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ABSTRACT
Background Chest radiograph (CXR) is a basic diagnostic 
test in community- acquired pneumonia (CAP) with 
prognostic value. We developed a CXR- based artificial 
intelligence (AI) model (CAP AI predictive Engine: CAPE) 
and prospectively evaluated its discrimination for 30- day 
mortality.
Methods Deep- learning model using convolutional neural 
network (CNN) was trained with a retrospective cohort of 
2235 CXRs from 1966 unique adult patients admitted for 
CAP from 1 January 2019 to 31 December 2019. A single- 
centre prospective cohort between 11 May 2020 and 15 
June 2020 was analysed for model performance. CAPE 
mortality risk score based on CNN analysis of the first CXR 
performed for CAP was used to determine the area under 
the receiver operating characteristic curve (AUC) for 30- 
day mortality.
Results 315 inpatient episodes for CAP occurred, with 
30- day mortality of 19.4% (n=61/315). Non- survivors 
were older than survivors (mean (SD)age, 80.4 (10.3) vs 
69.2 (18.7)); more likely to have dementia (n=27/61 vs 
n=58/254) and malignancies (n=16/61 vs n=18/254); 
demonstrate higher serum C reactive protein (mean 
(SD), 109 mg/L (98.6) vs 59.3 mg/L (69.7)) and serum 
procalcitonin (mean (SD), 11.3 (27.8) μg/L vs 1.4 (5.9) 
μg/L). The AUC for CAPE mortality risk score for 30- day 
mortality was 0.79 (95% CI 0.73 to 0.85, p<0.001); 
Pneumonia Severity Index (PSI) 0.80 (95% CI 0.74 to 0.86, 
p<0.001); Confusion of new onset, blood Urea nitrogen, 
Respiratory rate, Blood pressure, 65 (CURB-65) score 
0.76 (95% CI 0.70 to 0.81, p<0.001), respectively. CAPE 
combined with CURB-65 model has an AUC of 0.83 (95% 
CI 0.77 to 0.88, p<0.001). The best performing model was 
CAPE incorporated with PSI, with an AUC of 0.84 (95% CI 
0.79 to 0.89, p<0.001).
Conclusion CXR- based CAPE mortality risk score was 
comparable to traditional pneumonia severity scores and 
improved its discrimination when combined.

INTRODUCTION
Community- acquired pneumonia (CAP) is 
the fourth- leading cause of death globally, 
with estimates at 2.96 million each year.1 

CAP may result in long- term functional 
impairment, serious morbidity and mortality, 
particularly for those who require hospitalisa-
tion.2 3 To aid clinicians, Pneumonia Severity 
Scores were developed for mortality risk strat-
ification, triaging of appropriate sites- of- care 
and disease management strategies.4–6

Numerous studies have been performed 
to identify risk factors for adverse outcomes 
in CAP patients. These serve to build clinical 
prediction models for stratifying pneumonia 
severity.5 6 Two of the most widely used tools 
are the Pneumonia Severity Index (PSI)6 
and Confusion of new onset, blood Urea 
nitrogen, Respiratory rate, Blood pressure, 
65 (CURB-65) score.5 PSI consists of 20 vari-
ables to derive a weighted score, which is 
further stratified into five classes of mortality 
risk.7 CURB-65 score is calculated using five 
variables of equal weighting: confusion of 
new onset; serum urea >7 mmol/L; respi-
ratory rate ≥30 per min; low blood pressure 
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(systolic blood pressure <90 mm Hg or diastolic blood 
pressure ≤60 mm Hg); age ≥65 years5.7 8

These prognostic scores demonstrate good discrim-
ination for mortality. In a meta- analysis, Chalmers et al 
reported an area under the receiver operating charac-
teristic curve (AUC) of 0.81 and 0.80 for the PSI and 
CURB-65 scores, respectively.9 However, the practical 
use of severity scores has significant challenges. Calcula-
tion requires multiple data point acquisition processes 
(medical history, physical examination, blood sampling, 
chest imaging), is time- consuming, prone to poor clini-
cian compliance.10 A recent study in Singapore showed 
that PSI performed better for mortality prediction than 
CURB-65, however, its discriminative power decreased 
with advancing age.11

Artificial intelligence (AI) when applied on elec-
tronic medical data to support clinical decision- making 
processes, demonstrate the potential to mitigate some 
of these challenges.12 13 AI research in thoracic imaging 
has focused largely on diagnostic discrimination. Several 
studies have described convolutional neural network 
(CNN) models which demonstrate high accuracy rates 
in predicting chest imaging diagnoses.14–17 There has 
also been rapid progress in the use of AI for diagnosis 
of SARS- CoV-2 pneumonia based on chest computer 
tomography and radiographs.18–20

