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DNA cages can be joined together tomake larger 3D nanostructures on whichmolecular electronic circuits and tiny containers are
built for drug delivery. The mathematical models for these promising nanomaterials play important roles in clarifying their
assembly mechanism and understanding their structures. In this study, we propose a mathematical and computer method to
construct permissible topological structures with double-helical edges for a triangular bipyramid and pentangular bipyramid.
Furthermore, we remove the same topological links, without eliminating the nonrepeated ones for a triangular bipyramid and
pentangular bipyramid. By analyzing characteristics of these unique links, some self-assembly and statistic rules are discussed.
This study may obtain some new insights into the DNA assembly from the viewpoint of mathematics, promoting the com-
prehending and design efficiency of DNA polyhedra with required topological structures.

1. Introduction

The polyhedra made up of several triangles possess stable
structures. Of five Platonic solids constructed from one type
of polygon, three are made of triangles, accounting for 60%.
Of thirteen Archimedes solids formed by two or three
polygons, nine are composed of triangles, accounting for
69.2%. The Biosphere for the 1967 World Fair, Expo 67
surprised the world, for it reached its maximum volume by
using minimum materials. The stress of the geodesic domes
is distributed by triangles, having stable nature, formed by
crossed geodesics. In fact, geodesic domes are based on
deltahedra which refer to polyhedra constructed from tri-
angular faces. The deltahedra include eight ones in regular
and semiregular polyhedra of high symmetry: (1) regular
tetrahedron; (2) triangular bipyramid; (3) regular octahe-
dron; (4) pentangular bipyramid; (5) trigonal dodecahedron;
(6) tritetrakis triprism; (7) ditetrakis tetragonal antiprism;
and (8) icosahedron. Of these polyhedra, (1), (3), and (8) are

regular polyhedra and the other five are semiregular
polyhedra.

DNA is an attractive engineering material because
strands with complementary base sequences recognize and
bind to each other, enabling complex molecular structures to
be made by self-assembly. DNA has been used as an ideal
material in 3D nanostructures for its good self-assembly
ability [1, 2]. Among DNA deltahedra, synthesis and ap-
plication have been done regarding the tetrahedron [3, 4],
the triangular bipyramid [5, 6], the octahedron [7, 8], and
the icosahedron [9]. DNA deltahedra-like nanostructures
have played even more important roles in drug delivery and
imaging probes [3, 4, 6, 7, 9–11]. Furthermore, DNA
nanomaterials will find a wide range of applications in
biosensing, bioimaging, and biomedicine due to their in-
triguing structures and functions [12]. In the meanwhile,
some researchers are trying to study the design strategies for
DNA cages from the mathematical and interdisciplinary
perspective. Benson et al. proposed a general method to
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construct scaffolded DNA nanostructures from flat sheet
meshes with the computer-aided technique [13]. Qiu and
his colleagues took a mathematical approach to answer the
complex question of what models are suitable to describe
the DNA polyhedron structure [14–19]. Guo et al. pro-
vided a topological approach to assemble DNA tetrahedra
and DNA triangular prism [20, 21]. Lin et al. obtained all
permissible topological structures for a DNA trigonal
bipyramid with double-helical edges [22], and they took
into account mirror images of twists regarding the
building blocks for constructing trigonal bipyramid links
and calculated the exact number for permissible DNA
links. In the previous study, we constructed and analyzed
three Archimedean solids from the point of view of
mathematics and computation program [23]. Archime-
dean solids are of high symmetry and own a large number
of DNA polyhedral links. In consideration of significance
of deltahedra-like nanostructures with lower symmetry,
the triangular bipyramid and pentangular bipyramid as-
sembled by a double helix as well as their nonrepeated
isotopic links are studied. We start by introducing the
construction rules of the vertex and edge for double-helical
structures and then provide the construction algorithm
and analytical method for the triangular bipyramid and
pentangular bipyramid. Unlike polyhedra with high
symmetry, the triangular bipyramid and pentangular bi-
pyramid could not get their projections which own the
uncrossed line. By introducing and analyzing their space
diagrams, the nonrepeated triangular bipyramid and
pentangular bipyramid are obtained. In this process, some
statistical law and assembly mechanism for deltahedra are
discussed. This study may promote the comprehending
and design efficiency of DNA polyhedra with required
topological structures.

