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Abstract
There is an urgent need for new treatment options in metastatic drug-resistant prostate cancer. Combining immunotherapy 
with other targeted therapies may be an effective strategy for advanced prostate cancer. In the present study, we sought to 
investigate to enhance the efficacy of anti-CTLA-4 therapy against prostate cancer by the combination with STAT3 inhibition.
Male C57BL6 mice were subcutaneously inoculated with the murine prostate cancer cell line RM-1. Tumor progression was 
monitored following treatment with vehicle, the small molecule STAT3 inhibitor GPB730, anti-CTLA-4 or GPB730 + anti-
CTLA-4. Treatment with anti-CTLA-4 or anti-CTLA-4 + GPB730 significantly inhibited tumor growth and enhanced survival 
compared to vehicle. Combining anti-CTLA-4 treatment with GPB730 resulted in a significantly prolonged survival com-
pared to anti-CTLA-4 alone. GPB730 significantly increased infiltration of CD45 + cells in tumors of anti-CTLA-4-treated 
mice compared to anti-CTLA-4 alone. The levels of tumor-infiltrating Tregs were significantly decreased and the CD8:Treg 
ratio significantly increased by GPB730 treatment in combination with anti-CTLA-4 compared to anti-CTLA-4 alone. Immu-
nohistochemical analysis showed a significant increase in CD45-positive cells in anti-CTLA-4 and anti-CTLA-4 + GPB730-
treated tumors compared to vehicle or GPB730 monotherapy. Plasma levels of IL10 were significantly increased by anti-
CTLA-4 compared to vehicle but no increase was observed when combining anti-CTLA-4 with GPB730.
In conclusion, STAT3 inhibition by GPB730 enhances the antitumoral activity of anti-CTLA-4 and decreases the intratu-
moral Treg frequency in a prostate cancer mouse model. These results support the combination of STAT3 inhibition with 
anti-CTLA-4 therapy to increase clinical responses in patients with prostate cancer.
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Introduction

We need novel and effective treatment options when meta-
static prostate cancer becomes resistant to androgen dep-
rivation therapy (ADT) and to chemotherapy. Combining 

immunotherapy with other targeted therapies may be an 
effective strategy for advanced prostate cancer.

Immune checkpoint inhibitors e. g. anti-CTLA-4 and anti-
PD-1 are effective therapeutics in several cancers [1]. These 
antibodies block inhibitory signals on cytotoxic T-cells and 
thus enhance the immune response toward cancer cells. 
However, checkpoint inhibitors as monotherapy have not yet 
been proven to be of substantial clinical benefit in patients 
with prostate cancer [2–5], spurring investigations into 
new strategies to modulate the immunological response. 
Combinations of established anti-cancer treatments and 
check-point inhibitors have been suggested for improved 
immunotherapeutic effect [6]. The anti-PD-1 antibody 
pembrolizumab in combination with anti-androgen therapy 
has shown some efficacy in a subset of metastatic prostate 
cancer patients [7]. Attempts have been made with the anti-
CTLA-4 antibody ipilimumab plus radiation therapy, ADT 
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and other checkpoint inhibitors (anti-PD-1), although with 
limited enhanced treatment effects in prostate cancer [8]. 
However, a follow-up study with ipilimumab in combina-
tion with radiation therapy showed prolonged survival in a 
portion of patients compared with radiation therapy alone 
[9]. Furthermore, a recent report shows that ipilimumab in 
combination with the anti-PD-1 antibody nivolumab has 
antitumoral activity in a subset of patients with metastatic 
prostate cancer [10].

The STAT3 signaling pathway is involved in the induction 
and function of immunosuppressive cells and the inhibition 
of dendritic cell functions in the tumor microenvironment, 
thus promoting immune evasion in cancer [11]. Further-
more, STAT3 regulates immunosuppressive factors from the 
tumor cells themselves [12, 13]. STAT3 has been suggested 
as a promising drug target for several types of cancer [13, 
14]. By modulating both immunosuppressive cells and the 
immunosuppressive function of cancer cells, inhibition of 
STAT3 may also potentiate the effect of immune checkpoint 
inhibitors.