In addition to discriminating binary diagnoses, AI 
demonstrates the potential to prognosticate outcomes 
using chest imaging. Lu et al described the use of a single 
chest radiograph (CXR) in a cancer screening cohort to 
predict all- cause mortality at 12 years.21 Similarly, Liu et al 
described the use of AI algorithms to analyse CT changes 
in SARS- CoV-2 pneumonia to predict disease progression 
with an AUC of 0.93.22

The authors hypothesise that radiological abnormal-
ities present on a single CXR taken at the start of an 
episode of CAP can aid in prognostication of mortality. 
Using a retrospective dataset, we developed a CNN 
named CAPE (CAP AI Predictive Engine). The primary 
aim of this study is to determine the AUC of the CAPE 
mortality risk score for 30- day mortality. The secondary 
aim is to compare the performance of this tool to well- 
validated pneumonia severity scores—CURB-65 and PSI. 
The tertiary aim is to investigate the potential additional 
value of combining CNN with pneumonia severity scores.

METHODS
CNN model development
Model development was based on a single acute tertiary 
hospital’s data. Study consent waiver was obtained. 
Patients and public were not involved in the design, or 
conduct, or reporting, or dissemination plans of our 
research.

In the model development of CAPE CNN, a retro-
spective data set of consisting 2235 CXR from 1966 
adult were used. They were identified from elec-
tronic medical records by emergency department 

attendance (with subsequent inpatient admission diag-
nosis of pneumonia by International Classification 
of Disease-10 coding) occurring between 1 January 
2019 and 30 December 2019. All CXR were deidenti-
fied and preprocessed by centre- cropping, resizing to 
dimensions of 244×244 pixels, followed by histogram 
equalisation. Inpatient mortality data were used for 
model development instead of 30- day mortality as this 
retrospective data were not available from the national 
death registry.

The retrospective cohort was grouped into three sets: 
‘training’ set for model building; ‘validation’ set for selec-
tion of the optimal model; ‘test’ set to assess the perfor-
mance of the selected model. Data from 1 January 2019 
to 31 October 2019, were split into ‘training’ set and ‘vali-
dation’ set with proportion 90% and 10%, respectively 
(figure 1). Patients admitted from 1 November 2019 to 
31 December 2019 were used to create ‘test’ set which 
split by calendar month to ensure temporal generalis-
ability of the models. Where there were duplicate inpa-
tient visits by the same patient in the ‘training’ and ‘test’ 
set, the record was excluded to avoid testing based on 
previously learnt data. These 196 CXRs excluded from 
the ‘test’ set was added to the ‘training’ and ‘validation’ 
set for model development.

A deep- learning classifier was developed which 
combined a pretrained image classification network—
Xception. Xception is an extension of the inception 
architecture, which replaces the standard Inception 
modules with depth- wise separable convolutions.23 A 
transfer learning approach, which uses a predefined 
model, has the benefit of taking advantage of data from 
the first setting to extract information that may be useful 
when learning or even when directly making predictions 
in the second setting.24 The models were implemented 
in Keras, V.1.3.0 29, Scikit- learn,  V. 0. 19. one and Python 
V.3.7 (Python Software Foundation).

Model training was stopped in April 2020, when AUC 
for inpatient mortality in the ‘test’ set was determined 
to have reached 0.890 and accuracy of 0.899. After 
accounting for data clustering in the retrospective cohort, 
CAPE mortality risk score had an AUC of 0.88 (95% CI 
0.86 to 0.90, p<0.001). The model showed good internal 
calibration (calibration intercept=0.00, slope=1.00, Brier 
score=0.069) (table 1).

Subsequently, CAPE was implemented as a computer 
application. Independent CXR in Digital Imaging 
and Communications in Medicine (DICOM) format 
uploaded into the software may be analysed for deter-
mination of an image- based mortality risk score. To 
aid clinicians in visually interpreting how the predic-
tive score was generated by the deep- learning model, 
we adopted the use of a gradient- weighted class acti-
vation map to generate a heatmap. This demonstrates 
the neural- network activated in the forward- pass during 
inference/prediction. Figure 2 demonstrates an AI 
generated heatmap overlaid on a CXR showing pneu-
monic consolidation.
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Prospective cohort study for discrimination of CAPE mortality 
risk score
The prospective cohort study included adults who 
required inpatient admission for a physician- determined 
diagnosis of CAP via the emergency department. This 
occurred over the period of 11 May 2020 to 15 June 2020. 
They were identified within 72 hours of admission utilising 
electronic medical records. Baseline demographic infor-
mation and health risk factors such as age, smoking 
status, body mass index and comorbidities were collected 
by trained research personnel, who were blinded to 
CAPE. Disease characteristics at initial presentation were 
recorded, these included vital signs; pneumonia severity 
scores; self- reported respiratory symptoms; the presence 
of associated complications such as acute kidney injury, 
acute myocardial injury and delirium. Laboratory data 
such as blood indices, biochemistry, infection biomarkers 
and microbiology tests were collected. Significant treat-
ment data which may affect mortality outcomes, like 
prior antibiotics usage in the previous 30 days and timing 
of antibiotic administration, were recorded for analysis.

