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Abstract

The Nedd4 family contains several structurally related but functionally distinct HECT-type

ubiquitin ligases. The members of the Nedd4 family are known to recognize substrates

through their multiple WW domains, which recognize PY motifs (PPxY, LPxY) or phospho-

threonine or phospho-serine residues. To better understand protein interactor recognition

mechanisms across the Nedd4 family, we report the development and implementation of a

python-based tool, PxYFinder, to identify PY motifs in the primary sequences of previously

identified interactors of Nedd4 and related ligases. Using PxYFinder, we find that, on aver-

age, half of Nedd4 family interactions are likely PY-motif mediated. Further, we find that

PPxY motifs are more prevalent than LPxY motifs and are more likely to occur in proline-rich

regions and that PPxY regions are more disordered on average relative to LPxY-containing

regions. Informed by consensus sequences for PY motifs across the Nedd4 interactome,

we rationally designed a focused peptide library and employed a computational screen,

revealing sequence- and biomolecular interaction-dependent determinants of WW-domain/

PY-motif interactions. Cumulatively, our efforts provide a new bioinformatic tool and expand

our understanding of sequence and structural factors that contribute to PY-motif mediated

interactor recognition across the Nedd4 family.

Introduction

Neuronal precursor cell-expressed developmentally downregulated 4 (Nedd4) is the founding

member of a family of HECT-type E3 ubiquitin ligases that share a common architecture but

have distinct cellular functions. The Nedd4 family is characterized by a multi-domain architec-

ture comprised, from N- to C-terminus respectively, of a C2 domain for membrane localiza-

tion, two to four WW domains for substrate recognition, and a catalytic HECT domain (Fig

1A) [1–5]. As the final enzyme in the ubiquitin signaling cascade, the Nedd4 family of HECT-

type E3 ubiquitin ligases receives ubiquitin from a ubiquitin-E2 conjugating enzyme thioester

adduct. The ubiquitin-HECT E3 conjugate then passes ubiquitin to a substrate protein via iso-

peptide bond formation at target lysine residues. Nedd4 and related HECT-type ligases are

thus responsible for conferring substrate specificity in the ubiquitin signaling pathway.
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Fig 1. The Nedd4 family of ligases contains conserved WW domains for interactor recognition. (A) Nedd4 and

related ligases contain 2–4 WW domains that recognize interactors containing a PY motif (PPxY, LPxY) or

phosphorylated threonine or serine residues. (B) Alignment of the four WW domains from prototypical member

Nedd4 shows moderate sequence similarity and highlights conserved residues, including the two characteristic

tryptophan residues (indicated by red arrows). (C) Solution state NMR structure of the Nedd4 WW domain 3 (grey) in
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Understanding the specificity of the Nedd4 family of ubiquitin ligases is of particular interest

due to the role of Nedd4 in the regulation of proteostasis in various conditions including can-

cers [6–8] and neurodegenerative disorders [9–16] and with recent insights into the potential

of Nedd4 to serve as a therapeutic target [17–25].

It has been established that the Nedd4 ligases recognize substrates primarily through their

WW domains, small structural domains characterized by a three-strand, anti-parallel β-sheet

with two conserved tryptophan residues ~20 amino acids apart (Fig 1B) [8, 26–31]. WW

domains are found in a variety of proteins and bind primarily to proline-rich regions of target

proteins. In the Nedd4 family, WW domain-mediated interactor recognition occurs via bind-

ing of the WW domain to a substrate PY motif (PPxY or LPxY, where x can be any amino

acid; Fig 1C), or phospho-threonine or phospho-serine residues (pT and pS, respectively) [26–

28, 30–36]. There have been extensive efforts to characterize the nature of Nedd4 family ligases

and their interactors, from solution state NMR [26, 30, 33, 37–40] and x-ray crystallography

[29] characterization of WW domain-PY motif complexes and studies of WW domain-PY

motif affinities [41], to affinity-based pull-down assays [42] and high-throughput microarray

studies of Nedd4 binders. Through these efforts, significant information about the interactions

of Nedd4 family has become available with ~100 to over 700 interactors annotated for different

members of the ligase family (Table 1). Comparative analysis of the annotated interactors

across the Nedd4 family indicates little overlap between the interactomes of the ligases, indi-

cating that the members of the Nedd4 family are functionally distinct despite high structural

conservation (Fig 2A). Gene ontology annotation [43, 44] of the interactomes furthers this,

revealing that there are similar trends amongst affected biological processes but distinct pat-

terns in protein classes that interact with each Nedd4 type ligase (Fig 2B).

Using this available interactome data, we sought to analyze the features defining Nedd4

substrate specificity and the PY-dependent substrates of the ligase family. Through this effort,

we aimed to characterize the prevalence of canonical PY motifs (both PPxY and LPxY) in the

known Nedd4 family interactome to determine the frequency of PY-mediated interactor rec-

ognition. Further, we sought to determine the preferred amino acid identity at the x position

and the sequence context of the PPxY and LPxY motifs to provide insight into the nature of

the protein regions where these domains occur. To this end, we developed a python-based

tool, termed PxYFinder, for rapid sequence-based analysis of the Nedd4 family interactome.

Analysis of the primary sequences of known Nedd4 family interactors using PxYFinder

complex with a PY motif peptide (red) from a known Nedd4 substrate (PDB ID: 2KPZ, unpublished) reveals key

residues (blue) involved in peptide binding.

https://doi.org/10.1371/journal.pone.0258315.g001

Table 1. Number of previously identified interactors for each Nedd4 family ligase in the BioGrid protein-protein

interaction database.

Ligase # of annotated interactors

Nedd4 348

ITCH 233

SMURF1 425

SMURF2 150

WWP1 112

WWP2 763

HECW1 26

HECW2 308

https://doi.org/10.1371/journal.pone.0258315.t001
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Fig 2. UpSet analysis and Gene Ontology annotation reveal that Nedd4 family ligases are functionally distinct. (A)

Cross-reference of annotated interactors in the BioGrid database reveals that approximately one quarter of all interactors of

the Nedd4 family are recognized by 2+ ligases, revealing little overlap in the known interactomes of the Nedd4 family. Data

analysis performed with the UpSet plot tool [76] and graphic annotated in Adobe Illustrator. (B) Gene ontology analysis via

the PANTHER database [43, 44] reveals that each Nedd4 family ligase interactome has similar trends in biological process

(top) but distinct patterns in protein class composition (bottom).

https://doi.org/10.1371/journal.pone.0258315.g002
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revealed that PY-motifs occur in ~50% of the Nedd4 family interactome, with PPxY motifs

occurring more frequently than LPxY motifs. Further bioinformatic analysis reveals that PPxY

motifs are both more likely to occur in disordered and in solvent accessible regions than LPxY

regions. Next, using consensus sequence data from the PY motif-containing interactors of the

Nedd4 interactome, we conducted a computational analysis of PY peptide affinity using a

rationally designed peptide library. Specifically, we screened combinations of the most com-

mon residues at the x–1 and x position (where x–1 denotes the residue immediately preceding

PPxY or LPxY) using a combination of template-based peptide docking [45] and molecular

mechanics-based binding affinity prediction [46] to identify residue-dependent trends in pep-

tide binding affinity. Finally, to gain insight into PY-independent Nedd4/substrate interac-

tions, we conducted an analysis of the non-PY motif containing Nedd4 substrates to identify

possible alternative modes of interaction with the ligase. To this end, we screened non-PY sub-

strates against the PhosphoSite database [47] to identify phospho-proteoforms that may drive

Nedd4 recognition. Cumulatively, these analyses provide insight into the predominance and

nature of PY-motif dependent protein-protein interactions versus PY-independent interac-

tions in the Nedd4 family interactome and establishes a platform for further experimental

interrogation of interaction specificity and affinity in the Nedd4 family of ubiquitin ligases.