2. Methods

2.1. DNA Polyhedral Links. A theoretical framework for
characterizing DNA cages is a polyhedral link which turns
the double-stranded DNA molecule into a computable
topological model [24]. In fact, a polyhedral link is an
interlinked and interlocked architecture obtained from a
polyhedral graph G, by using branchedjunctions and
twisted lines to replace the vertices and edges [14]. To fully
understand this study, we have to explain some basic
concepts used in our previous work. The crossing number
of a polyhedral link c is the least number of crossings that
occur in any projection of the polyhedral link. The
component number of a polyhedral link μ is the number of
loops (rings) knotted with each other [15]. These pa-
rameters brought some topological viewpoints to describe
and answer structural characteristics of DNA polyhedra
[18, 19].

In this study, star-like motifs appear in stable structures
of artificial DNA cages and virus capsids. The blocks of
three- and five-branched junctions, shown in Figure 1, are
located on the three-degree vertices and the five-degree ones,
respectively. The triangular bipyramid and pentangular
bipyramid just have the structure of vertex like these. Note

that the arrows indicate the directions of DNA strands and
the two strands are parallel and oppositely oriented.

Also in the polyhedral link, there are either odd crossings
or even crossings on each edge. We consider both the case of
an odd number of crossings and the case of an even number
of crossings. For simplicity, one crossing (a half-twist) and
two crossings (a twist) represent an odd number of crossings
and an even number of crossings, respectively, as shown in
Figure 2.We use branch-point vertex and odd-even-crossing
edge structures, together with some rule in the assembly of
DNA strands to derive a construction algorithm for the
triangular bipyramid and pentangular bipyramid.

2.2. Construction Rule. Polyhedral links include DNA
polyhedral links and non-DNA polyhedral links, and the
former could satisfy the rule in which the two strands are
antiparallel, but the latter could not. Jonoska et al. revealed
that the minimal number of circular strands needed to
construct DNA cages is 2 given that every face of the
polyhedron must have an even number of crossings [25, 26].
Above all, we need to list all the types satisfying this con-
struction rule. Actually, the rule turns to be the generate-
and-test paradigm. Therefore, the triangular bipyramid and
the pentangular bipyramid are studied in terms of artificial
DNA molecules, and mathematical characteristics and
construction parameters for the double-helical structure are
explored by analyzing the result of computer programs.

2.3.TriangularBipyramid. The space diagram of a triangular
bipyramid is shown in Figure 3. It has five vertices (V � 5),
and its nine edges (E� 9) and six faces (F� 6) are indicated
by a–i and 1–6, respectively. Note that Faces 3 and 6
(denoted by red numbers) are outward, while Faces 1, 2, 4,
and 5 (denoted by green numbers) are inward. The sum of
the crossings on each face equals a+ d+ e, c+ d+ f, a+ b+ c,
e+g+ h, f+ h+ i, and b+g+ i. The values of a, b, c, d, e, f, g,
h, and i take 1 or 2, which means that either one crossing or
two crossings occur on each edge. Most importantly, each
face of the triangular bipyramid must have an even number
of crossings. To construct the corresponding DNA trian-
gular bipyramids is to give a program which goes through all
the cases satisfying the above criteria. The result specifies the
constructing parameters for the corresponding DNA tri-
angular bipyramid links.

2.4. Pentangular Bipyramid. A pentangular bipyramid has
seven vertices (V � 7), fifteen edges (E� 15), and ten faces
(F� 10). Figure 4 shows its space diagram as well as labels, in
which its nine edges and six faces are indicated by a–o and
1–10, respectively. The sums of the crossing number on each
face equal a+ b+ c, a+ d+ e, d+ f+g, g+ h+ i, c+ i+ j,
b+ k+ l, e+ k+m, f+m+ n, h+ n+ o, and j+ l+ o. Similarly,
one crossing and two crossings represent an odd number of
crossings and even number of crossings, respectively. The
values of a, b, c, d, e, f, g, h, and i take 1 or 2, which means
that either one crossing or two crossings occur on each edge.