Patients with pulmonary tuberculosis were not excluded 
from the cohort as pulmonary tuberculosis is endemic in 
Singapore. CAP with SARS- CoV-2 as the microbial aeti-
ology is endemic in some countries, hence it was not 
excluded. Recently, PSI and CURB-65 has been shown to 

demonstrate good discrimination for SARS- CoV-2 pneu-
monia.25–27 The authors discern that a model incorpo-
rating all microbial causes of CAP would be practically 
more useful in healthcare systems where comprehensive 
testing for microbial aetiologies may be limited by avail-
able resources.

The first CXR performed on the day of inpatient 
admission, was extracted for CAPE analysis. The image 
is loaded from a standard DICOM file to generate an 
image- based heatmap and mortality risk score (figure 2). 
The mortality risk score is expressed in whole numbers 
from 0 to 100, with higher values indicating greater risk 
of death. A primary outcome of mortality at 30 days from 
the time of admission, concluded the data collection for 
analysis. Sample size calculation was based on a formula 
reported in Riley et al.28 To estimate the 30- day mortality 
risk in the prospective dataset with sufficient precision, 
assuming an anticipated outcome proportion of 0.2 and 
a margin of error <0.05, the required sample size is at 
least 246.

Statistical analysis
This study was reported in accordance with the Trans-
parent Reporting of a multivariate prediction model for 
Individual Prognosis or Diagnosis guidelines.29

Figure 1 Datasets for CAPE model development and prospective cohort study. (A) Retrospective dataset for model training, 
validation and testing. (B) Prospective cohort study to assess model discrimination for 30- day mortality. CAPE, CAP AI 
predictive Engine; CXR, chest radiography.
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Table 1 Baseline risk factors and pneumonia characteristics in relation to 30- day mortality

Variable All patients n=315 Survivors n=254 Non- survivors n=61 P value

Age, years 71.4+18.0 69.2+18.7 80.4+10.3 <0.01

Male 179 (56.8) 141 (55.5) 38 (62.3) 0.39

BMI* 22.7+6.1 23.5+6.3 19.9+3.7 0.0003

Smoking†

  Never 177 (56.2) 152 (59.8) 25 (41.0) <0.01

  Former 29 (9.2) 28 (11.0) 1 (1.6)

  Current 24 (7.6) 16 (6.3) 8 (13.1)