We have demonstrated that the small molecule STAT3 
inhibitor galiellalactone [15] inhibits the prostate cancer cell 
induced generation of monocytes with a myeloid-derived 
suppressor cell (MDSC)-like phenotype and immunosup-
pressive factors in both human prostate cancer cells and 
immune cells ex vivo [16]. Recently, the semisynthetic 
galiellalactone analogue GPB730 has been shown to inhibit 
the immunosuppressive activity of regulatory NK cells and 
decrease pSTAT3-S727 expression in these cells ex vivo 
[17]. These results demonstrate the promise of small mol-
ecule STAT3 inhibitors to reduce immunosuppression in 
the microenvironment, thus potentially enhancing the anti-
tumoral response to immunotherapies.

In the present study, we investigated the possibility of 
enhancing the efficacy of anti-CTLA-4 therapy in a synge-
neic prostate cancer mouse model by combining treatment 
with the STAT3 inhibitor GPB730.

Materials and methods

Cell culture

The murine prostate cancer cell line RM-1 (American Type 
Culture Collection,  ATCC CRL-3310)  was  used. Cells 
were maintained in Dulbecco’s Modified Eagle’s Medium 
(Cytiva, Hyclone Laboratories, South Logan, UT, USA) 
supplemented with 10% fetal bovine serum (Biological 
Industries, Israel) and 1% penicillin–streptomycin (Cytiva, 
Hyclone Laboratories, South Logan, UT, USA) and were 
grown at 37 °C in a humidified atmosphere with 95% O2 
and 5% CO2. Cells were routinely tested and found free of 
mycoplasma.

In vivo syngeneic mouse model

Male C57BL6 mice (Janvier laboratories, Le Genest-Saint-
Isle, France) were subcutaneously inoculated in the flank 
with 100 000 RM-1 cells in a mixture of Matrigel (Corn-
ing, Thermo Fisher Scientific, Waltham, MA, USA) and cell 
culture medium in the ratio 1:1. On day four post inocula-
tion, mice were randomized and treated with either vehicle 
(2% DMSO) in phosphate buffered saline (PBS), 5 mg/kg 
GPB730 daily intraperitoneal (ip) injections, 10 mg/kg anti-
CTLA-4 (clone 9H9; Bio X Cell, Lebanon, NH, USA) ip on 
day 4, 7, 10 and 13 post tumor cell inoculation or the com-
bination of GPB730 and anti-CTLA-4. The survival study 
comprised of 11 mice per treatment group. Tumors were 
measured 2–3 times per week using a caliper. Mice were 
sacrificed if tumor volume exceeded 1000 mm3 by caliper 
measurement or the appearance of tumor ulcerations. For 
survival study, the endpoint was defined as a tumor size of 
1000 mm3 or tumor ulcerations. For the immune profile and 
immunohistochemical studies, mice were sacrificed after 
2 weeks of treatment. The immune profile studies comprised 
of 6 mice per treatment group and the immunohistochemi-
cal study of 5–9 mice per treatment group. Mice were kept 
on a 12 h light − dark cycle with access to food and water 
ad libitum. Experimental procedures were approved by the 
Regional Ethics Committee for Animal Research at Lund 
University, Sweden (permit number M134-14). The RM-1 
prostate cancer model was used throughout these studies as 
it represents a suitable model to study androgen-independent 
aggressive prostate cancer and immuno-oncology.

GPB730 was provided by Glactone Pharma Development 
AB (Gothenburg, Sweden). GPB730 is a semisynthetic ana-
logue of galiellalactone, a direct small molecule inhibitor 
of STAT3 [15]. In contrast to most other STAT3 inhibitors 
(e. g. Stattic and AG490) which inhibit phosphorylation 
and upstream activation factors of STAT3, GPB730 does 
not affect phosphorylation of STAT3 but rather exerts its 
inhibitory actions by binding to STAT3 thus blocking bind-
ing to DNA and preventing transcription of STAT3 regulated 
genes. Molecular structure of GPB730 is presented in Neo 
et al. [17].