Results

Identification and analysis PY motif sequences in the Nedd4 family

interactome

To begin our analysis of PY motif-mediated interactions in the Nedd4 family, we first sought

to determine the prevalence of PY motifs amongst interactors of the family. To this end, we

retrieved interactome data for the Nedd4 family ligases (Nedd4-1, Nedd4-2, ITCH, WWP1,

WWP2, SMURF1, SMURF2, HECW1, HECW2) from BioGrid [48, 49] using Homo sapiens as

an organismal filter. Across the BioGrid database, the reported interactors have been identified

via various means (affinity capture mass spectrometry, affinity capture western blotting, two

hybrid, co-localization, biochemical activity assays, etc.). It is important to note that these tech-

niques may also result in identification of indirect interactors (i.e. proteins identified through

association with a multi-protein complex), and this idea is discussed further below. Across the

Nedd4 ligase family, there are ~100 to over 700 annotated interactors for each of the ligases

(Table 1; Fig 2), so we sought a rapid method to screen the interactor sequences for the pres-

ence or absence of PY motifs. Since PY motifs can be identified from the protein primary

sequence and do not rely on predicted or annotated protein secondary structure or conforma-

tion, we developed a python-based script for rapid analysis of protein primary sequence to

identify PY motifs (S1A Fig). This script, referred to as PxYFinder, was first validated by ana-

lyzing a published dataset in which PY motifs were annotated amongst a pool of proteins. To

this end, we chose to employ a dataset by Persaud and co-workers [34] in which Nedd4 inter-

actors were characterized via proteome array and PY motifs in identified Nedd4 interactors

were annotated. This dataset included binding partners and ubiquitinated substrates of human

Nedd4-1 and Nedd4-2 as well as rat Nedd4-1. Using the published dataset, available as S1

Table (Persaud et al., Mol Syst Biol, 2009, S1 Table at DOI: 10.1038/msb.2009.85) [34], we

compiled a list of all PY-motif containing binding partners or substrates identified in screens

of all three Nedd4 forms (human Nedd4-1, human Nedd4-2, and rat Nedd4-1). This list was

subsequently analyzed with PxYFinder, which revealed that 69 of the 82 reported PY-contain-

ing proteins were identified as PY containing proteins with PxYFinder (S1B Fig, S1 Table). Of

the identified interactors screened, 13 proteins were annotated as PY motif containing proteins

by Persaud and co-workers but were not identified as PY-containing in our analysis (S1B Fig).
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To understand this discrepancy, the 13 proteins (canonical and all isoforms) were analyzed

manually, revealing that the 13 proteins did not contain the PY motifs that they were reported

to contain in the Persaud dataset (S2 Table) [34]. We further manually confirmed that the

reported PY motifs were present in the PY-containing proteins that PxYFinder identified (S1

Table). This revealed that all hits (PY containing) and non-hits (no PY motif) as determined

with PxYFinder were correctly classified. With this validation, we feel confident that our tool

can rapidly identify PY motifs across primary sequences of a large set of proteins.

Using PxYFinder, we identified the prevalence of PPxY and LPxY motifs in the previously

interactors of the Nedd4 family ligases as annotated in the BioGrid database (Fig 3A). To this

end, we found that that, on average 33.3% of Nedd4 family interactors contain PPxY motifs

while 15.7% contain LPxY and 51.0% contain neither PPxY or LPxY motifs. PY motifs appear

more prevalent in the Nedd4 family interactomes relative to the annotated Homo sapiens pro-

teome. Our analysis revealed that for all ligases studied, PPxY motifs were more prevalent in

the interactomes than LPxY motifs. Interestingly, Nedd4-1, Nedd4-2, and ITCH showed simi-

lar trends wherein their interactomes were distributed with approximately 40% containing

PPxY motifs, 20% containing LPxY motifs, and 40% containing no canonical PY motif.

WWP1 showed similar trends with its distribution skewed slightly toward PPxY motif preva-

lence. For WWP2, SMURF1, SMURF2, HECW1 and HECW2, however, 50% or greater of the

interactome lack canonical PY motifs. These results show that on average, approximately 50%

of the known Nedd4 family interactome contains a canonical PY motif, providing a sequence-

based evidence of the likely mode of interaction between Nedd4 and these substrates.

To further understand PY-dependent interactor recognition in the Nedd4 family interac-

tome, we sought to characterize sequences of identified PY motifs to determine 1) if there was

conservation of amino acid identity at the x position in the motif and 2) if there are character-

istic features of the protein sequences up and downstream of the PY motif. To this end, we

used PxYFinder to extract a slice of the FASTA string of each PY motif-containing interactor

that included the identified motif and the 10 amino acids before and after the PY motif. After

collecting these extracted sequences across the interactome, we looked for consensus

sequences using the WebLogo tool [50] (Fig 3B, S2 Fig). Here, we see moderate conservation

of residue identity at the x position of the PPxY motif across the Nedd4 family, with all but

SMURF2, HECW1 and HECW2 having proline, serine, and glycine as the three highest proba-

bility amino acids in the x position in the consensus sequences. For LPxY containing proteins,

the highest probability residue for the x position is shown to be serine or proline for all mem-

bers of the Nedd4 family except for SMURF1, HECW1 and HECW2. Interestingly, the

WebLogo analysis indicates that PPxY motifs are more likely to occur in proline rich regions

of the substrate protein than LPxY motifs. In fact, proline is the highest probability residue at

almost all of the up and downstream positions for PPxY motifs in substrates of Nedd4–1,

ITCH, WWP1, WWP2, SMURF2 and HECW2. On the other hand, there is little sequence

consensus up- and downstream of LPxY across the Nedd4 family, with a distribution of

charged, polar, and non-polar residues present as highest probability residues across the con-

sensus sequences.

To better understand the propensity of PY motifs to occur in proline-rich regions, we next

sought to determine if proline-rich regions are enriched for PPxY motifs relative to chance. To

this end, we queried the UniProt database for reviewed Homo sapiens protein sequences with

annotated compositional bias for proline residues and analyzed these proteins using PxYFin-

der. This analysis revealed that, in a random sample of ~1300 proteins with annotated proline-

rich regions, 16.8% contain PPxY motifs and 11.3% contain LPxY motifs. This analysis reveals

that PY motifs (both PPxY and LPxY) occur at lower rates in proline rich regions in general

compared in the Nedd4 family interactome (average prevalence in the Nedd4 family was
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found to 33.3% and 15.7% for PPxY and LPxY, respectively). The prevalence of PPxY in these

proline-rich regions is higher than in the annotated Homo sapiens proteome, where 11.7% of

proteins contained PPxY sequences (Fig 3A).

To gain further insight into the structural context of PY motifs in the Nedd4 family interac-

tomes, we sought to characterize the accessibility of PY motifs and the likelihood that these

Fig 3. Analysis of PY motifs in interactomes of the Nedd4 family of ubiquitin ligases. (A) Prevalence of PPxY and

LPxY motifs in the interactome (from BioGrid database) [48, 49] across the Nedd4 family of ubiquitin ligases. (B)

Representative WebLogo depictions of PY motif consensus sequences from all PPxY and LPxY motifs ± 10 amino

acids for Nedd4 and ITCH. The WebLogo [50] diagrams for the remainder of the Nedd4 family ligases are shown in S2

Fig.

https://doi.org/10.1371/journal.pone.0258315.g003
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motifs occur in ordered or disordered protein regions. To this end, a series of bioinformatic

algorithms were employed to analyze the relative solvent accessible surface area (RSA) [51],

disorder [52], and polyproline helix propensity [53] of the PY motifs identified across the

Nedd4 interactome. As a case study, these analyses were conducted with the PY motifs identi-

fied in the interactomes of Nedd4-1, WWP2, and SMURF1 as these members of the Nedd4

family have the largest annotated interactome datasets (Fig 2A) and show distinct patterns in

the types of protein classes with which they interact (Fig 2B).

For a ligase to recognize an interacting protein through a WW domain/PY motif interac-

tion, it is necessary for the PY motif to be accessible for binding to the WW domain. As a mea-

sure of relative accessibility of PY motifs, we sought to characterize the RSA of the PY motifs

across the Nedd4-1, WWP2 and SMURF1 interactomes. To this end, bioinformatic tool Net-

SurfP-2.0 was employed [51]. This platform employs a deep learning-based algorithm for high

throughput prediction of various protein features from primary sequences including propen-

sity for secondary structure formation (helix, coil, or sheet) and solvent accessible surface area.

For this analysis, the full primary sequence of each PY-containing interactor was used as we

anticipated that analysis of the extracted PY sequence alone may provide insufficient sequence

and structural context. Interactors were further delineated by PPxY containing versus LPxY

containing. As a measure of accessibility, RSA is calculated as a ratio of the total accessible sur-

face area (ASA) of each residue in a protein structure to the maximum possible solvent accessi-

ble surface area of that residue [51, 54, 55]. Calculated RSA, therefore, is value between 0 and 1

where a larger value indicates a higher degree of relative solvent accessibility of a residue or

protein region and a lower value indicates a less accessible or more “buried” residue. The Net-

SurfP-2.0 algorithm delineates accessible from buried residues with a threshold RSA value of

0.25 [51], such that a residue with RSA< 0.25 is considered buried in the core of the protein

and therefore would not be accessible for participation in protein-protein interactions.

Calculation of the predicted RSA of PY motifs across the Nedd4-1 interactome revealed

that identified LPxY motifs are more buried than PPxY motifs (Fig 4), with greater than 25%

of LPxY motifs having average RSA values less than 0.25 across the motif. Over half of the

LPxY motifs have calculated RSA values between 0.25 and 0.5, and just under 25% of the LPxY

motifs have high accessibility scores (RSA > 0.5). In contrast, a majority of PPxY motifs have

calculated RSA values over 0.5, indicating that a majority of PPxY motifs have higher degrees

of solvent accessibility compared to LPxY motifs. This trend is consistent across the motifs

analyzed in interactors of SMURF1 and WWP2. This result provides insight into the availabil-

ity of PY motifs to engage in WW domain mediated interactions and indicates that the pres-

ence alone of a PY motif in the primary sequence does not guarantee that the PY motif is

accessible for substrate recognition. Therefore, it is important to consider the context of sec-

ondary structure in complement with the primary sequence of putative WW domain

substrates.