Residing in long- term care facility 63 (20) 45 (17.7) 18 (29.5) 0.05

Hospitalisation in prior 30 days 69 (21.9) 49 (19.3) 20 (32.8) 0.02

Antibiotic therapy in prior 30 days 71 (22.5) 55 (21.7) 16 (26.2) 0.50

Comorbid chronic diseases

  Diabetes mellitus 110 (34.9) 83 (32.7) 27 (39.3) 0.10

  Hypertension 190 (60.3) 151 (59.4) 39 (63.9) 0.56

  Ischaemic heart disease 86 (27.3) 65 (25.6) 21 (34.4) 0.20

  Congestive cardiac failure 17 (5.4) 11 (4.3) 6 (9.8) 0.11

  Asthma 22 (7.0) 19 (7.5) 3 (4.9) 0.59

  Chronic obstructive lung disease 22 (7.0) 17 (6.7) 5 (8.2) 0.78

  Bronchiectasis 22 (7.0) 18 (7.1) 4 (6.6) 1.00

  Dementia 85 (27.0) 58 (22.8) 27 (44.3) 0.001

  Parkinson’s disease 23 (7.3) 18 (7.1) 5 (8.2) 0.79

  Chronic kidney disease 48 (15.2) 34 (13.4) 14 (23.0) 0.07

  Chronic liver disease 11 (3.5) 8 (3.1) 3 (4.9) 0.45

  Active cancers 34 (10.7) 16 (6.3) 18 (29.5) <0.01

Vital signs on admission

  Fever >38.0°C 191 (60.6) 160 (63.0) 31 (50.8) 0.11

  Heart rate/minute 96.9+1.3 95.2+1.3 104.0+3.4 0.006

  Respiratory rate/minute 21.3+5.0 20.2+3.7 25.5+7.2 <0.01

  Systolic blood pressure (mm Hg) 130.8+26.8 134.5+25.4 115+27.1 <0.01

  Diastolic blood pressure (mm Hg) 72.1+14.3 73.1+13.9 67.9+15.3 0.001

  Pulse capillary oxygenation (%) 95.0+5.3 95.6+4.7 92.2+6.7 <0.01

  Fraction of inspired oxygen required 29.8+20.5 26.2+15.1 44.4+31.1 <0.01

Respiratory symptoms

  Cough 178 (56.6) 150 (59.1) 28 (45.9) 0.08

  Dyspnoea 130 (41.3) 88 (34.6) 42 (68.9) <0.01

  Sputum 80 (25.4) 62 (24.4) 18 (29.5) 0.41

  Haemoptysis 4 (1.3) 4 (1.6) 0 (0) 1.00

  Rhinorrhea 11 (3.5) 10 (3.9) 1 (1.6) 0.70

  Throat pain 16 (5.1) 16 (6.3) 0 (0) 0.05

  Chest pain 31 (9.8) 27 (10.6) 4 (6.6) 0.47

  Wheeze 2 (0.6) 2 (0.8) 0 (0) 1.00

  Myalgia 10 (3.2) 9 (3.5) 1 (1.6) 0.69

  Lethargy 43 (13.7) 28 (11.0) 15 (24.6) 0.01

  Fall 20 (6.3) 17 (6.7) 3 (4.9) 0.78

  Nausea or vomiting 178 (56.5) 150 (59.1) 28 (45.9) 0.08

Pneumonia complications

Continued
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Logistic regression was used to model 30- day mortality, 
with the CAPE mortality risk score as a predictor in the 
retrospective dataset, and PSI or CURB-65 as a predictor 
in the prospective dataset. We assessed if the log odds 
of 30- day mortality was linearly associated with CAPE 
mortality risk score and PSI using Box- Tidwell tests. We 
then modelled CAPE mortality risk scores and PSI values 
using a restricted cubic spline function with five knots at 
the 5th, 27.5th, 50th, 72.5th and 95th ercentiles before 

testing if the coefficient of the non- linear spline terms 
jointly equal 0.30 Cluster- robust SEs were used to account 
for clustering by subjects. Model discrimination was 
assessed using the AUC, with 95% CI calculated by clus-
tered bootstrap resampling (1000 replications).

Model calibration was assessed graphically using calibra-
tion plots with locally weighted scatterplot smoothing to 
examine the agreement between predicted and observed 
mortality risk across deciles.31 The calibration- in- the- large 

Variable All patients n=315 Survivors n=254 Non- survivors n=61 P value

  Acute myocardial injury 22 (7.0) 12 (4.7) 10 (6.4) 0.004

  Acute kidney injury 73 (23.2) 43 (16.9) 30 (9.1) <0.001

  Delirium 26 (8.3) 11 (4.3) 15 (24.6) <0.001

  Critical care admission 12 (3.8) 11 (4.3) 1 (1.6) 0.34

Laboratory indices

  Serum C reactive protein (mg/L) 68.9+78.5 59.3+69.7 109.0+98.6 <0.001

  Serum procalcitonin (μg/L) 3.2+13.5 1.4+5.9 11.3+27.8 <0.001

  White cell count (x10∧9 cells/L) 12.8+14.5 11.3+4.9 18.9+30.7 0.0002

Microbial aetiology

  SARS- CoV-2 18 (5.7) 18 (7.1) 0 (0) 1.00

  Mycobacterium tuberculosis 11 (3.5) 11 (4.3) 0 (0) 1.00

Variable All patients n=315 Survivors n=254 Non- survivors n=61

Pneumonia Severity Scores

CURB-65 score

  0 62 (19.7) 61 (24.0) 1 (1.6)

  1 99 (31.4) 90 (35.4) 9 (14.8)

  2 103 (32.7) 73 (28.7) 30 (49.2)

  3 40 (12.7) 27 (10.6) 13 (21.3)

  4 9 (2.9) 3 (1.2) 6 (9.8)

  5 2 (0.6) 0 (0) 2 (3.3)

Pneumonia Severity Index 101.4+40.2 92.7+36.1 137.5+36.3

Pneumonia Severity Index Class

  I 34 (10.8) 34 (13.4) 0 (0)

  II 36 (11.4) 36 (14.2) 0 (0)

  III 54 (17.1) 48 (18.9) 6 (9.8)

  IV 115 (36.5) 96 (37.8) 19 (31.1)

  V 76 (24.1) 40 (15.7) 36 (59.0)

CAPE Mortality Risk Score 49.6+29.1 44.0+27.8 72.8+22.4

Outcomes

  Received antibiotics within 24 hours of 
presentation

288 (91.4) 227 (89.4) 61 (100)

  Corticosteroids (oral or intravenous) 34 (10.8%) 30 (11.8) 4 (6.6)

  Hospitalisation days‡ 8.9+9.1 5.5(3,12) 9.5+0.6 6(3,13) 6.8+0.8 4(2,10)

Data are presented as number (%), mean±SD, median (IQR).
*Data missing for 102 subjects.
†Data missing for 85 subjects.
‡Data missing for 1one subject.
BMI, body mass index; CAPE, community- acquired pneumonia artificial intelligence predictive engine.