Immunohistochemical and immunofluorescence 
analysis

Formalin fixed and paraffin embedded RM-1 mouse tumors 
were subjected to immunohistochemistry (IHC) using Dako 
Autostainer Plus En VisionTM + Kit (Dako, Glostrup, Den-
mark) and stained with the antibodies anti-pSTAT3-T705 
(ab76315 Abcam, Cambridge, UK), anti-pSTAT3-S727 
(#9143 Cell Signaling Technology, Danvers, MA, USA), 
anti-FOXP3 (ab54501 Abcam) and anti-CD45 (ab25386 
Abcam). The immunostainings were analyzed using Halo 
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image analysis software (Indica Laboratories, Albuquerque, 
NM, USA).

For immunofluorescent staining, the RM-1 tumors were 
stained using the Opal Multiplex immunofluorescence assay 
(Akoya Biosciences) and imaged with Mantra multispec-
tral image system (Akoya Biosciences). Antibodies used 
were anti-CD3E (LS-C343957 LSBio), anti-CTLA-4 (ab 
237,712 Abcam) and anti-pSTAT3-S727 (#9143 Cell Sign-
aling Technology).

Flow cytometry analysis of mouse tumor tissue 
and spleen

Single cell suspensions were prepared from mouse tumors 
and spleens. Briefly, tumors were dissociated using a buffer 
consisting of 2 mg/ml Dispase II (Gibco, Thermo Fisher 
Scientific, Waltham, MA, USA), 100 μg/ml DNase I (Sigma-
Aldrich, Merck, Darmstadt, Germany) and 0.2 mg/ml Col-
lagenase (Gibco). The cell suspension was filtered through 
a 70 μm filter before washed and incubated with Red Blood 
Cell lysis (Gibco), washed in FACS buffer (2–5% FBS in 
PBS) before proceeding to the staining for flow cytometry 
analysis. Spleens were passed through a 70 μm strainer and 
incubated in BD Pharm Lysing Solution (BD Biosciences, 
Franklin Lakes, NJ, USA) before washed in PBS and resus-
pended in FACS buffer. Cells were incubated with mouse Fc 
block (anti-CD16/32; BD Biosciences) before extracellular 
staining. For intracellular staining, the cells were fixed and 
permeabilized according to the manufacturer’s protocol (Inv-
itrogen). Single cell suspensions of tumor and splenocytes 
were stained according to standard flow cytometry protocol. 
Antibodies used for flow cytometry analyses are listed in 
supplementary table 1. Dead cells were excluded using the 
LIVE/DEAD fixable Aqua Dead Cell Stain (Thermo Fisher 
Scientific, Waltham, MA, USA). Flow cytometry analysis 
of dissociated mouse tumors and spleens was performed on 
FACSVerse (BD Biosciences) or LSRII (BD Biosciences). 
Samples were blinded prior acquisition and kept blinded 
during analysis. Data were analyzed with FlowJo™ Soft-
ware v10.0 (Becton, Dickinson and Company, Ashland 
OR, USA). Gates were set based on unstained and dead cell 
marker only stained controls in both spleen and tumor sam-
ples. Gating strategies for the different immune cell popula-
tions are shown in supplementary Fig. 3.

Cytometric bead array and ELISA for inflammatory 
cytokines and chemokines in mouse plasma

Plasma samples were prepared on the day of sacrifice. Blood 
was collected at time of sacrifice and transferred to tubes 
with 10% EDTA (0.5 M). Samples were centrifuged for 
15 min at 1500 × g at 4 °C. Plasma was aliquoted and stored 
at −80 °C. Cytokine levels were evaluated using Cytometric 

Bead Array Mouse Inflammatory Cytokines according to 
the manufacturer’s instructions (BD Biosciences, Franklin 
Lakes, NJ, USA). The cytokines IL6, tumor necrosis factor 
(TNF), IL10, IL12p70, monocyte chemoattractant protein 1 
(MCP-1) and IFNγ were analyzed. The levels of cytokines 
were evaluated using FACSVerse (BD Biosciences) or Cyto-
FLEX (Beckman Coulter, Brea, CA, USA) with subsequent 
analysis using FlowJo v10.0 software. Tumor growth factor 
ß (TGFß) and CXCL10 in mouse plasma was analyzed by 
ELISA (Abcam, Cambridge, UK) according to the manu-
facturer’s protocol. Plasma from 5 non-treated mice without 
tumors and 8–10 tumor bearing mice per treatment group 
were analyzed.