To further explore sequence context, we next employed the IUPred2A [52] tool to calculate

the relative order of interactor sequences containing PPxY and LPxY motifs in Nedd4-1,

WWP2, and SMURF1. Comparison of the average relative order (wherein a score > 0.5 indi-

cates disorder) of these sequences reveals that, on average across the Nedd4-1 interactome,

PPxY motifs occur in more disordered regions that LPxY motifs (Fig 5A). In the case of

WWP2 and SMURF1, this trend was retained (S3A Fig). This result is also consistent with the

observed trends in RSA in PPxY containing proteins relative to LPxY, where PPxY motifs are

on average more solvent accessible than LPxY motifs. We anticipate that this may be a result of

PPxY motifs occurring in more proline-rich regions than LPxY motifs (Fig 3B; S2 Fig) as pro-

line-rich regions are associated with intrinsic disorder due to the geometric constraints

imposed by the backbone of proline residues [56, 57]. To explore this further, we then

PLOS ONE Predicting protein-protein interactions in the Nedd4 family of ubiquitin ligases

PLOS ONE | https://doi.org/10.1371/journal.pone.0258315 October 12, 2021 8 / 25

https://doi.org/10.1371/journal.pone.0258315


Fig 4. Relative solvent accessible surface area (RSA) of PY motifs from the Nedd4-1, SMURF1, and WWP2

interactome reveals that PPxY motifs are more solvent accessible than LPxY motifs. RSA, calculated with

NetSurfP-2.0 bioinformatic algorithm [51], is determined by the ratio of total accessible surface area of a residue in the

protein relative to maximum accessible surface area of the residue itself. A score of 0.25 or lower is indicative of

“buried” residues, or those that would be inaccessible for engaging in protein-protein interactions. Buried residues
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computationally flipped the identity of the first residue in the PY motif (i.e. P in PPxY substi-

tuted with L to afford LPxY) and re-analyzed the sequence disorder using IUPred2A (S3B Fig).

In this control study, we observed that the difference in observed disorder is decreased upon

substitution of proline for leucine or vice versa. This result indicates that, while the PPxY

motifs appear to occur in more disordered regions, the presence of the first proline residue in

the motif is likely a large contributor to that disorder.

(RSA< 0.25) are indicated in blue, moderately accessible (0.25< RSA< 0.5) in red, and highly accessible (RSA> 0.5)

in green. Data visualized with Prism GraphPad.

https://doi.org/10.1371/journal.pone.0258315.g004

Fig 5. Prediction of relative order of PY-motif containing regions from the Nedd4 interactome. PY motif

sequences ± 20 amino acids were extracted from the Nedd4 interactome using PxYFinder script and analyzed using

(A) IUPred2A [52] and (B) PPIIPred [53] bioinformatic tools to determine relative order and propensity to form

polyproline II structure, respectively. Data shown as average ± S.D. of 109 (PPxY) and 41 (LPxY) sequences. Statistical

analysis using a paired t-test (to compare at each residue, numbered 1–44 above) reveals a statistically significant

difference in predicted order between the PPxY and LPxY sequences (p< 0.0001 for both IUPred and PPIIPred

scores). Analysis across the sequence using an unpaired Welch’s t-test also shows significant differences (p< 0.0001

for IUPred; p< 0.002 for PPIIPred).

https://doi.org/10.1371/journal.pone.0258315.g005
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We then sought to analyze the effect of proline prevalence on the predicted order of the PY

motif-containing regions via PPIIPred [53], a bioinformatic tool for identification of polypro-

line II (PPII) secondary structure, an extended helix-like structure that can occur in the pres-

ence of polyproline stretches. PPIIPred analysis reveals that PPxY motifs are more likely to

display PPII structure immediately before or at the PY motif (residues 20–24 in extracted

sequence slices) as compared to LPxY motifs (Fig 5B). The sequences up and downstream of

the PY motifs, however, show similarly low propensities for PPII structure on average. We

anticipate that the increased prevalence of proline residues in PPxY-containing regions con-

tributes to relative disorder but does not induce PPII structure on average.

Rational design of PY motif peptide library for computational analysis

Analysis of previously resolved PY motif/WW domain complex structures from Nedd4 show

moderate conservation of PY peptide backbone conformation regardless of primary sequence

(Fig 6A). To better understand the effect of PY sequence on WW domain binding, we sought to

determine if the sequence variants of the PY motif affected the predicted affinity with which the

substrate of interest binds to Nedd4. To this end, we began with a previously resolved structure

of a Nedd4 WW domain bound to a PY-motif peptide from a known substrate, sodium channel

ENaC (PDB ID: 2M3O) as our model complex [30]. Using the ENaC peptide (sequence: TAPP-

PAYATLG, with PY motif in bold) as a template, we designed a peptide library based on the

previously described consensus sequences. We chose to vary the residues at the x and x–1 posi-

tion of the PY motifs (where x–1 is the residue immediately preceding PPxY or LPxY) as these

are the residues which span the binding interface between the PY peptide and WW domain

(Fig 6B). Based on the consensus sequences (Fig 3B, S2 Fig), we generated 15 variants each for

PPxY and LPxY peptides using the template peptide (TAx–1PPxYATLG or TAx–1LPxYATLG)

with all combinations of the three and five highest probability residues at the x–1 and x posi-

tions, respectively (Fig 6C). It should be noted that, as there is not a previously characterized

complex of a hNedd4 WW domain bound to a PY-peptide with the LPxY motif, we opted to

use the same template peptide for screening of both PPxY and LPxY motifs to allow for

direct comparison across the suite without variation outside of the peptide core. Cumulatively,

this design afforded 30 peptides in total for computational screening against a Nedd4 WW

domain.

Docking and molecular mechanics analysis of WW domain/PY motif

interactions

Prior to computational analysis of our rationally designed peptide library, we sought to deter-

mine the WW domain scope required to capture any sequence-dependent variation in WW

domain binding across the Nedd4 family. To this end, we compared the conservation of WW

domain sequences across the family of ligases. Each ligase contains 2–4 WW domains (Fig

1A), with moderate sequence similarity across the family (Fig 1B and S4A and S4B Fig). Analy-

sis of key residues that interact with peptide substrates shows moderate conservation of the

binding interface (S4C Fig). These residues, which are primarily located in the concave peptide

binding cleft of the three-stranded β-sheet structure, drive the direct interaction of the WW

domain with the PY motif (S4C Fig). Alignment of three representative WW domain struc-

tures with varied residue identity in the binding interface (Nedd4–1 (WW3) and ITCH (WW3

and WW4), all of which have been shown to bind ENaC, the substrate from which the peptide

library was derived) shows conservation of secondary structure (S4C Fig). Additionally, analy-

sis with MolProbity [58] and KiNG [59] indicate that the interactions between the peptide sub-

strate and WW domain are predominantly mediated by van der Waals contacts with few
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Fig 6. Rational design and computational analysis of PY motif peptide library to predict residue-specific changes

in binding affinity. (A) Nedd4 WW domain (PDB ID: 2KPZ) in complex with PY motif peptides from previously

resolved WW domain/PY peptide complexes (PDB IDs: 2KPZ, 2M3O, 2KQ0, 4N7H). Peptides aligned to the 2KPZ

complex using PyMol [75], showing moderate conservation of peptide backbone conformation when bound to the

WW domain. (B,C) Rational design of PY peptide library involved variation of residues in the x–1 and x positions

(shown in pink, B) and was informed by PY motif consensus sequences for Nedd4 (shown in Fig 2C and S2 Fig),

affording a 30 member library. (D) Computationally predicted binding affinities of PY motif peptides screened against

Nedd4 WW domain (PDB ID: 2M3O). Binding affinities are presented as ΔΔGbinding relative to the native peptide

substrate TAPPPAYATLG (ΔGbinding
designed − ΔGbinding

native). ΔΔGbinding for the native peptide is presented in the

upper-right corner of the left heatmap for reference. ΔΔGbinding energies presented as kcal/mol or % of ΔGbinding
native.

Full energy properties provided as in S1 Data.

https://doi.org/10.1371/journal.pone.0258315.g006
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inter-peptide and peptide-WW domain hydrogen bonds. Therefore, we anticipate that trends

in binding affinity across the peptide library from screening against our model WW domain

(PDB: 2M3O) will be representative as the electrostatic nature of the binding interface is

largely conserved. Instead, we anticipate that sequence-dependent changes in the peptide-pro-

tein interactions and peptide conformation will have a greater effect on binding affinity than

the identity of WW domain residues.

To begin our computational analysis of the rationally designed PY motif library against our

suite of WW domain structures, we first sought a docking method that was amenable to dock-

ing peptides to protein targets rather than small molecule ligands. We determined that use of a

template-based docking method was the most appropriate approach for our analysis as there

are a number of PY peptide/WW domain complexes that have been reported. Therefore,

known PY/WW complex structures can be used to guide the docking, improving efficiency

and minimizing computational expense compared to a global docking approach. To this end,

we employed GalaxyPepDock [45] to dock our library against a Nedd4 WW domain (PDB ID:

2M3O) [30]. Each GalaxyPepDock docking result provided 10 predicted poses for the peptide

of interest. From these 10 poses, we selected the pose with the most similarity to the native sub-

strate in the PY/WW complex (PDB ID: 2M3O) (S5 Fig). To further refine the docking result,

we then used the Glide ligand docking tool with SP-Peptide precision setting from the Schrö-

dinger suite [60–62] to optimize the conformation of the peptide backbone and side chains in

the binding pocket. Finally, to obtain thermodynamic measurement of predicted peptide bind-

ing affinities, we employed molecular mechanics-based binding affinity prediction using the

Generalized Born and surface area continuum solvation method (MM/GBSA, Schrödinger)

[46], which considers the effect of solvation on binding energies using an implicit solvation

model. From this calculation, we generated a total measurement of affinity as ΔGbinding in

addition to various contributing energy terms, enabling analysis of biomolecular interactions

that serve as driving forces in the peptide/protein interaction.