Table 1 Continued
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(CITL) and the calibration slope were assessed. An ideal 
CITL and calibration slope would have values of 0 and 
1 respectively.32 A CITL of <0 (or >0) indicates that the 
model overestimates (or underestimates) risk on average, 
while a calibration slope of <1 (or >1) indicates that the 
predicted risks are too extreme (or too moderate).32 
Where there was miscalibration, a more parsimonious 
method of model recalibration was adopted as the 
prospective dataset was small relative to the retrospective 
dataset. The intercept and slope were updated using the 
prospective dataset by using the linear predictor in the 
original model as the only covariable (logistic calibra-
tion).33 34

Overall goodness- of- fit was assessed using the Brier 
score,31 which measures the accuracy of predictions. The 
score ranges from 0 to 1, with a lower score indicating 
better model performance.

The high mortality risk cut- off was selected at ≥20%, 
similar with commonly used cut- offs in the literature.5 
Model performance in terms of sensitivity, specificity, 
positive predictive value (PPV) and negative predictive 
value (NPV) were assessed across potential mortality risk 
cut- offs.

To quantify the incremental value of CAPE, the net 
reclassification improvement (NRI) for the addition of 
CAPE to PSI and CURB-65, respectively, were calculated.35

Spearman’s r was used to measure the strength of 
correlation between CAPE mortality risk score and 
PSI; CAPE mortality risk score and CURB-65. Weighted 
Cohen’s kappa was used to estimate the degree of agree-
ment between CAPE mortality risk score and PSI class36; 
CAPE mortality risk score and CURB-65. For this analysis, 
CAPE mortality risk score (range 0–100) was divided into 
five categories (0–20, 21-40, 41–60, 61–80, 81–100); while 

CURB-65 (range 0–5), had scores 4 and 5 collapsed into 
one severity band, to make five categories.

Missing data were present in some variables such as 
body mass index and laboratory data. No missing data 
were present in the calculation of Pneumonia Severity 
Scores of CURB-65, PSI and CAPE mortality risk score. 
As the primary and secondary outcome analysis did not 
require use of variables with missing data, no treatment 
of missing data using imputation methods was necessary.

All statistical analyses were conducted using Stata 
V.15.0 (StataCorp).

RESULTS
A total of 315 inpatient visits for CAP were included for 
analysis over the prospective cohort period between 11 
May 2020 and 15 June 2020 (figure 1). This comprised 
302 subjects, of whom two had three inpatient visits; nine 
had two inpatient visits. Statistical analysis was performed 
for all 315 inpatients visits for the following four reasons: 
subjects who had more than one visit had returned to 
community prior to a second or third inpatient episode 
of pneumonia; the CAPE mortality score generated 
based on the CXR at the start of each visit, were varied 
due to different severities of CAP at presentation; the 
61 subjects who did not survive to 30 days were unique 
with no duplication primary outcome in the analysis; the 
authors sought to validate the model in a real- world situa-
tion, where some patients experience early hospital read-
mission after discharge.

Baseline demographics and comorbidities
A total of 315 inpatient visits for CAP over the prospec-
tive cohort study period had 30- day mortality of 19.4% 
(n=61/315). 56.8% (n=179/315) were male. Baseline 
demographics, health risk factors and comorbidities are 
presented in table 1.

Non- survivors were older than survivors (mean (SD)
age, 80.4 (10.3) vs 69.2 (18.7)). They had lower body 
mass index (mean (SD), 19.9 (3.7) vs 23.5 (6.3)); 
more residing in long- term care facilities (n=18/61 vs 
n=45/254); had prior hospitalisations in previous 30 
days (n=20/61 vs n=49/254). Comorbidities found more 
commonly in non- survivors were dementia (n=27/61 vs 
n=58/254); active malignancies (n=16/61 vs n=18/254) 
and chronic kidney disease (n=14/61 vs n=34/254).

CAP data
At initial disease presentation, non- survivors were more 
likely to have higher heart rates (mean (SD), higher 
respiratory rates, lower blood pressures, lower pulse 
oximetry readings, require high oxygen supplementa-
tion. Symptoms of dyspnoea (n=42/61 vs n=88/254) and 
delirium (n=15/61 vs n=11/254) were more common in 
the non- survivors. As were CAP complications of delirium 
(n=15/61 vs n=11/254); acute kidney injury (n=30/61 

Figure 2 AI generated Grad- CAM heatmap of a CXR with 
community- acquired pneumonia. Frontal chest radiograph 
(A) of a patient presenting with acute respiratory failure 
secondary to pneumonia, performed in the emergency 
department. Grad- CAM heatmap (B) highlights areas 
of greatest class activation by the AI model, which 
corresponds to areas of pulmonary consolidation, with 
the extent and intensity of activation mirroring the severity 
of pneumonia. AI, artificial intelligence; CXR, chest 
radiography; Grad- CAM, gradient- weighted class activation 
map.
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vs n=43/254); acute myocardial injury (n=10/61 vs 
n=43/254).