2 Computational and Mathematical Methods in Medicine



2.5. Algorithm and Program. Here, a Python program is
presented for obtaining parameters for the triangular bi-
pyramid links. In this program, a–i represents the edges of
the triangular bipyramid, while the parameter x is specially
set to count the total number of odd-crossing edges. This
program could also be applied to the pentangular bipyramid
crossings = [1, 2].

for a in crossings:
for d in crossings:
for e in crossings:

if (a+ d+ e)%2== 0: #The sum of the crossings
within Face 1 must be an even number
for c in crossings:
for f in crossings:

if (c+ d+ f )%2 == 0: #The sum of the
crossings within Face 2 must be an even
number
for b in crossings:
if (a+ b+ c)%2== 0: #The sum of the
crossings within Face 3 must be an even
number
for g in crossings:
for h in crossings:

if (e+g+ h)%2 == 0: #The sum of the
crossings within Face 4 must be an
even number
for i in crossings:
if (f+ h+ i)%2 == 0: #The sum of the

crossings within Face 5 must be an
even number

if (b+g+ i)%2 == 0: #The sum of
the crossings within Face 6 must be
an even number

set = [a, b, c, d, e, f, g, h]
x= set.count(1) #The total
number of the odd-crossing edges
print (‘,’.join([“{} = {}”.format
(‘abcdefghx’[i], x) for i, x in
enumerate(set + [x])]))

3. Results and Discussion

3.1. Triangular Bipyramid. The number of types obtained by
the program is 16 (24). Table 1 lists the parameters for 16
types of triangular bipyramids made by DNA strands
computed from the program. Note that “even” denotes the
number of even-crossing edges which is the difference be-
tween the number of edges (9 for a triangular bipyramid)
and the number of odd-crossing edges. The triangular bi-
pyramid, unlike polyhedra with high symmetry [23], could

(a) (b)

Figure 2: One crossing (a half-twist) and two crossings (a twist).
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Figure 3: Space diagram of a triangular bipyramid with labels.
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Figure 4: Space diagram of a pentangular bipyramid with labels.
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Figure 1: Building motifs of three- and five-branched junctions.
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not get a projection having an uncrossed line due to its low
symmetry.Therefore, a space diagram is required to describe
the triangular bipyramid. By drawing the space diagram of
triangular bipyramids according to the data in Table 1, the
number of strands to construct triangular bipyramids is
obtained. The DNA strand corresponds to the link com-
ponent in topology. So the strand number actually equals the
component number. Table 1 also specifies the case of strands.
Compared with the polyhedra of high symmetry such as the
truncated tetrahedron [23], the potential type for the tri-
angular bipyramid is smaller.

However, there are some equivalent ones in all 16 types
derived from the program, for some links turn out to be the
same one by rotation. Two links are ambient isotopic which
means that two links have exactly the same topological
structure or can overlap with each other by rotation [22].
Isotopic links are the sufficient condition for links with the
same components. So links having different components
must be distinct from each other. Classifying the links by the
component number, we obtain three groups: two compo-
nents (A), four components (B), and six components (C).
Comparison of the space diagrams demonstrates that there
are a total of six unique types of 16 triangular bipyramids
and links in the same type are actually isotopic. Figure 5
shows the classifying process of 16 triangular bipyramids.
Note that triangular bipyramids in the same shape and color
are isotopic.

Specifically, there are three distinct types in group A,
Type I: No. 1; Type II: No. 3, No. 5, and No. 10; and Type III:
No. 4, No. 6, No. 8, No. 9, No. 11, and No. 13. Also, there are
two distinct types in group B, Type IV: No. 2 and No. 15 and
Type V: No. 7, No. 12, and No. 14. Only No. 16 is in group C,
Type VI. Figure 6 shows the two isotopic links of triangular
bipyramids, in which link No. 3 turns to be link No. 5 by 120
degrees’ rotation.