The predicted ΔGbinding values provide a relative measure of affinity across the peptide suite

wherein a more negative number indicates a stronger predicted peptide/protein interaction.

Docking results were analyzed by comparison to the predicted binding affinity of the native

peptide (Fig 6D). Our docking analysis reveals that, in general, substitutions at the x–1 or x

position in the PPxY peptide scaffold weaken the predicted binding affinity (indicated by a less

negative ΔGbinding) with the exception of derivatives APPSY, EPPPY, and EPPGY. We antici-

pate that there is a significant deal of pre-organization in the native ligand around the tri-pro-

line core (TAPPPAYATLG), and we hypothesize that alteration of the steric or electrostatic

nature at the x position with retention of the tri-peptide core (PPPxY) is unfavorable as the

peptide lacks flexibility to compensate for altered interactions with the WW domain. Screen-

ing of derivatives with alanine or glutamic acid at the x–1 position was slightly unfavorable, but

derivatives APPSY, EPPPY demonstrated improved affinity, likely through an increased num-

ber of intramolecular interactions due to the bent conformation adopted by the optimized

docked ligand (S6 Fig).

In the LPxY peptide library, the derivatives generally had stronger predicted binding affini-

ties than the PPxY library members. We anticipate that this is a result of greater ligand flexibil-

ity resulting from the lessened conformational strain induced by the core proline-proline

dipeptide. We also anticipate that the greater hydrophobicity of leucine relative to proline may

drive binding of the PY peptide to the WW domain pocket, contributing to the trend observed.

Several members of this peptide class that have strong predicted binding affinities adopted a

bent conformation, increasing the number of intramolecular contacts. Further, we hypothesize

that the increased polarity with substitutions of serine or threonine at the x–1 or x positions

increases either dipole-mediated intramolecular interactions or stabilizes the peptide/WW
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domain complex by presenting the polar residue to the solvent accessible side of the peptide

and promoting burial of the lipophilic residues in the WW domain binding pocket.

We then analyzed individual energetic contributions to overall binding affinity across the

library of peptide analogues. This includes energy components of the free ligand or receptor,

the optimized complex, or sub-components of the ΔGbinding measurements (i.e. contributions

of individual interaction types). In general, van der Waals and Coulombic interactions con-

tributed most strongly to binding affinity, while solvation energy accounted for the most disfa-

vorable (positive ΔG) component (Fig 7A and S7 Fig). We next correlated all individual

energy components to total ΔGbinding (Fig 7B and 7C and S8 Fig). Analysis of energy compo-

nents from complex, ligand, and receptor showed that receptor energies had the lowest corre-

lation with overall ΔGbinding while ligand and complex energy components had higher

correlations (Fig 7B). Further analysis showed that ligand efficiency, a function of binding

affinity relative to total non-hydrogen atoms, correlated most strongly with ΔGbinding (Fig 7C).

Finally, this analysis reveals that van der Waals are most correlated with ΔGbinding, followed by

Coloumbic and lipophilic interactions.

Analysis of non-PY motif substrates in the Nedd4 interactome

While we have extensively discussed the nature of PY motif-mediated interactions with WW

domains, the nature of interactions that guide the remaining half of the interactome remain

unclear from our analysis. It is likely that these interactions are guided by interactions at other

sites in the ubiquitin ligase, such as is the case for E2 conjugating enzymes [63–65], which

interact with the HECT domain, or for proteins like α-synuclein [11–14, 16], which has been

shown to interact with the C2 domain and HECT domain of the ligase. Additionally, there is

evidence for WW domain interactions with phospho-threonine or phospho-serine (pT, pS)

[26]. In these cases, the Nedd4 interaction would be dependent upon specific phospho-proteo-

forms, the presence of which are regulated by other cellular pathways and is discussed further

below.

To complement our analysis of PY motif-mediated protein-protein interactions in the

Nedd4 family interactome, we sought to further analyze the pool of non-PY motif interactors

in the annotated dataset. We first performed a functional analysis of non-PY interactors using

the PANTHER GO annotation database [57, 58] to determine how many proteins in the inter-

actome were involved in the ubiquitination process (for example, E2 conjugating enzymes that

would bind to the ligases through the E2 interaction site on the catalytic HECT domain).

From this annotation, we identified that the non-PY containing interactome contained a

range from 2.19% (WWP2) to 11.63% (WWP1) across the Nedd4 family of Nedd4 (Table 2).

This indicates that nearly all of the non-PY interactome is not comprised of upstream mem-

bers of the ubiquitin signaling cascade but rather contains substrates or regulatory partners

that interact with Nedd4 in a PY-independent manner (i.e. through phosphorylated residues

or through C2, HECT, or linker interactions).

To characterize the remainder of the non-PY containing proteins in the Nedd4 interac-

tome, we next screened non-PY interactors for the presence of pT or pS residues as reported

in the PhosphoSite protein phosphorylation database. Of the 153 non-PY interactors identified

in the Nedd4 interactome, there are 128 proteins that are annotated in PhosphoSite database

[47] to contain both pT and pS post-translational modifications (PTMs) while 17 proteins

have been detected with either pT or pS and eight proteins have no reported pT or pS residues.

Based on these previous reports, experimentally detected phosphorylation on threonine and/

or serine residues occurs in 94.8% of the non-PY interactome. Thus, this provides putative evi-

dence that phosphorylation at serine or threonine may be the driving force for Nedd4
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Fig 7. Individual biomolecular interaction types have varying contributions to overall binding affinity. (A)

Energetic contributions of individual interactions to overall binding affinity are shown for the native ligand (PPPAY),

a weaker predicate binder (PPPGY), and a stronger predicted binder (TLPFY). Linear regression analysis reveals a

positive and negative correlation, respectively, between van der Waals forces or solvation energy with overall binding

energy (ΔGbinding). (B) Analysis of all individual energy components (for ΔGbind, the optimized complex, ligand, and
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recognition of non-PY interactors. Though experimental validation of putative WW domain/

phospho-protein interaction specificity would be required, it is beyond the scope of this

investigation.

As a final investigation of potential mechanisms underlying protein recognition by the

Nedd4 family, we sought to compare the interactome of Nedd4 and those of non-PY, non-pS

or pT interactors to determine if there are shared interactors between the identified protein

and Nedd4. To this end, annotated protein-protein interactions of a small sampling of non-

PY, non-phosphorylated Nedd4 interactors were cross referenced with the Nedd4 interactome

(S9 Fig). This analysis revealed a number of shared secondary interactors that contain PY

motifs or are known to have pT or pS proteoforms. This evidence indicates a potential role of

protein complex formation in the identification of Nedd4 interactors. We hypothesize that the

non-PY, non-phosphorylated interactors may be part of a larger protein complex that is recog-

nized by Nedd4 and, thus, these proteins were enriched in affinity capture methods and were

subsequently annotated in the Nedd4 interactome. Therefore, their recognition by Nedd4 may

not be through direct formation of a protein-protein interaction with Nedd4 but is instead

scaffolded by other Nedd4 interactors in a larger complex. There is evidence for this idea of

substrate clustering, as demonstrated by Mund and Pelham [66], who determined that Nedd4

more efficiently recognized polymerized or clustered substrates relative to the monomeric or

isolated forms.

Finally, it is important to note that Nedd4 has a number of disordered linker regions that

may influence the interaction specificity of the enzyme. It is known that the Nedd4 linker

domains contribute to autoregulation of Nedd4 activity by forming or facilitating intramolecu-

lar interactions [67–69], but increasing knowledge of protein interactions has revealed that dis-

ordered linker regions also participate in protein-protein interaction events [70–73].

Therefore, it is possible that non-PY motif interactions may be mediated through binding in

disordered regions of the Nedd4 family enzymes.

Discussion

We have employed a combination of bioinformatic and computational analyses to gain insight

into the sequence and structural properties that drive interaction specificity in the Nedd4

interactome. We began our analysis with the development and implementation of PxYFinder

to rapidly identify the presence or absence of canonical PY motifs in a library of FASTA

receptor) to overall binding affinity reveals factors that ligand and complex energies are more strongly correlated than

receptor energies. Ligand efficiency is defined as the binding energy/# heavy atoms where “sa” accounts for solvent

exposed surface area and ln is the natural log of ligand efficiency. � indicates lipophilic interactions in the ΔGbind,NS

where NS indicates binding energy of the peptide without accounting for ligand strain energies. Correlations

calculated using python as Pearson coefficients and visualized in Prism GraphPad.

https://doi.org/10.1371/journal.pone.0258315.g007

Table 2. Functional analysis of non-PY containing interactors involved in ubiquitination.