Statistics

Statistical analysis was performed using GraphPad Prism 
and ANOVA with Dunnett´s multiple comparison test. Data 
are presented as mean ± standard error of the mean (SEM). 
Correlations analysis were performed using Pearson correla-
tion analysis. Analysis of the survival study was performed 
using log rank Mantel Cox test. Statistical significance was 
considered when p ≤ 0.05.

Results

GPB730 enhances the antitumoral effect 
and increases survival in anti‑CTLA‑4‑treated mice

We investigated the effect of combining anti-CTLA-4 treat-
ment with the STAT3 inhibitor GPB730 on tumor growth in 
a prostate cancer mouse tumor model (Fig. 1). C57BL6 male 
mice with subcutaneous RM-1 tumors were treated with 
vehicle, GPB730, anti-CTLA-4 or GPB730 + anti-CTLA-4 
according to the treatment schedule in Fig. 1a. Mice treated 
with anti-CTLA-4 showed significantly increased survival 
time (median 46 days) compared to vehicle treated mice 
(median 22 days) (Fig. 1b). Two mice in the combination 
treatment group showed tumor regression (Fig. 1c). When 
combining anti-CTLA-4 with the STAT3 inhibitor GPB730 
a significantly increased survival time was observed com-
pared to anti-CTLA-4 treatment alone. GPB730 treatment 
alone had no significant effect on survival (median 25 days) 
compared to vehicle (Fig. 1b). The effect of combination 
treatment on long-term survival could not be evaluated due 
to the ethical guidelines. There was no weight loss in mice in 
any group during the survival study (supplementary Fig. 1a).
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IHC analysis of mouse tumors for pSTAT3, FOXP3 
and CD45 expression

To uncover any potential underlying mechanisms of 
the improved overall survival in mice treated with anti-
CTLA-4 + GPB730, the expression of CD45, pSTAT3-T705, 
pSTAT3-S727 and FOXP3 in RM-1 tumors of mice treated 
for 2 weeks with vehicle, GPB730, anti-CTLA-4 or anti-
CTLA-4 + GPB730 was analyzed by IHC analysis (Fig. 2). 
The tumors were densely infiltrated with CD45-positive 

cells, and the observed CD45-positive area ranged from 
10 to 37% of the tumor area (Fig.  2a, b). The CD45 
stained area was significantly larger in both anti-CTLA-4 
and anti-CTLA-4 + GPB730-treated tumors compared 
to vehicle, with the greatest infiltration of CD45-positive 
cells in the combination treatment group. The differences 
in CD45 expression between anti-CTLA-4 and anti-
CTLA-4 + GPB730 were not significant.

pSTAT3-T705 was found in the nucleus and comprised 
6% to 40% of the tumor area (Fig.  2a, b). No evident 

Fig. 1   GPB730 increases 
survival and enhances the 
antitumoral response to anti-
CTLA-4. Mice inoculated 
with RM-1 were treated with 
vehicle, GPB730, anti-CTLA-4 
or anti-CTLA-4 + GPB730 
with treatment start 4 days post 
inoculation. a In vivo treat-
ment schedule. b Survival of 
mice with RM-1 tumors in 
indicated treatment groups 
(vehicle n = 11; GPB730 n = 11; 
anti-CTLA-4 n = 11, anti-
CTLA-4 + GPB730 n = 11). 
Statistical analysis of survival 
was performed using Log rank 
Mantel-Cox test (ns p > 0.05; 
*p ≤ 0.05; ***p ≤ 0.0001; 
****p ≤ 0.0001). Tick mark 
indicates censored event. c 
Individual RM-1 tumor growth 
per treatment group. Each line 
represents individual tumor 
growth
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overlap of areas with cells positive for pSTAT3-T705 and 
CD45-positive areas was observed (supplementary Fig 2a). 
The ratio pSTAT3-T705 to CD45 cells was significantly 
reduced by anti-CTLA-4, combination treatment of anti-
CTLA-4 + GPB730, and numerically reduced by GPB730 
alone (Fig. 2c). There was no correlation between CD45 
expression and STAT3 phosphorylation at T705 expression 
(Fig. 2d).