Therefore, there are 6 unique types of DNA polyhedral
links for the triangular bipyramid, which are characterized
in Table 2. The parameters μ and c indicate the component
(strand) number and crossing number, respectively [19]. “X

odd and Y even” means that this type of polyhedral link has
X edges of odd crossings and Y ones of even crossings.

As we can see from Table 1 and Table 2, the triangular
bipyramid has a small number of types even though it owns
six faces. This may be due to that the triangular bipyramid
has two types of degrees of vertices—3 and 4, and it owns low
symmetry. The triangular bipyramid owns an even number
of components: two, four, and six components. Of 6 types of
DNA triangular bipyramids, three have two components or
strands, accounting for about 50%, while two have four ones,
accounting for 33%, and only one has six ones, accounting
for 17%. This shows that the probability of the unique DNA
triangular bipyramid is high with the component number
reaching the median value of the face number. Two poly-
hedral links with the same number of components always
have different numbers of even- and odd-crossing edges.
Intuitively, with the increase of even-crossing edges, the
double-helical polyhedral link owns more circular strands or
components. These conclusions are tested in the part of the
pentangular bipyramid. Figure 7 shows the space diagrams
of three unique DNA triangular bipyramids in Table 2.

3.2. Pentangular Bipyramid. The types and number of
resulting DNA pentangular bipyramids are obtained using
the program above. Table 3 lists 64 types of pentangular
bipyramids made by DNA strands.

The pentangular bipyramid, like the triangular bipyra-
mid, could not get a projection having uncrossed lines
because of its low symmetry. Similarly, by drawing the space
diagram of pentangular bipyramids according to the data in
Table 3, the component number, even-crossing edge number
(the number of edges of even crossings), and odd-crossing
edge number (the number of edges of odd crossings) of DNA
polyhedral links for pentangular bipyramids are obtained.
Classifying the links by the component number, we obtain
five groups: two components (A), four components (B), six
components (C), eight components (D), and ten compo-
nents (E). Comparison of the space diagrams demonstrates

Table 1: Parameters for 16 types of DNA triangular bipyramids.

No. a b c d e f g h i Odd Even Strand
1 1 2 1 1 2 2 1 1 1 6 3 2
2 1 2 1 1 2 2 2 2 2 3 6 4
3 1 1 2 1 2 1 1 1 2 6 3 2
4 1 1 2 1 2 1 2 2 1 5 4 2
5 1 2 1 2 1 1 1 2 1 6 3 2
6 1 2 1 2 1 1 2 1 2 5 4 2
7 1 1 2 2 1 2 1 2 2 4 5 4
8 1 1 2 2 1 2 2 1 1 5 4 2
9 2 1 1 1 1 2 1 2 2 5 4 2
10 2 1 1 1 1 2 2 1 1 6 3 2
11 2 2 2 1 1 1 1 2 1 5 4 2
12 2 2 2 1 1 1 2 1 2 4 5 4
13 2 1 1 2 2 1 1 1 2 5 4 2
14 2 1 1 2 2 1 2 2 1 4 5 4
15 2 2 2 2 2 2 1 1 1 3 6 4
16 2 2 2 2 2 2 2 2 2 0 9 6
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that there are a total of twelve unique types of 64 triangular
bipyramids and links in the same type are actually isotopic.
Specifically, there are three nonequivalent types in group A,
Type I: No. 2, No. 10, No. 12, No. 14, No. 26, No. 33, No. 35,
No. 37, No. 41, and No. 49; Type II: No. 7, No. 17, No. 21, No.
27, and No. 40; and Type III: No. 23. Also, there are four
nonequivalent types in group B, Type IV: No. 1, No. 11, No.