Significantly, non- survivors demonstrated higher 
inflammatory biomarkers such as serum C- reactive 
protein (mean (SD), 109 mg/L (98.6) vs 59.3 mg/L 
(69.7)); serum procalcitonin (mean (SD), 11.3 (27.8) 
μg/L vs 1.4 (5.9) μg/L); white cell count (mean (SD), 
18.9 x10∧9 cells/L(30.7) vs 11.3 x10∧9 cells/L(4.9)).

The spectrum of microbiological data captured in 
the prospective study cohort was influenced by limited 
microbiological testing for non- severe CAP, and micro-
bial aetiologies apart from SAR- CoV-2, over the period 
of study recruitment. This was to preserve local labora-
tory capacity for population SAR- CoV-2 screening. All 
patients received SARS- CoV-2 PCR testing, of which 
5.7% (n=18/315) were positive. Twenty- nine mycobac-
terium tests were performed at physician discretion, 
yielded 3.5% (n=11/315) of pulmonary tuberculosis as 
the underlying microbial cause of CAP. No patients with 
COVID-19 or pulmonary tuberculosis demised.

All non- survivors received appropriate antibiotics in the 
first 24 hours of presentation, while 91.4% (n=288/315) 
of the total study cohort received the same.

CAPE mortality risk score and pneumonia severity scores: 
CURB-65, PSI
The AUC of CAPE mortality risk score for 30- day mortality 
was determined to be 0.79 (95% CI 0.73 to 0.85, p<0.001). 
The AUC of CURB-65 for 30- day mortality was 0.76 (95% 
CI 0.70 to 0.81, p<0.001); while that of PSI was 0.80 (95% 
CI 0.74 to 0.86, p<0.001) (table 2, figure 3A).

There was evidence of miscalibration of CAPE mortality 
risk score with a CITL of 0.84, calibration slope of 0.58 
and Brier score 0.14 (online supplemental figure 1). We 

recalibrated the model by updating both the intercept 
and slope using the prospective dataset. The recalibrated 
model had a CITL of 0.00, calibration slope of 1.00 and 
Brier score 0.13 (table 2).

We incorporated CAPE with PSI, and CAPE with 
CURB-65, respectively. We then assessed if there were 
differences in the AUCs between (1) CURB-65 +CAPE, 
and (2) PSI+CAPE models, based on a method described 
by DeLong et al37 CURB-65 +CAPE (AUC 0.83, 0.77 to 
0.88, p<0.001) had a larger AUC than CURB-65 (χ2=8.66, 
p=0.003), while PSI+CAPE (AUC 0.84, 95% CI 0.79 
to 0.89, p<0.001) had a larger AUC than PSI (χ2=3.79, 
p=0.052) (figure 3B,C). Calibration performed in the 
prospective dataset is presented in online supplemental 
figure 2.

The NRI for the addition of CAPE to PSI at a 30- day 
mortality risk threshold of 0.20 was 4.6% (95% CI 3.9% 
to 5.3%); while the NRI for the addition of CAPE to 
CURB-65 was 4.5% (95% CI 3.8% to 5.2%), presented in 
online supplemental table 1.

The performance of the CAPE mortality risk score in 
clinically relevant metrics across different risk cut- offs 
are described in table 3. At the 30- day mortality risk cut- 
off of 0.20, sensitivity was 0.77 (n=47/61), specificity 
0.67 (n=169/254), PPV 0.36 (n=47/132), NPV of 0.92 
(n=169/183).

Logistic regression of CAPE mortality risk score for 
the binary outcome of 30- day mortality yielded an unad-
justed OR of 1.04 (95% CI 1.03 to 1.05, p<0.01), indi-
cating a 4% increase in the odds of death for every 
1- point increase. The unadjusted OR of CURB-65 (0–5 
scale) for 30- day mortality was 2.66 (95% CI 1.94 to 3.65, 
p<0.01); while that of PSI (ranged 16 to 210 in cohort) 
was 1.03 (95% CI 1.02 to 1.04, p<0.01), respectively. The 

Table 2 Model discrimination and calibration in retrospective and prospective datasets

Model Outcome

Retrospective dataset 
(n=1948) Prospective cohort (n=315)

AUROC (95% CI)
Brier 
score AUROC (95% CI) CITL (95% CI)

Calibration slope 
(95% CI)

Brier 
score

CAPE Inpatient 
mortality

0.88 (0.86 to 0.90) 0.069 0.81 (0.73 to 0.88) 0.14 (−0.26 to 0.53) 0.67 (0.39 to 0.95) 0.092