Cells stained positive for pSTAT3-S727 were scat-
tered within the tumors and expression was mainly cyto-
plasmic although strong nuclear staining was occasionally 
observed (Fig. 2a, supplementary Fig. 2b). The total area 
of pSTAT3-S727-positive cells did not significantly differ 

between treatments groups (Fig. 2b). However, the ratio of 
pSTAT3-S727 to CD45 was significantly decreased in the 
GPB730 + anti-CTLA-4 treatment group compared to vehi-
cle, but not in the other treatment groups (Fig. 2c).

Strong nuclear FOXP3 staining, representing Tregs, was 
observed in cells scattered throughout the tumors (Fig. 2a). 
The density of FOXP3 expressing cells in tumors did not 
significantly differ between treatment groups, although a 
trend toward a decrease in density was observed by GPB730 
(Fig. 2b). A weak correlation between pSTAT3-S727 and 
FOXP3 expression was observed in mouse tumors (Fig. 2d).

pSTAT3-S727 was observed to be expressed in a por-
tion of CD3-positive cells in the tumor microenvironment 
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Fig. 2   CD45, pSTAT3 and FOXP3 expression in RM-1 tumors. IHC 
staining of RM-1 tumors from mice treated with vehicle, GPB730, 
anti-CTLA-4 or anti-CTLA-4 + GPB730 for 2  weeks a Representa-
tive images of CD45, pSTAT3-T705, pSTAT3-S727 and FOXP3 
IHC immunostainings of RM-1 tumors. Scale bar indicates 70  µm. 
b IHC quantitative analysis of CD45, pSTAT3-T705, pSTAT3-
S727 and FOXP3 immunostaining in tumors from mice treated 
with vehicle, GPB730, anti-CTLA-4 or anti-CTLA-4 + GPB730 for 
2  weeks. Images quantified using HALO image analysis. Data pre-
sented as mean ± SEM. Vehicle n = 6; GPB730 n = 5; anti-CTLA-4 

n = 9; anti-CTLA-4 + GPB730 n = 6–7. One-way ordinary ANOVA 
with Dunnetts’s multiple comparisons test in comparison with vehi-
cle group (*p ≤ 0.05; **p ≤ 0.001). C. Ratio of pSTAT3 and CD45 
expressing cells in tumors. Data presented as mean ± SEM. Vehicle 
n = 6; GPB730 n = 5; anti-CTLA-4 n = 9; anti-CTLA-4 + GPB730 
n = 6. One-way ordinary ANOVA with Dunnetts’s multiple compari-
sons test in comparison with vehicle group (*p ≤ 0.05; **p ≤ 0.001). 
D. Correlations between CD45 and pSTAT3-705 and FOXP3 and 
pSTAT3-S727 immunostainings in RM-1 tumors using Pearson cor-
relation analysis



3160	 Cancer Immunology, Immunotherapy (2021) 70:3155–3166

1 3

as well as in a few scattered CD3 negative cells as detected 
by immunofluorescence (Fig. 3a). A portion of CD3-positive 
cells in RM-1 tumors were also observed to express CTLA-4 
(Fig. 3b).

GPB730 increases infiltration of CD45 + cells 
in tumors of anti‑CTLA‑4‑treated mice

To gain further understanding of the immune cell profile, 
RM-1 tumors and spleens from mice treated with anti-
CTLA-4 alone or in combination with the STAT3 inhibitor 
GPB730 were analyzed by multi-parameter flow cytometry 
analysis. Since no survival benefit was observed in mice 
treated with GPB730 alone compared with the vehicle 
treated group, no further analysis between these groups 
were performed. Gating strategies for the different immune 
cell populations are shown in supplementary Fig. 3. The 
immune cells in RM-1 tumors were analyzed by flow 
cytometry after 2 weeks of treatment with anti-CTLA-4 or 
anti-CTLA-4 + GPB730. There was a significant enhanced 
infiltration of CD45 + cells in tumors of mice treated 
with anti-CTLA-4 + GPB30 compared to treatment with 
anti-CTLA-4 alone (Fig. 4a). The frequencies of CD3 + , 
CD4 + , CD8 + , CD11b + , macrophages or MDSCs among 
the CD45 + gated cells in tumors were not significantly dif-
ferent between treatment groups (Fig. 4a). No significant 
correlation between CD45 + and tumor size was observed 
(Fig. 4b). There were no significant differences in frequen-
cies of CD45 + , CD11b + , macrophages or MDSCs in 
spleen between treatment groups (supplementary Fig . 4). 