25, No. 34, and No. 38; Type V: No. 4, No. 6, No. 20, No. 30,
No. 32, No. 43, No. 45, No. 53, No. 55, and No. 59; Type VI:
No. 5, No. 19, No. 29, No. 44, and No. 56; and Type VII: No.
8, No. 16, No. 18, No. 22, No. 28, No. 39, No. 47, No. 51, No.
57, and No. 61.There are three nonequivalent types in group
C, Type VIII: No. 3, No. 31, No. 46, No. 54, and No. 60; Type
IX: No. 9, No. 13, No. 36, No. 42, and No. 50; and Type X:
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Figure 6: Change of equivalent links.
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Table 2: Characterization of 6 unique types of DNA triangular bipyramids.

Type μ c Notes
I 2 12 6 odd and 3 even
II 2 12 6 odd and 3 even
III 2 13 5 odd and 4 even
IV 4 15 3 odd and 6 even
V 4 14 4 odd and 5 even
VI 6 18 0 odd and 9 even

(a) (b) (c)

Figure 7: Space diagram of three DNA triangular bipyramids (36): (a) μ� 2, 6 odd and 3 even (Type I); (b) μ� 4, 4 odd and 5 even (Type V);
(c) μ� 6, 0 odd and 9 even (Type VI).

Table 3: 64 types of DNA pentangular bipyramids.

No. a b c d e f g h i j k l m n o Odd Even Strand
1 1 1 2 1 2 1 2 1 1 1 1 2 1 2 1 10 5 4
2 1 1 2 1 2 1 2 1 1 1 2 1 2 1 2 9 6 2
3 1 1 2 1 2 1 2 2 2 2 1 2 1 2 2 6 9 6
4 1 1 2 1 2 1 2 2 2 2 2 1 2 1 1 7 8 4
5 1 1 2 1 2 2 1 1 2 2 1 2 1 1 2 8 7 4
6 1 1 2 1 2 2 1 1 2 2 2 1 2 2 1 7 8 4
7 1 1 2 1 2 2 1 2 1 1 1 2 1 1 1 10 5 2
8 1 1 2 1 2 2 1 2 1 1 2 1 2 2 2 7 8 4
9 1 1 2 2 1 1 1 1 2 2 1 2 2 1 2 8 7 6
10 1 1 2 2 1 1 1 1 2 2 2 1 1 2 1 9 6 2
11 1 1 2 2 1 1 1 2 1 1 1 2 2 1 1 10 5 4
12 1 1 2 2 1 1 1 2 1 1 2 1 1 2 2 9 6 2
13 1 1 2 2 1 2 2 1 1 1 1 2 2 2 1 8 7 6
14 1 1 2 2 1 2 2 1 1 1 2 1 1 1 2 9 6 2
15 1 1 2 2 1 2 2 2 2 2 1 2 2 2 2 4 11 8
16 1 1 2 2 1 2 2 2 2 2 2 1 1 1 1 7 8 4
17 1 2 1 1 2 1 2 1 1 2 1 1 1 2 1 10 5 2
18 1 2 1 1 2 1 2 1 1 2 2 2 2 1 2 7 8 4
19 1 2 1 1 2 1 2 2 2 1 1 1 1 2 2 8 7 4
20 1 2 1 1 2 1 2 2 2 1 2 2 2 1 1 7 8 4
21 1 2 1 1 2 2 1 1 2 1 1 1 1 1 2 10 5 2
22 1 2 1 1 2 2 1 1 2 1 2 2 2 2 1 7 8 4
23 1 2 1 1 2 2 1 2 1 2 1 1 1 1 1 10 5 2
24 1 2 1 1 2 2 1 2 1 2 2 2 2 2 2 5 10 6
25 1 2 1 2 1 1 1 1 2 1 1 1 2 1 2 10 5 4
26 1 2 1 2 1 1 1 1 2 1 2 2 1 2 1 9 6 2
27 1 2 1 2 1 1 1 2 1 2 1 1 2 1 1 10 5 2
28 1 2 1 2 1 1 1 2 1 2 2 2 1 2 2 7 8 4
29 1 2 1 2 1 2 2 1 1 2 1 1 2 2 1 8 7 4
30 1 2 1 2 1 2 2 1 1 2 2 2 1 1 2 7 8 4
31 1 2 1 2 1 2 2 2 2 1 1 1 2 2 2 6 9 6