30- day 
mortality

– – 0.79 (0.73 to 0.85) 0.84 (0.46 to 1.22) 0.58 (0.39 to 0.76) 0.137

Recalibrated CAPE 30- day 
mortality

– – 0.79 (0.73 to 0.85) 0.00 (−0.31 to 0.31) 1.00 (0.67 to 1.33) 0.130

PSI 30- day 
mortality

– – 0.80 (0.74 to 0.86) 0.00 (−0.32 to 0.32) 1.00 (0.72 to 1.28) 0.121

CURB-65 30- day 
mortality

– – 0.76 (0.70 to 0.81) 0.00 (−0.30 to 0.30) 1.00 (0.66 to 1.34) 0.131

CAPE+PSI 30- day 
mortality

– – 0.84 (0.79 to 0.89) 0.00 (−0.33 to 0.33) 1.00 (0.73 to 1.27) 0.116

CAPE+CURB-65 30- day 
mortality

– – 0.83 (0.77 to 0.88) 0.00 (−0.32 to 032) 1.00 (0.71 to 1.29) 0.121

AUROC, area under the receiver operating characteristic curve; CAPE, community- acquired pneumonia artificial intelligence predictive engine; CITL, 
calibration- in- the- large; CURB-65, Confusion of new onset, blood Urea nitrogen, Respiratory rate, Blood pressure, 65 years old; PSI, Pneumonia 
Severity Index.

https://dx.doi.org/10.1136/bmjresp-2021-001045
https://dx.doi.org/10.1136/bmjresp-2021-001045
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Box- Tidwell test did not show evidence of departure from 
linearity for CAPE mortality risk score (p=0.63) or PSI 
values (p=0.80). This was consistent with tests of the coef-
ficients of the non- linear spine terms for CAPE mortality 
risk scores (χ2=4.31, p=0.230) and PSI values (χ2=6.18, 
p=0.103).

To assess for correlation between CAPE mortality risk 
score and PSI, the Spearman’s r was 0.50 (p<0.01), while 
that of CAPE mortality risk score and CURB-65 was 0.44 
(p<0.01), indicating moderate and low positive correla-
tion, respectively.

To assess for agreement, weighted Cohen’s kappa 
was used for analysis. There was moderate agreement 
between CAPE mortality risk score and PSI, with kappa 
determined to be 0.46; while that of CAPE mortality risk 
score and CURB-65 had a kappa of 0.38, showing fair 
agreement.

The characteristics of the patients with discordant 
and concordant 30- day mortality risk categories based 
on CAPE and PSI are presented in online supplemental 
table 2.

DISCUSSION
In this study, we demonstrated that an AI model based 
on first CXR image performed during the assessment for 
CAP can prognosticate 30- day mortality with an AUC of 
0.79. This is comparable to that of currently used, well- 
validated pneumonia severity risk scores, with an AUC of 
0.80 for PSI and 0.77 for CURB-65 demonstrated in the 
same study cohort. The AUCs for PSI and CURB-65 in 
this study are similar with that of a prior meta- analysis.9

We showed that CAPE mortality risk score had moderate 
positive correlation and agreement with PSI; low posi-
tive correlation and fair agreement with CURB-65. This 
suggests that while all three prognostic tools displayed 
similar AUCs, the CAPE mortality risk score can do so 
by using imaging parameters captured by CNN, indepen-
dent of the need for descriptive medical data.

We further combined CAPE mortality risk score with 
well- validated pneumonia severity risk scores. The AUC 
of CURB-65 improved from 0.76 (95% CI 0.70 to 0.81) to 
0.83 (95% CI 0.77 to 0.88), while PSI improved from 0.80 
(95% CI 0.74 to 0.86) to 0.84 (95% CI 0.79 to 0.89). This 
indicates that the additional of an imaging CNN model 
to traditional pneumonia severity scoring has value in 
improving the discrimination of the model for mortality.

To our knowledge, this is the first report describing deep 
learning of CXRs to predict 30- day mortality in CAP. Future 
research may be conducted to accurately quantify the degree 
to which CNN analysis of CXRs correlate with commonly 
used pneumonia severity markers, such as oxygenation and 
sepsis indices, to understand the additional value that CNN 
brings to pneumonia prognostication.

The authors suggest that CAPE has the potential be a 
clinical decision support tool incorporated into emer-
gency department or inpatient clinical workflows, for the 
purposes of triaging of CAP. One such example could be a 

Figure 3 (A) CAPE mortality risk score and pneumonia 
severity scores receiver operator characteristic curves for 
30- day mortality. (B) PSI+CAPE mortality risk score and PSI 
receiver operator characteristic curves for 30- day mortality. 
(C) CURB-65 + CAPE mortality risk score and CURB-65 
receiver operator characteristic curves for 30- day mortality. 
AUROC, area under the receiver operating characteristic 
curve; CAPE, CAP AI predictive Engine; CURB-65, 
Confusion of new onset, blood Urea nitrogen, Respiratory 
rate, Blood pressure, 65 years old; PSI, Pneumonia Severity 
Index.

