number of
inflammatory cells is higher in the blood than in the
dorsal horn, a factor that could contribute to the levels
of IL-1b in the serum. Third, RAGE and p-NF-jB were
localized in neural cells but not glial cells in the dorsal

horn; therefore, no changes in IL-1b expression in the

dorsal horn were found among the three groups.
In summary, pyridoxamine alleviated DNP by inhib-

iting the RAGE-NF-jB/ERK signaling pathway in the

SDH; moreover, pyridoxamine suppressed the increase

in AGE-LDL, ox-LDL, and IL-1b levels in the serum of

diabetic rats, thus potentially contributing to the mitiga-

tion of systemic inflammation. Therefore, pyridoxamine

is a promising drug for the clinical treatment of DNP.

Further animal and clinical investigations need to be

carried out to confirm the benefits of pyridoxamine.
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