Ligase # non-PY motif interactors % of non-PY interactome involved in ubiquitination

Nedd4 144 3.73

ITCH 96 11.46

SMURF1 312 5.36

SMURF2 81 10.94

WWP1 34 11.63

WWP2 483 2.19

https://doi.org/10.1371/journal.pone.0258315.t002
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sequences. Using this tool in combination with interactome data available through the BioGrid

database, we determined that, on average, 33.8% of Nedd4 family interactors contain PPxY

motifs while 15.5% contain LPxY and 50.6% contain neither PPxY or LPxY motifs. This dem-

onstrates that canonical PY motifs drive only half of the WW-domain mediated interactions

in the known interactome on average, and that screening for PY motifs is not sufficient on its

own for identification of putative Nedd4 family substrates. In general, all members of the

Nedd4 family that we analyzed have more interactors that contain PPxY motifs than LPxY

motifs, and consensus sequence analysis reveals that PPxY motifs are more likely to occur in

proline-rich, disordered, and solvent accessible regions than LPxY motifs. While this analysis

expands our understanding of the prevalence of PY motifs in these interactome, it should be

noted that the presence of a PY motif sequence in an interactor does not guarantee recognition

by a Nedd4 family ligase. For instance, our bioinformatic analysis revealed that some of these

sequences may be buried in the protein core and are thus inaccessible for WW domain/PY

motif-mediated recognition. Therefore, future efforts may focus on experimental validation of

these specific recognition modes across the Nedd4 family. Despite this, the combination of

bioinformatic analyses employed reveals the prevalence as well as the sequence and structural

context in which these motifs occur.

Using the information obtained from PxYFinder and consensus sequence analysis of the

Nedd4 interactome, we then sought to computationally analyze sequence-dependent effects

on PY peptide/WW domain binding. To this end, we employed a multi-step computational

analysis of peptide binding affinity using a previously resolved structure of the Nedd4 WW

domain. Specifically, we designed a library of PY peptides (both PPxY and LPxY motifs) which

contain all combinations of the three and five most commonly occurring residues at the x–1

and x positions based on our bioinformatics-derived consensus sequences. We then employed

a multi-step computational analysis wherein we began with template-based docking of the

peptide substrate to the WW domain structure, followed by refinement of the complex and

analysis of thermodynamic binding parameters via MM-GBSA. From this effort, we deter-

mined that the PPxY scaffold is less tolerant to substitutions than the LPxY scaffold. We

hypothesize that this is a result of pre-organization in the poly-proline backbone of the PPxY

peptides. Therefore, incorporation of residues that increase peptide flexibility or polarity tend

to improve binding affinity. As predicted, our analysis reveals that binding affinity is most

strongly driven by van der Waals interactions, with positive though lesser correlations to Cou-

lombic and lipophilic interactions.

To gain further insight into the role of WW-domain binding in Nedd4 family substrate rec-

ognition, we analyzed the non-PY containing interactome of Nedd4 as a case study. This anal-

ysis reveals that nearly all of the non-PY substrates have been previously annotated to have

phosphorylation at threonine and/or serine residues, providing a putative indication of WW-

domain recognition independent of canonical PY motifs. While experimental validation of

these hypotheses would be necessary to confirm the mechanism of Nedd4 recognition, our

bioinformatic analysis provides valuable insight into possible modes of binding.

Cumulatively, the results presented herein provide insight into the prevalence and nature of

PY motifs in the Nedd4 interactome. We anticipate that PxYFinder will be useful in screening

large datasets for putative WW-domain interactors (both in the Nedd4 family and for other

WW domain-containing proteins) and addresses a gap in current bioinformatic tools for

which there is not an established method for identification of PY motifs in a large dataset. Fur-

ther, our analysis of identified PY motifs expanded our understanding of the conservation of

residues in and around the motif. Specifically, we demonstrated that, despite differences in

interactor specificity that cause the Nedd4 family ligases to be functionally distinct, trends in

sequence and structural context of the PY motifs are largely conserved across the family. This
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indicates that the specificity is driven not by protein structure alone but to a higher level of reg-

ulation. Finally, our efforts informed a computational analysis of sequence-dependent changes

in PY peptide binding affinity. While the binding parameters obtained in this computational

analysis are relative, we anticipate that our results will be useful in informing experimental

design of PY peptide libraries either for interrogating the nature of the peptide/protein interac-

tion or for designing inhibitors that target PY peptide/WW domain complexes.

Methods

Development and use of PxYFinder script

A python script, termed PxYFinder, was developed in Python 3.8 to perform the following

workflow: PxYFinder imports FASTA sequences and iterates through primary sequences to

identify PPY, PPxY, or LPxY. If a PY motif is identified, PxYFinder extracts a slice of the

FASTA string that contains the PY motif and x (user-specified) amino acids up and down

stream, copying this slice to a new.csv file. Code and documentation for PxYFinder is available

as S1 File.

For analysis of Nedd4 family interactors, interactome data for each Nedd4 family member

of interest (Nedd4, ITCH, WWP1, WWP2, SMURF1, SMURF2, HECW1, HECW2) was

retrieved from BioGrid using Homo sapiens as an organismal filter. Gene names were con-

verted to UniprotIDs and were used to retrieve FASTA sequences from the Uniprot database.

PxYFinder was used to identify and extract PY motifs in the interactome of each ligase and cal-

culate prevalence of PY motifs in each interactome. Graphs were generated using Prism

(GraphPad). PY motif consensus sequences were determined by analysis with WebLogo

(http://weblogo.threeplusone.com/) [50] with probability as the y-axis measure.

Prediction of protein order in PY-motif containing segments

Interactor sequences were subsequently analyzed using the IUPred2A and PPIIPred tools for

prediction of overall disorder (IUPred2A) [52] and propensity to form polyproline secondary

structures (PPIIPred) [53]. Data was visualized as mean ± S.D. and analyzed using paired and

unpaired (Welch’s) t-test to determine statistical differences between specific residue positions

(numbered 1–44) and across the full sequence, respectively. Data visualization and analysis

was performed in Prism (GraphPad).

Relative solvent accessible surface area was calculated across the full primary sequence of

identified PY-motif containing proteins using NetSurfP-2.0 [51], and calculated RSA of the

four PY motif residues in each protein was extracted and averaged across the motif. Data visu-

alization performed in Prism GraphPad.

Docking and molecular mechanics analysis of PY peptide library

A 30-member peptide library was generated based on the consensus sequences in the PY motif

interactome of Nedd4. The top three and five residues at the x–1 and x positions respectively

were paired in all possible combinations to generate 15 peptides each for PPxY and for LPxY

libraries using a previously characterized substrate peptide bound to a Nedd4 WW domain

(PDB ID: 2M3O) [30] as a template. All peptides were first docked via GalaxyPepDock [45]

using 2M3O as a template structure. Docked complexes were further refined using the Schrö-

dinger suite (Schrödinger Release 2020–3, Schrödinger, LLC, New York, NY, 2020). Specifi-

cally, the complex generated using GalaxyPepDock was prepared using the Protein

Preparation Wizard and LigPrep tools [74]. Using the Glide tool [60], a docking grid for the

WW domain was generated using (Glide Receptor Grid Generation), and the ligand was
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docked as a flexible ligand to the generated grid using SP-Peptide function with retention of

amide bond conformation and restriction of docking poses to 0.50 Å tolerance for core pattern

comparison relative to the native ligand conformation. Following docking, the Schrödinger

Prime MM-GBSA [46, 61, 62] tool was used to analyze the PoseView (PV) docking output file

with the VSGB solvation model and OPLSe3 force field to generate ΔGbinding for each gener-

ated pose. For each peptide, the pose with most negative ΔGbinding was selected for comparison

of predicted binding affinities across the peptide library. Graphs of binding data were gener-

ated using Prism GraphPad. Structural analysis and visualization were performed with PyMol

[75], MolProbity [58], and/or KiNG [59].

Supporting information

S1 Fig. PxYFinder tool enables rapid identification of PY motifs in large sets of protein

primary sequences. (A) The workflow of PxYFinder implements a python-based script to rap-

idly identify PY motifs from protein sequences as FASTA format. Protein interaction datasets

can be retrieved from public databases such as BioGrid. PxYFinder script allows conversion

from interaction list to UniProt ID for FASTA accession. FASTA sequences are then processed

as data strings for identification of PY motif and extraction of PY-containing regions. (B) Vali-

dation of PxYFinder script with manual confirmation against a previously published dataset34

of PY motif-containing proteins reveals errors in previously identified PY motifs.

(TIF)

S2 Fig. Sequence logo analysis reveals trends in PY motif consensus sequences across the

Nedd4 family. Sequence logo diagrams were used to identify consensus sequences in PY

motifs and in surrounding regions (± 10 amino acids) for Nedd4 family members and for all

Homo Sapiens proteins that have SwissProt annotation available in the UniProt database

(labeled as HS proteome). Sequence logos for Nedd4-1 and ITCH are excluded from this figure

as they are presented as representative images in Fig 2. Sequence logo analysis reveals that

PPxY motifs are more likely to occur in proline-rich regions than LPxY motifs, and amino

acid identity at the x position is more conserved in PPxY motifs across the Nedd4 family and

proteome than in LPxY motifs.