https://dx.doi.org/10.1136/bmjresp-2021-001045
https://dx.doi.org/10.1136/bmjresp-2021-001045
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triaging clinician indicating the diagnosis of CAP on a CXR 
request. The DICOM image can be processed through 
the CAPE software by trained personnel to generate the 
CAPE mortality risk score. If the CAPE mortality risk 
score threshold is below 5%, this would correspond to an 
NPV of 0.96. This information may be communicated on 
a radiology report to the clinician to encourage outpa-
tient care for low- risk CAP or early discharge strategies. 
Conversely, if the CAPE mortality risk score threshold is 
above 20%, this would correspond to a PPV of 0.36 for 
mortality. This information may be communicated to the 
clinician to strongly consider the need for critical care 
monitoring, with advanced care plans in place. In centres 
where PSI and CURB-65 are scored routinely and available 
electronically, the combined PSI- CAPE or CURB-65- CAPE 
model can provide greater discrimination. This may subse-
quently be applied in pre- existing institution- specific work-
flows for CAP.

A potential advantage of an AI prognostic model is the 
flexibility of rapidly customising cut- off points or risk thresh-
olds to CAP epidemiology and healthcare resource avail-
ability over time and space. This would maximise efficiency 
of healthcare resources. For example, during pandemic 
hospital bed shortages, (in conjunction with real- time vital 
signs) the model risk threshold can be increased to identify 
patients at higher risk of deterioration to prioritise care. 
(Data scientists) can remotely calibrate the model by CXR 
extraction, based on recent mortality data, and adjust the 
risk threshold of the model accordingly.

The authors recognise that while robust prognostic 
models may exist, further studies are needed to assess the 
effectiveness of real- world implementation. Currently, there 
is a paucity of data on quality improvement outcomes using 
AI as clinician decision support tools.38 39 In addition, the 
real- world implementation of existing disease prognostica-
tion tools may or may not contribute to improving clinical 
outcomes ultimately. Factors such as clinician acceptance 
and the availability of effective clinical support systems to 
incorporate these tools are likely to play a greater role in 
improving care outcomes.40–42

Limitations
The model was developed using radiological and health 
data from a single institution with prospective validation 
performed at the same place. Hence, we have not demon-
strated generalisability. The study authors are currently 
in the process of performing a multicentre study for this 
purpose and welcome any collaborators who may be inter-
ested in developing, validating, and using this tool. While 
CAPE is proprietary (intellectual property belonging to 
Singapore Health Services and Integrated Health Informa-
tion Systems), the authors have collectively agreed for free 
use of this software with acknowledgements, for research 
purposes, over the duration of COVID-19 pandemic.

A second limitation would be the lack of comprehensive 
or standardised microbiological data collection during the 
study period. This was due to manpower and laboratory 
resources being diverted to prioritise pandemic planning 
and SARS- CoV-2 testing. Despite this, the study authors 
suggest that radiological severity can be more predictive of 
mortality than microbiological aetiology. While impact of 
microbiological data on the AUC of CAPE mortality risk 
score is yet uncertain, the authors suggest that there may be 
minimal effect on the discrimination of the model.

A third limitation is that the authors have yet to ascertain 
if CAPE mortality risk score would have higher discrimi-
native power if combined with non- imaging medical data, 
apart from PSI and CURB-65. Further model development 
in combination with known CAP mortality predictors is in 
progress.

Lastly, the authors acknowledge that the outcome of 
mortality in CAP, while important, may be less clinically 
useful than other outcome indicators such as risk of crit-
ical care admissions and estimated length of inpatient stay. 
The authors are currently working on AI models to address 
these clinical questions.

CONCLUSION
We have shown that AI can be used to build a mortality 
prognostic model for CAP based on CXR. The AUC for 

Table 3 Performance of CAPE mortality risk score in predicting 30- day mortality at different risk cut- offs in the prospective 
dataset

30- day mortality 
risk cut- off

CAPE mortality 
risk score TP TN FP FN Sensitivity (%) Specificity (%) PPV (%) NPV (%)

≥0.05 ≥22.2 57 97 157 4 93.4 38.2 26.6 96.0

≥0.10 ≥40.6 53 135 119 8 86.9 53.2 30.8 94.4

≥0.15 ≥52.0 49 155 99 12 80.3 61.0 33.1 92.8

≥0.20 ≥60.6 47 169 85 14 77.1 66.5 35.6 92.4

≥0.25 ≥67.7 44 183 71 17 72.1 72.1 38.3 91.5

≥0.30 ≥73.9 43 191 63 18 70.5 75.2 40.6 91.4

≥0.35 ≥79.5 37 211 43 24 60.7 83.1 46.3 89.8

≥0.40 ≥84.8 28 225 29 33 45.9 88.6 49.1 87.2

CAPE, community- acquired pneumonia artificial intelligence predictive engine; FN, false negative; FP, false positive; NPV, negative predictive value; 
PPV, positive predictive value; TN, true negative; TP, true positive.
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30- day mortality is comparable to conventional pneumonia 
severity scores such as PSI and CURB-65, with further 
potential to improve its discrimination for mortality.
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