No differences in NK cell frequency within the tumors was 
observed between anti-CTLA-4 and the combination anti-
CTLA-4 and GPB730 (data not shown).

GPB730 decreases frequency of tumor Tregs 
in anti‑CTLA‑4‑treated mice

The levels of Tregs (FOXP3 + CD4 + CD3 +) were sig-
nificantly decreased in tumors of anti-CTLA-4 + GPB730-
treated mice compared to treatment with anti-CTLA-4 alone 
(Fig. 5a). Furthermore, the CD8 + T cell:Treg ratios were 
significantly increased by GPB730 in combination with anti-
CTLA-4 (Fig. 5a) compared to anti-CTLA-4 alone. Spleen 
Treg and CD8 + levels did not significantly differ between 
treatment groups (Fig. 5b). There was a strong and signifi-
cant correlation between tumor size and Treg tumor levels 
and tumor size and CD8 + to Treg ratios when combining 
GPB730 with anti-CTLA-4, which was not observed in anti-
CTLA-4-treated mice (Fig. 5c).

Of note, when evaluating a separate cohort comprised 
of significantly smaller tumors, significantly lower levels of 
tumor Tregs (1.8 ± 1.2%) were detected in comparison to the 
Treg levels (7.3 ± 1.3%) in the cohort with larger tumors. We 
did not detect differences in tumor Treg levels between the 
treatment groups in the cohort with smaller tumors (data 
not shown).

Fig. 3   Expression pSTAT3-S727 and CTLA-4 in CD3 cells. a Immu-
nofluorescent double staining for CD3 and pSTAT3-S727 in RM-1 
tumors. Images show CD3 (red), pSTAT3-S727 (green), nuclear 
staining with DAPI (blue) and merged image. The white arrows 
indicate cells stained for both CD3 and pSTAT3-S727, grey arrows 
indicate pSTAT3-S727 expressing cells negative for CD3 and yellow 

arrows indicate CD3-positive cells with no pSTAT3-S727 expression. 
b Immunofluorescent double staining for CD3 and CTLA-4 in RM-1 
tumors. Images show CD3 (red), CTLA-4  (green), nuclear stain-
ing with DAPI (blue) and merged image. The arrows indicate cells 
stained for both CD3 and CTLA-4. Images are taken at 40X magnifi-
cation (colour figure online)
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Inflammatory cytokines and chemokines in mouse 
plasma

To investigate if antitumor responses are associated with 
the production of inflammatory soluble factors, the levels 
of chemokines and inflammatory cytokines (IL10, IL6, 
IL12p70, TNF, IFNγ, MCP-1, TGFß and CXCL10) were 
investigated in mouse plasma of RM-1 tumor bearing mice 
after 2 weeks of treatment with vehicle, GPB730, anti-
CTLA-4 or anti-CTLA-4 + GP730 and in tumor naïve mice 
(Fig. 6). TNF, IFNγ and CXCL10 levels were significantly 
increased in plasma of mice with RM-1 tumors compared to 
tumor naïve mice. The IL10 plasma level was significantly 
increased in mice treated with anti-CTLA-4 compared to 
vehicle which was attenuated by GPB730 in the combina-
tion group. No significant differences in plasma levels of 
IL6, IL12p70, IFNγ, TNF, TGFβ, MCP-1 or CXCL10 were 
observed between treatment groups.

Discussion

We here demonstrate that the STAT3 inhibitor GPB730 
enhances the antitumoral effect of anti-CTLA-4 treatment 
in a syngeneic prostate cancer mouse model.