(TIF)

S3 Fig. Analysis of predicted order reveals similarities in PY-motif containing regions of

representative ligase interactors. (A) As a first analysis, the predicted order of each PY motif

containing Nedd4-family interactome member was analyzed using IUPred2A and disorder

scores were extracted ± 20 amino acids surrounding the PY motif sequence. Nedd4-1,

SMURF1, and WWP2 show similar trends in predicted order around the PY motifs, with

PPxY motifs occurring in more disordered regions relative to LPxY. (B) PY motifs in each

interactor were computationally flipped wherein PPxY was substituted for LPxY and vice

versa. Interactors were then re-analyzed with IUPred2A, revealing that substitution of P for L

in the PY motif decreased predicted disorder values in PPxY-containing proteins while substa-

tion of L for P increased predicted disorder. This trend was consistent for all three interac-

tomes analyzed.

(TIF)

S4 Fig. Nedd4 family WW domain sequence and structure alignment show moderate

sequence and high structural similarity. Sequence alignments of WW domains from Nedd4

family members sorted by (A) ligase and (B) similarity show moderate sequence conservation,

with high conservation of key residues in the binding interface (highlighted in grey). (C)

Alignment of three WW domain structures with varying sequence similarity show high
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conservation of structure and of positioning of key residues despite differences in residue iden-

tity.

(TIF)

S5 Fig. GalaxyPepDock accurately predicted conformation of substrate peptide based on

template. As a test of GalaxyPepDock template-based docking reliability, the native peptide

substrate of Nedd4 WW domain (reported in PDB structure 2M3O) was docked to the apo-

WW domain, extracted from PDB 2M3O. Alignment of the native complex (2M3O, peptide

shown in red; WW domain in grey) with the docked complex (via GalaxyPepDock; peptide in

green; WW domain in blue) show reliable docking of the peptide with retention of conforma-

tion and peptide-WW domain contacts.

(TIF)

S6 Fig. Conformations of selected peptide derivatives after computational docking and

optimization. A sampling of peptide conformations from computational docking of the ratio-

nally designed peptide library demonstrates the variety of intramolecular contacts that the PY

peptides can form with the WW domain structure. Binding energies of the representative pep-

tides shown here are presented in Fig 4.

(TIF)

S7 Fig. Energetic contributions to computationally predicted ΔGbinding of PY peptide

library to Nedd4 WW domain. ΔGbinding and energetic components that contribute to

ΔGbinding are shown here as calculated with the Schrodinger Prime MM-GBSA tool. Energies

are given in kcal/mol, and energy contributions are shown for all 30 members of the rationally

designed PY peptide library.

(TIF)

S8 Fig. Correlation of energetic components that contribute to peptide binding. Correla-

tion of calculated energies (ΔGbinding and ΔGbinding sub-components) across the peptide library

show that (A) some energetic contributions are more strongly correlated to overall binding

(ΔGbinding) relative to other components. (B) Correlation of solvation (Solv_GB) and van der

Waals (vdW) components of ΔGbinding with coulombic interactions shows that solvation is

more strongly correlated with coulombic interactions than van der Waals interactions. Specifi-

cally, stronger (more negative) coulombic interactions correlate with more positive solvation

energies. Values calculated with Schrodinger Prime MM-GBSA and presented in kcal/mol.

Simple linear regression analysis and data visualization performed in Prism GraphPad.

X = slope of linear regression line of best fit; R2 provided as measure of goodness of fit.

(TIF)

S9 Fig. Protein interaction network analysis reveals shared secondary interactors and func-

tional links of non-PY containing Nedd4 interactors. (A) Interaction networks of Nedd4-1

(green node) and non-PY, non-pT/pS substrates of Nedd4 (blue nodes) were retrieved from

BioGrid and merged using Cytoscape, revealing secondary interactors that are functionally

related and contain either PY (red triangles) or pT and/or pS residues (red squares). (B) Iden-

tity of primary and secondary interactors depicted in A are presented where bolded proteins

contain pT and/or pS residues while italicized proteins contain PY motifs.

(TIF)

S1 Table. PY-containing proteins correctly identified from test set using PxYFinder.

(DOCX)
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S2 Table. Proteins identified as non-PY containing with PxYFinder but labeled as PY con-

taining in test data set (from Persaud et al., 2009) [34].

(DOCX)

S1 Data.

(CSV)

S1 File.

(ZIP)

Acknowledgments

The authors would like to thank the Duke University Department of Chemistry Computing

Services for access to the Schrödinger software suite and computational servers. They also

thank the department for support for M.D.P. through the summer undergraduate research fel-

lowship program. Finally, the authors thank the members of the McCafferty lab for their

thoughtful feedback on the project and manuscript.

Author Contributions

Conceptualization: A. Katherine Hatstat, Dewey G. McCafferty.

Data curation: A. Katherine Hatstat, Michael D. Pupi.

Formal analysis: A. Katherine Hatstat, Dewey G. McCafferty.

Funding acquisition: Dewey G. McCafferty.

Investigation: A. Katherine Hatstat, Michael D. Pupi.

Methodology: A. Katherine Hatstat.

Project administration: Dewey G. McCafferty.

Software: A. Katherine Hatstat, Michael D. Pupi.

Supervision: Dewey G. McCafferty.

Validation: A. Katherine Hatstat.

Visualization: A. Katherine Hatstat, Michael D. Pupi.

Writing – original draft: A. Katherine Hatstat.

Writing – review & editing: A. Katherine Hatstat, Dewey G. McCafferty.

References
1. Boase NA, Kumar S (2015) NEDD4: The founding member of a family of ubiquitin-protein ligases. Gene

557:113–122. https://doi.org/10.1016/j.gene.2014.12.020 PMID: 25527121

2. Ingham RJ, Gish G, Pawson T (2004) The Nedd4 family of E3 ubiquitin ligases: functional diversity

within a common modular architecture. Oncogene 23:1972–1984. https://doi.org/10.1038/sj.onc.

1207436 PMID: 15021885

3. Rotin D, Kumar S (2009) Physiological functions of the HECT family of ubiquitin ligases. Nat. Rev. Mol.

Cell Biol. 10:398–409. https://doi.org/10.1038/nrm2690 PMID: 19436320

4. Mari S, Ruetalo N, Maspero E, Stoffregen MC, Pasqualato S, Polo S, et al. (2014) Structural and func-

tional framework for the autoinhibition of nedd4-family ubiquitin ligases. Structure 22:1639–1649.

https://doi.org/10.1016/j.str.2014.09.006 PMID: 25438670

5. Anan T, Nagata Y, Koga H, Honda Y, Yabuki N, Miyamoto C, et al. (1998) Human ubiquitin-protein

ligase Nedd4: Expression, subcellular localization and selective interaction with ubiquitin-conjugating

enzymes. Genes Cells 3:751–763. https://doi.org/10.1046/j.1365-2443.1998.00227.x PMID: 9990509

PLOS ONE Predicting protein-protein interactions in the Nedd4 family of ubiquitin ligases

PLOS ONE | https://doi.org/10.1371/journal.pone.0258315 October 12, 2021 21 / 25

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0258315.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0258315.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0258315.s013
https://doi.org/10.1016/j.gene.2014.12.020
http://www.ncbi.nlm.nih.gov/pubmed/25527121
https://doi.org/10.1038/sj.onc.1207436
https://doi.org/10.1038/sj.onc.1207436
http://www.ncbi.nlm.nih.gov/pubmed/15021885
https://doi.org/10.1038/nrm2690
http://www.ncbi.nlm.nih.gov/pubmed/19436320
https://doi.org/10.1016/j.str.2014.09.006
http://www.ncbi.nlm.nih.gov/pubmed/25438670
https://doi.org/10.1046/j.1365-2443.1998.00227.x
http://www.ncbi.nlm.nih.gov/pubmed/9990509
https://doi.org/10.1371/journal.pone.0258315


6. Zou X, Levy-Cohen G, Blank M (2015) Molecular functions of NEDD4 E3 ubiquitin ligases in cancer.

Biochim. Biophys. Acta BBA—Rev. Cancer 1856:91–106. https://doi.org/10.1016/j.bbcan.2015.06.005

PMID: 26116757

7. Weber J, Polo S, Maspero E (2019) HECT E3 Ligases: A Tale With Multiple Facets. Front. Physiol.

10:370–370. https://doi.org/10.3389/fphys.2019.00370 PMID: 31001145

8. Scheffner M, Kumar S (2014) Mammalian HECT ubiquitin-protein ligases: Biological and pathophysio-

logical aspects. Biochim. Biophys. Acta—Mol. Cell Res. 1843:61–74. https://doi.org/10.1016/j.bbamcr.