6 Computational and Mathematical Methods in Medicine



No. 24 and No. 63. There is only one nonequivalent type in
group D, Type XI, including No. 15, No. 48, No. 52, No. 58,
and No. 62. Only No. 64 is in group E, Type XII. Supple-
mentary materials (available (here)) contain the DNA strand
classification for the pentangular bipyramid, which shows
the process of identifying isotopic links for the pentangular
bipyramid. Table 4 characterizes 12 unique types of DNA
polyhedral links for pentangular bipyramids, in which μ and

c indicate the component number and crossing number,
respectively.

As shown in Table 4, pentangular bipyramids possess an
even number of components—2, 4, 6, 8, and 10—due to their
even-numbered faces. Of twelve types of DNA pentangular
bipyramids, three have two components, accounting for
25%; four have four ones, accounting for 33.3%; three have
six ones, accounting for 25%; one has eight ones, accounting

Table 3: Continued.

No. a b c d e f g h i j k l m n o Odd Even Strand
32 1 2 1 2 1 2 2 2 2 1 2 2 1 1 1 7 8 4
33 2 1 1 1 1 1 2 1 1 2 1 2 2 1 2 9 6 2
34 2 1 1 1 1 1 2 1 1 2 2 1 1 2 1 10 5 4
35 2 1 1 1 1 1 2 2 2 1 1 2 2 1 1 9 6 2
36 2 1 1 1 1 1 2 2 2 1 2 1 1 2 2 8 7 6
37 2 1 1 1 1 2 1 1 2 1 1 2 2 2 1 9 6 2
38 2 1 1 1 1 2 1 1 2 1 2 1 1 1 2 10 5 4
39 2 1 1 1 1 2 1 2 1 2 1 2 2 2 2 7 8 4
40 2 1 1 1 1 2 1 2 1 2 2 1 1 1 1 10 5 2
41 2 1 1 2 2 1 1 1 2 1 1 2 1 2 1 9 6 2
42 2 1 1 2 2 1 1 1 2 1 2 1 2 1 2 8 7 6
43 2 1 1 2 2 1 1 2 1 2 1 2 1 2 2 7 8 4
44 2 1 1 2 2 1 1 2 1 2 2 1 2 1 1 8 7 4
45 2 1 1 2 2 2 2 1 1 2 1 2 1 1 2 7 8 4
46 2 1 1 2 2 2 2 1 1 2 2 1 2 2 1 6 9 6
47 2 1 1 2 2 2 2 2 2 1 1 2 1 1 1 7 8 4
48 2 1 1 2 2 2 2 2 2 1 2 1 2 2 2 4 11 8
49 2 2 2 1 1 1 2 1 1 1 1 1 2 1 2 9 6 2
50 2 2 2 1 1 1 2 1 1 1 2 2 1 2 1 8 7 6
51 2 2 2 1 1 1 2 2 2 2 1 1 2 1 1 7 8 4
52 2 2 2 1 1 1 2 2 2 2 2 2 1 2 2 4 11 8
53 2 2 2 1 1 2 1 1 2 2 1 1 2 2 1 7 8 4
54 2 2 2 1 1 2 1 1 2 2 2 2 1 1 2 6 9 6
55 2 2 2 1 1 2 1 2 1 1 1 1 2 2 2 7 8 4
56 2 2 2 1 1 2 1 2 1 1 2 2 1 1 1 8 7 4
57 2 2 2 2 2 1 1 1 2 2 1 1 1 2 1 7 8 4
58 2 2 2 2 2 1 1 1 2 2 2 2 2 1 2 4 11 8
59 2 2 2 2 2 1 1 2 1 1 1 1 1 2 2 7 8 4
60 2 2 2 2 2 1 1 2 1 1 2 2 2 1 1 6 9 6
61 2 2 2 2 2 2 2 1 1 1 1 1 1 1 2 7 8 4
62 2 2 2 2 2 2 2 1 1 1 2 2 2 2 1 4 11 8
63 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 5 10 6
64 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 15 10

Table 4: Characterization of 12 unique types of DNA pentangular bipyramids.