CTLA-4 blockade by ipilimumab has shown some effi-
cacy in prostate cancer, however with only a subset of 
patients reaching long-term remission and increased sur-
vival [2–4, 9, 18]. Therefore, combination treatments that 
can enhance the immunotherapeutic effect of anti-CTLA-4 
constitute an unmet medical need.

Resistance to immunotherapy involves the immunosup-
pressive tumor microenvironment which include immuno-
suppressive immune cells such as MDSCs and Tregs as well 
as immunosuppressive factors derived from the tumor cells 
themselves [19, 20]. Targeting an immunosuppressive tumor 
microenvironment by STAT3 inhibition may consequently 
enhance the efficacy of immunotherapy [13].

Increased tumor growth after an initial positive response 
to immunotherapy may be due to acquired resistance 
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Fig. 6   Inflammatory cytokines and chemokines in plasma. Cytokine 
and chemokine plasma levels in mice with RM-1 tumors treated 
with vehicle, GPB730, anti-CTLA-4 or anti-CTLA-4 + GPB730 for 
2 weeks or in untreated tumor-naive mice without tumors. Data pre-

sented as mean ± SEM (vehicle n = 8; anti-CTLA-4 n = 10; GPB730 
n = 10; anti-CTLA-4 + GPB730 n = 8; naive n = 5). One-way ordinary 
ANOVA with Dunnetts’s multiple comparisons test in comparison 
with vehicle group (*p ≤ 0.05; **p ≤ 0.001)
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mechanisms involving e. g. loss of T cell function, loss of 
neoantigen and accumulation of immunosuppressive cells 
[20–22]. Although survival was significantly increased in 
the combination treatment group with anti-CTLA-4 and 
GPB730, we did not observe complete tumor regression 
which was possibly due to acquired resistance. Identification 
of resistance mechanisms is highly relevant for understand-
ing effective treatment options and regimes.

Intratumoral Tregs are associated with advanced stages 
and clinical outcome of prostate cancer [23, 24]. Further-
more, the levels of circulating and intratumoral Tregs have 
been observed to be increased by anti-CTLA-4 treatment 
in patients with prostate cancer [25, 26]. The presence of 
immunosuppressive Tregs may hamper antitumoral immu-
nity. This is suggested to be a resistance mechanism to 
checkpoint inhibitors and targeting Tregs may relieve immu-
nosuppression and enhance the antitumoral effect of immu-
notherapy [19, 20].

Here, we show that among the different immune cell 
populations investigated in the current study, only the intra-
tumoral Treg population was significantly decreased when 
combining GPB730 with anti-CTLA-4 treatment compared 
to anti-CTLA-4 alone. The enhanced antitumoral activity 
of the combination treatment may partly be attributed to the 
increased CD8:Treg ratio in tumors thus enhancing the cyto-
toxic effect of CD8 + cells. The increased CD8:Treg ratio 
was inversely correlated to tumor size, further substantiating 
this hypothesis.

STAT3 is implicated in Treg function [11] and inhibi-
tion or ablation of STAT3 has been shown to decrease Treg 
levels [27, 28]. However, in a study by Kortylewski et al., 
STAT3 ablation did not decrease the amount of Tregs, but 
inhibited FOXP3 expression and IL10 production in Tregs 
thus inhibiting the immunosuppressive capacity [29]. 
FOXP3 is an essential transcription factor in Tregs regu-
lated by STAT3 and also a co-transcription factor of STAT3 
in Tregs [30–32]; the complex enhances the transcription 
of IL10 among other STAT3 regulated genes. In addition 
to decreasing the levels of Tregs in anti-CTLA-4-treated 
tumors, GPB730 may also inhibit the suppressive functions 
of Tregs, enhancing the cytotoxicity of CD8 + cells; how-
ever, functional analysis of Tregs is beyond the scope of the 
current study.

RM-1 cells are reported to be sensitive to both NK cell 
cytotoxicity and to T cells [33, 34]. Although NK cells may 
play an important role in delaying RM-1 tumor progres-
sion, these cells probably do not play a role in the enhanced 
antitumoral effect by GPB730 as no differences in NK cell 
frequency within the tumors was observed between anti-
CTLA-4 and the combination anti-CTLA-4 and GPB730 in 
this study. A limitation to this study is the lack of functional 
analysis and immune cell depletion experiments in order to 
identify the cells directly responsible for antitumoral effects.