2013.03.024 PMID: 23545411

9. Kwak YD, Wang B, Li JJ, Wang R, Deng Q, Diao S, et al. (2012) Upregulation of the E3 ligase NEDD4-1

by oxidative stress degrades IGF-1 receptor protein in neurodegeneration. J. Neurosci. 32:10971–

10981. https://doi.org/10.1523/JNEUROSCI.1836-12.2012 PMID: 22875931

10. Kim E, Wang B, Sastry N, Masliah E, Nelson PT, Cai H, et al. (2016) NEDD4-mediated HSF1 degrada-

tion underlies α-synucleinopathy. Hum. Mol. Genet. 25:211–222. https://doi.org/10.1093/hmg/ddv445

PMID: 26503960

11. Sugeno N, Hasegawa T, Tanaka N, Fukuda M, Wakabayashi K, Oshima R, et al. (2014) Lys-63-linked

ubiquitination by E3 ubiquitin ligase Nedd4-1 facilitates endosomal sequestration of internalized α-synu-

clein. J. Biol. Chem. 289:18137–51. https://doi.org/10.1074/jbc.M113.529461 PMID: 24831002

12. Davies SE, Hallett PJ, Moens T, Smith G, Mangano E, Kim HT, et al. (2014) Enhanced ubiquitin-depen-

dent degradation by Nedd4 protects against α-synuclein accumulation and toxicity in animal models of

Parkinson’s disease. Neurobiol. Dis. 64:79–87. https://doi.org/10.1016/j.nbd.2013.12.011 PMID:

24388974

13. Tofaris GK, Kim HT, Hourez R, Jung J-W, Kim KP, Goldberg AL (2011) Ubiquitin ligase Nedd4 pro-

motes alpha-synuclein degradation by the endosomal-lysosomal pathway. Proc. Natl. Acad. Sci. U. S.

A. 108:17004–9. https://doi.org/10.1073/pnas.1109356108 PMID: 21953697

14. Mund T, Masuda-Suzukake M, Goedert M, Pelham HR (2018) Ubiquitination of alpha-synuclein fila-

ments by Nedd4 ligases Massiah M, editor. PLOS ONE 13:e0200763–e0200763. https://doi.org/10.

1371/journal.pone.0200763 PMID: 30021006

15. Perrett RM, Alexopoulou Z, Tofaris GK (2015) The endosomal pathway in Parkinson’s disease. Mol.

Cell. Neurosci. 66:21–28. https://doi.org/10.1016/j.mcn.2015.02.009 PMID: 25701813

16. Rott R, Szargel R, Shani V, Hamza H, Savyon M, Elghani FA, et al. (2017) SUMOylation and ubiquitina-

tion reciprocally regulate α-synuclein degradation and pathological aggregation. 114:13176–13181.

17. Ye X, Wang L, Shang B, Wang Z, Wei W (2014) NEDD4: A Promising Target for Cancer Therapy. Curr.

Cancer Drug Targets 14:549–556. https://doi.org/10.2174/1568009614666140725092430 PMID:

25088038

18. Quirit JG, Lavrenov SN, Poindexter K, Xu J, Kyauk C, Durkin KA, et al. (2017) Indole-3-carbinol (I3C)

analogues are potent small molecule inhibitors of NEDD4-1 ubiquitin ligase activity that disrupt prolifera-

tion of human melanoma cells. Biochem. Pharmacol. 127:13–27. https://doi.org/10.1016/j.bcp.2016.

12.007 PMID: 27979631

19. Tardiff DF, Jui NT, Khurana V, Tambe MA, Thompson ML, Chung CY, et al. (2013) Yeast Reveal a

“Druggable” Rsp5/Nedd4 Network that Ameliorates α-Synuclein Toxicity in Neurons. Science

342:979–983. https://doi.org/10.1126/science.1245321 PMID: 24158909

20. Hatstat AK, Ahrendt HD, Foster MW, Mayne L, Moseley MA, Englander SW, et al. (2021) Characteriza-

tion of Small-Molecule-Induced Changes in Parkinson’s-Related Trafficking via the Nedd4 Ubiquitin

Signaling Cascade. Cell Chem. Biol. 28:14–25.e9. https://doi.org/10.1016/j.chembiol.2020.10.008

PMID: 33176158

21. Zinzalla G (2015) Paving the way to targeting HECT ubiquitin ligases. Future Med. Chem. 7:2107–

2111. https://doi.org/10.4155/fmc.15.141 PMID: 26510616

22. Han Z, Lu J, Liu Y, Davis B, Lee MS, Olson MA, et al. (2014) Small-molecule probes targeting the viral

PPxY-host Nedd4 interface block egress of a broad range of RNA viruses. J. Virol. 88:7294–306.

https://doi.org/10.1128/JVI.00591-14 PMID: 24741084

23. Tian M, Zeng T, Liu M, Han S, Lin H, Lin Q, et al. (2019) A cell-based high-throughput screening method

based on a ubiquitin-reference technique for identifying modulators of E3 ligases. J. Biol. Chem.

294:2880–2891. https://doi.org/10.1074/jbc.RA118.003822 PMID: 30587574

24. Fajner V, Maspero E, Polo S (2017) Targeting HECT-type E3 ligases–insights from catalysis, regulation

and inhibitors. FEBS Lett. 591:2636–2647. https://doi.org/10.1002/1873-3468.12775 PMID: 28771691

25. Chen D, Gehringer M, Lorenz S (2018) Developing Small-Molecule Inhibitors of HECT-Type Ubiquitin

Ligases for Therapeutic Applications: Challenges and Opportunities. ChemBioChem 19:2123–2135.

https://doi.org/10.1002/cbic.201800321 PMID: 30088849

PLOS ONE Predicting protein-protein interactions in the Nedd4 family of ubiquitin ligases

PLOS ONE | https://doi.org/10.1371/journal.pone.0258315 October 12, 2021 22 / 25

https://doi.org/10.1016/j.bbcan.2015.06.005
http://www.ncbi.nlm.nih.gov/pubmed/26116757
https://doi.org/10.3389/fphys.2019.00370
http://www.ncbi.nlm.nih.gov/pubmed/31001145
https://doi.org/10.1016/j.bbamcr.2013.03.024
https://doi.org/10.1016/j.bbamcr.2013.03.024
http://www.ncbi.nlm.nih.gov/pubmed/23545411
https://doi.org/10.1523/JNEUROSCI.1836-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/22875931
https://doi.org/10.1093/hmg/ddv445
http://www.ncbi.nlm.nih.gov/pubmed/26503960
https://doi.org/10.1074/jbc.M113.529461
http://www.ncbi.nlm.nih.gov/pubmed/24831002
https://doi.org/10.1016/j.nbd.2013.12.011
http://www.ncbi.nlm.nih.gov/pubmed/24388974
https://doi.org/10.1073/pnas.1109356108
http://www.ncbi.nlm.nih.gov/pubmed/21953697
https://doi.org/10.1371/journal.pone.0200763
https://doi.org/10.1371/journal.pone.0200763
http://www.ncbi.nlm.nih.gov/pubmed/30021006
https://doi.org/10.1016/j.mcn.2015.02.009
http://www.ncbi.nlm.nih.gov/pubmed/25701813
https://doi.org/10.2174/1568009614666140725092430
http://www.ncbi.nlm.nih.gov/pubmed/25088038
https://doi.org/10.1016/j.bcp.2016.12.007
https://doi.org/10.1016/j.bcp.2016.12.007
http://www.ncbi.nlm.nih.gov/pubmed/27979631
https://doi.org/10.1126/science.1245321
http://www.ncbi.nlm.nih.gov/pubmed/24158909
https://doi.org/10.1016/j.chembiol.2020.10.008
http://www.ncbi.nlm.nih.gov/pubmed/33176158
https://doi.org/10.4155/fmc.15.141
http://www.ncbi.nlm.nih.gov/pubmed/26510616
https://doi.org/10.1128/JVI.00591-14
http://www.ncbi.nlm.nih.gov/pubmed/24741084
https://doi.org/10.1074/jbc.RA118.003822
http://www.ncbi.nlm.nih.gov/pubmed/30587574
https://doi.org/10.1002/1873-3468.12775
http://www.ncbi.nlm.nih.gov/pubmed/28771691
https://doi.org/10.1002/cbic.201800321
http://www.ncbi.nlm.nih.gov/pubmed/30088849
https://doi.org/10.1371/journal.pone.0258315


26. Aragón E, Goerner N, Zaromytidou A-I, Xi Q, Escobedo A, Massagué J, et al. (2011) A Smad action
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tile Interactions of Smad7 with Regulator WW Domains in TGF-β Pathways. Structure 20:1726–1736.

https://doi.org/10.1016/j.str.2012.07.014 PMID: 22921829

28. Escobedo A, Gomes T, Aragón E, Martı́n-Malpartida P, Ruiz L, Macias MJ (2014) Structural basis of

the activation and degradation mechanisms of the E3 ubiquitin ligase Nedd4L. Structure 22:1446–

1457. https://doi.org/10.1016/j.str.2014.08.016 PMID: 25295397

29. Qi S, O’Hayre M, Gutkind JS, Hurley JH (2014) Structural and Biochemical Basis for Ubiquitin Ligase

Recruitment by Arrestin-related Domain-containing Protein-3 (ARRDC3). J. Biol. Chem. 289:4743–

4752. https://doi.org/10.1074/jbc.M113.527473 PMID: 24379409

30. Bobby R, Medini K, Neudecker P, Lee TV, Brimble MA, McDonald FJ, et al. (2013) Structure and

dynamics of human Nedd4-1 WW3 in complex with the αENaC PY motif. Biochim. Biophys. Acta BBA

—Proteins Proteomics 1834:1632–1641. https://doi.org/10.1016/j.bbapap.2013.04.031 PMID:

23665454

31. Panwalkar V, Neudecker P, Schmitz M, Lecher J, Schulte M, Medini K, et al. (2016) The Nedd4-1 WW

Domain Recognizes the PY Motif Peptide through Coupled Folding and Binding Equilibria. Biochemistry

55:659–674. https://doi.org/10.1021/acs.biochem.5b01028 PMID: 26685112

32. Chen HI, Sudol M (1995) The WW domain of Yes-associated protein binds a proline-rich ligand that dif-

fers from the consensus established for Src homology 3-binding modules. Proc. Natl. Acad. Sci. U. S.