Type No. μ c Notes
I 1 2 21 9 odd and 6 even
II 2 2 20 10 odd and 5 even
III 3 2 20 10 odd and 5 even
IV 4 4 20 10 odd and 5 even
V 5 4 23 7 odd and 8 even
VI 6 4 22 8 odd and 7 even
VII 7 4 23 7 odd and 8 even
VIII 8 6 24 6 odd and 9 even
IX 9 6 21 9 odd and 6 even
X 10 6 25 5 odd and 10 even
XI 11 8 29 4 odd and 11 even
XII 12 10 30 0 odd and 15 even
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for 8.33%; and one has ten ones, accounting for 8.33%.
Similarly, the number of distinct DNA pentangular bipyr-
amids reaches the highest when the component number
approaches the median value of the face number. Figure 8
shows the space diagram of four DNA pentangular
bipyramids.

4. Conclusion

(1) The triangular bipyramid and pentangular bipyra-
mid belong to deltahedra, made up of triangular
faces. The results demonstrate that the number of
types of certain polyhedra could be obtained by the
computer program in the case that each face of the
polyhedron has an even number of crossings.

(2) The number of potential types of triangular bipyr-
amids and pentangular bipyramids is 16 and 64,
respectively. However, only 6 types of triangular
bipyramids and 12 ones of pentangular bipyramids
remain unique by removing the same types.

(3) The number of components μ must be even and
cannot be odd. The component number μ increases
from 2 to the number of faces. Most DNA polyhedral
links own lower symmetry. Only when its compo-
nent number equals its face number, the polyhedral
link has original symmetry.

(4) Even two polyhedral links have the same number of
components, and they always have different numbers
of even- and odd-crossing edges, and vice versa. In
most cases, the more the circular strands or com-
ponents a DNA polyhedral link has, the more the
even-crossing edges it has.

(5) With the decrease of symmetry, the polyhedra may
own less potential DNA links. Unique types of DNA
links peak with the component number approaching
the median value of the face number.
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Supplementary Materials

This manuscript has a supplementary file about DNA strand
classification for pentangular bipyramids, which shows the
process of identifying homogeneous types of pentangular
bipyramids. Each of 64 links is drawn and classified by the
component number (strand number). Therefore, we obtain
five groups of two strands (A), four strands (B), six strands
(C), and eight strands (D). Figure Two strands (pentangular
bipyramid): links in this group have two strands, including
No. 2, No. 7, No. 10, No. 12, No. 14, No. 17, No. 21, No. 23,
No. 26, No. 27, No. 33, No. 35, No. 37, No. 40, No. 41, and
No. 49. Figure Four strands (pentangular bipyramid): links
in this group have four strands, including No. 1, No. 4, No. 5,
No. 6, No. 8, No. 11, No. 16, No. 18, No. 19, No. 20, No. 22,
No. 25, No. 28, No. 29, No. 30, No. 32, No. 34, No. 38, No.
39, No. 43, No. 44, No. 45, No. 47, No. 51, No. 53, No. 55, No.
56, No. 57, No. 59, and No. 61. Figure Six strands (pen-
tangular bipyramid): links in this group have six strands,
including No. 3, No. 9, No. 13, No. 24, No. 31, No. 36, No. 42,
No. 46, No. 50, No. 54, No. 60, and No. 63. Figure Eight
strands (pentangular bipyramid): links in this group have
eight strands, including No. 15, No. 48, No. 52, No. 58, and
No. 62. Only No. 64 is in the group of ten strands, not shown
in the picture. By comparing the space diagrams above, we
obtain twelve unique types of 64 triangular bipyramids and
the links in the same type are actually homogeneous.
(Supplementary Materials)
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