Our results are in line with previous findings where a 
decrease in Tregs are observed by combining anti-CTLA-4 
with STAT3 inhibition. The tyrosine kinase inhibitor 
imatinib, which inhibits STAT3, combined with anti-
CTLA-4 decreased intratumoral Treg levels and showed 
synergistic antitumoral effect [35]. Similar effects were 
observed when combining the Src inhibitor dasatinib, which 
also may inhibit STAT3 phosphorylation and activation, 
with anti-CTLA-4, which lead to increased CD8:Treg ratio 
in mouse tumors and enhanced the antitumoral effect [36].

STAT3 is mainly activated by phosphorylation of tyros-
ine 705 (pSTAT3-T705) via various kinases but may also 
be activated by a non-canonical pathway by phosphoryla-
tion of serine 727 (pSTAT3-S727), leading to transcription 
of distinct sets of genes [11, 37, 38]. In addition, pSTAT3-
S727 may exert a non-transcriptional role in mitochondrial 
activity [37]. pSTAT3-T705 is associated with prolifera-
tion and metastasis of tumors besides regulating immu-
nosuppressive factors and function of various immune 
cells [11, 14, 38]. However, the role of pSTAT3-727 is 
not as well explored as for pSTAT3-T705. In the context 
of immune response, pSTAT3-S727 is shown to regulate 
metabolism and the expression of inflammatory cytokines 
in macrophages and to regulate transcription of FOXP3 in 
Tregs [39, 40]. As evident from the IHC and immunofluo-
rescent staining and analysis, pSTAT3-S727 is under these 
experimental conditions likely to be expressed in cells of 
the tumor microenvironment (e.g., CD3 + cells) rather than 
the tumor cells, while pSTAT3-T705 may be expressed in 
several different cell types in the RM-1 tumors in addition 
to tumor cells.

We observed an increase in IL10 levels in mouse plasma 
by anti-CTLA-4 treatment which was attenuated by com-
bining anti-CTLA-4 with GPB730. The observed increase 
in IL10 levels by anti-CTLA-4 is in accordance with previ-
ous studies where serum levels of IL10 were increased by 
anti-CTLA-4 treatment in malignant mesothelioma [41] 
and where ipilimumab enhanced the cytokine response, 
including IL10 and IL6 levels in small-cell lung cancer 
patients undergoing chemotherapy [42]. IL10 is an immu-
nosuppressive and tumor promoting cytokine expressed 
by subsets of T cells and myeloid cells e. g. macrophages 
and dendritic cells among other immune cells [43]. IL10 in 
Tregs is regulated by STAT3 and lowering levels of IL10 
may decrease the immunosuppressive actions of Tregs on 
cytotoxic T cells [29, 44]. We have previously shown that 
the STAT3 inhibitor galiellalactone inhibits cytokines such 
as GM-CSF and IL8 from prostate cancer cells and IL1ß, 
IL6 and IL10 secretion from monocytes [16].

GPB730 enhanced the CD45 + immune cell infiltra-
tion in the prostate cancer mouse tumors of anti-CTLA-
4-treated mice which was confirmed by IHC staining of 
CD45-positive cells in RM-1 tumors. This is in line with 
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observations made in a glioma model where STAT3 inhi-
bition enhanced CD45 + infiltration in tumors [45]. We 
did however not observe differences in tumor or spleen 
M-MDSCs or G-MDSCs levels between anti-CTLA-4 and 
the combination anti-CTLA-4 + GPB730 in this study. 
Previous studies have shown that anti-CTLA-4 or STAT3 
inhibition alone decreases MDSCs in mouse models [28, 
36].

In conclusion, STAT3 inhibition by GPB730 enhances 
the antitumoral activity of anti-CTLA-4 in a prostate cancer 
mouse model, possibly by blocking STAT3 mediated resist-
ance mechanisms such as Tregs in the immunosuppressive 
environment. These results raise the possibility that STAT3 
inhibition, e.g., by GPB730 in combination with anti-
CTLA-4 could constitute a future novel treatment approach 
in advanced prostate cancer.
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