A. 92:7819–7823. https://doi.org/10.1073/pnas.92.17.7819 PMID: 7644498

33. Wahl LC, Watt JE, Yim HTT, De Bourcier D, Tolchard J, Soond SM, et al. (2019) Smad7 Binds Differ-

ently to Individual and Tandem WW3 and WW4 Domains of WWP2 Ubiquitin Ligase Isoforms. Int. J.

Mol. Sci. 20:4682.

34. Persaud A, Alberts P, Amsen EM, Xiong X, Wasmuth J, Saadon Z, et al. (2009) Comparison of sub-

strate specificity of the ubiquitin ligases Nedd4 and Nedd4-2 using proteome arrays. Mol. Syst. Biol.

5:333–333. https://doi.org/10.1038/msb.2009.85 PMID: 19953087

35. Iconomou M, Saunders DN (2016) Systematic approaches to identify E3 ligase substrates. Biochem. J.

473:4083–4101. https://doi.org/10.1042/BCJ20160719 PMID: 27834739

36. Edwin F, Anderson K, Patel TB (2009) HECT Domain-containing E3 Ubiquitin Ligase Nedd4 Interacts

with and Ubiquitinates Sprouty2. 285:255–264.

37. Kanelis V, Bruce MC, Skrynnikov NR, Rotin D, Forman-Kay JD (2006) Structural determinants for high-

affinity binding in a Nedd4 WW3* domain-comm PY motif complex. Structure 14:543–553. https://doi.

org/10.1016/j.str.2005.11.018 PMID: 16531238

38. Kanelis V, Rotin D, Forman-Kay JD (2001) Solution structure of a Nedd4 WW domain-ENaC peptide

complex. Nat. Struct. Biol. 8:407–412. https://doi.org/10.1038/87562 PMID: 11323714

39. Kanelis V, Farrow NA, Kay LE, Rotin D, Forman-Kay JD (1998) NMR studies of tandem WW domains

of Nedd4 in complex with a PY motif-containing region of the epithelial sodium channel. Biochem. Cell

Biol. Biochim. Biol. Cell. 76:341–350. https://doi.org/10.1139/bcb-76-2-3-341 PMID: 9923703

40. Chong PA, Lin H, Wrana JL, Forman-Kay JD (2006) An expanded WW domain recognition motif

revealed by the interaction between Smad7 and the E3 ubiquitin ligase Smurf2. J. Biol. Chem.

281:17069–17075. https://doi.org/10.1074/jbc.M601493200 PMID: 16641086

41. Henry PC, Kanelis V, O’Brien MC, Kim B, Gautschi I, Forman-Kay J, et al. (2003) Affinity and specificity

of interactions between Nedd4 isoforms and the epithelial Na+ channel. J. Biol. Chem. 278:20019–

20028. https://doi.org/10.1074/jbc.M211153200 PMID: 12654927

42. Milkereit R, Rotin D (2011) A Role for the Ubiquitin Ligase Nedd4 in Membrane Sorting of LAPTM4 Pro-

teins. PLOS ONE 6:e27478. https://doi.org/10.1371/journal.pone.0027478 PMID: 22096579

43. Mi H, Thomas P (2009) PANTHER pathway: an ontology-based pathway database coupled with data

analysis tools. Methods Mol. Biol. Clifton NJ 563:123–140. https://doi.org/10.1007/978-1-60761-175-

2_7 PMID: 19597783

44. Mi H, Lazareva-Ulitsky B, Loo R, Kejariwal A, Vandergriff J, Rabkin S, et al. (2005) The PANTHER data-

base of protein families, subfamilies, functions and pathways. Nucleic Acids Res. 33:D284–D288.

https://doi.org/10.1093/nar/gki078 PMID: 15608197

45. Lee H, Seok C (2017) Template-Based Prediction of Protein-Peptide Interactions by Using GalaxyPep-

Dock. Methods Mol. Biol. Clifton NJ 1561:37–47. https://doi.org/10.1007/978-1-4939-6798-8_4 PMID:

28236232

PLOS ONE Predicting protein-protein interactions in the Nedd4 family of ubiquitin ligases

PLOS ONE | https://doi.org/10.1371/journal.pone.0258315 October 12, 2021 23 / 25

https://doi.org/10.1101/gad.2060811
http://www.ncbi.nlm.nih.gov/pubmed/21685363
https://doi.org/10.1016/j.str.2012.07.014
http://www.ncbi.nlm.nih.gov/pubmed/22921829
https://doi.org/10.1016/j.str.2014.08.016
http://www.ncbi.nlm.nih.gov/pubmed/25295397
https://doi.org/10.1074/jbc.M113.527473
http://www.ncbi.nlm.nih.gov/pubmed/24379409
https://doi.org/10.1016/j.bbapap.2013.04.031
http://www.ncbi.nlm.nih.gov/pubmed/23665454
https://doi.org/10.1021/acs.biochem.5b01028
http://www.ncbi.nlm.nih.gov/pubmed/26685112
https://doi.org/10.1073/pnas.92.17.7819
http://www.ncbi.nlm.nih.gov/pubmed/7644498
https://doi.org/10.1038/msb.2009.85
http://www.ncbi.nlm.nih.gov/pubmed/19953087
https://doi.org/10.1042/BCJ20160719
http://www.ncbi.nlm.nih.gov/pubmed/27834739
https://doi.org/10.1016/j.str.2005.11.018
https://doi.org/10.1016/j.str.2005.11.018
http://www.ncbi.nlm.nih.gov/pubmed/16531238
https://doi.org/10.1038/87562
http://www.ncbi.nlm.nih.gov/pubmed/11323714
https://doi.org/10.1139/bcb-76-2-3-341
http://www.ncbi.nlm.nih.gov/pubmed/9923703
https://doi.org/10.1074/jbc.M601493200
http://www.ncbi.nlm.nih.gov/pubmed/16641086
https://doi.org/10.1074/jbc.M211153200
http://www.ncbi.nlm.nih.gov/pubmed/12654927
https://doi.org/10.1371/journal.pone.0027478
http://www.ncbi.nlm.nih.gov/pubmed/22096579
https://doi.org/10.1007/978-1-60761-175-2%5F7
https://doi.org/10.1007/978-1-60761-175-2%5F7
http://www.ncbi.nlm.nih.gov/pubmed/19597783
https://doi.org/10.1093/nar/gki078
http://www.ncbi.nlm.nih.gov/pubmed/15608197
https://doi.org/10.1007/978-1-4939-6798-8%5F4
http://www.ncbi.nlm.nih.gov/pubmed/28236232
https://doi.org/10.1371/journal.pone.0258315


46. Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affini-

ties. Expert Opin. Drug Discov. 10:449–461. https://doi.org/10.1517/17460441.2015.1032936 PMID:

25835573

47. Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E (2015) PhosphoSitePlus,

2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 43:D512–520. https://doi.org/10.1093/

nar/gku1267 PMID: 25514926

48. Oughtred R, Stark C, Breitkreutz B-J, Rust J, Boucher L, Chang C, et al. (2019) The BioGRID interac-

tion database: 2019 update. Nucleic Acids Res. 47:D529–D541. https://doi.org/10.1093/nar/gky1079

PMID: 30476227

49. Stark C, Breitkreutz B-J, Reguly T, Boucher L, Breitkreutz A, Tyers M (2006) BioGRID: a general reposi-

tory for interaction datasets. Nucleic Acids Res. 34:D535–9. https://doi.org/10.1093/nar/gkj109 PMID:

16381927

50. Crooks GE, Hon G, Chandonia J-M, Brenner SE (2004) WebLogo: a sequence logo generator.

Genome Res. 14:1188–1190. https://doi.org/10.1101/gr.849004 PMID: 15173120

51. Klausen MS, Jespersen MC, Nielsen H, Jensen KK, Jurtz VI, Sønderby CK, et al. (2019) NetSurfP-2.0:

Improved prediction of protein structural features by integrated deep learning. Proteins 87:520–527.

https://doi.org/10.1002/prot.25674 PMID: 30785653
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