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Sweat is emerging as a prominent biosource for real-time human performancemonitoring

applications. Although promising, sources of variability must be identified to truly

utilize sweat for biomarker applications. In this proof-of-concept study, a targeted

metabolomicsmethodwas applied to sweat collected from the forearms of participants in

a 12-week exercise program who ingested either low or high nutritional supplementation

twice daily. The data establish the use of dried powder mass as a method for

metabolomic data normalization from sweat samples. Additionally, the results support

the hypothesis that ingestion of regular nutritional supplementation semi-quantitatively

impact the sweat metabolome. For example, a receiver operating characteristic (ROC)

curve of relative normalized metabolite quantities show an area under the curve of

0.82 suggesting the sweat metabolome can moderately predict if an individual is

taking nutritional supplementation. Finally, a significant correlation between physical

performance and the sweat metabolome are established. For instance, the data illustrate

that by utilizing multiple linear regression modeling approaches, sweat metabolite

quantities can predict VO2 max (p = 0.0346), peak lower body Windage (p = 0.0112),

and abdominal circumference (p = 0.0425). The results illustrate the need to account for

dietary nutrition in biomarker discovery applications involving sweat as a biosource.

Keywords: sweat, metabolomics, diet, quantitation, normalization

INTRODUCTION

As wearable sensors, such as smart watches, become more socially integrated, the need for novel
biosources to provide real time feedback of performance is paramount. The non-invasive, on-
demand, real-time characteristics of sweat make it an ideal biomedia for this application. Although
analyzed for several decades, more recent advances in analytical tools, allowing for a greater depth
of analysis, and the progress of microfluidic wearable sensor technology have thrust sweat into
the forefront of biomarker discovery efforts (Robinson and Robinson, 1954). However, to achieve
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the goal of continuous on human monitoring via wearable
sensors utilizing sweat, many attributes of sweat must be
examined, such as analyte selection, the analyte concentration,
and the impact of factors affecting variability, among many
other considerations.

Advances in mass spectrometry (MS) and nuclear magnetic
resonance (NMR) instrumentation and methodologies have
allowed for a movement from cation and anion monitoring to
a more discovery-based approach to sweat analysis (Kutyshenko
et al., 2011; Calderón-Santiago et al., 2014; Mena-Bravo and
Castro, 2014; Delgado-PovedanoM.M. et al., 2016). As a result, a
greater understanding of the sweat analyte content has emerged.
For instance, evidence suggests sweat contains measurable
quantities of proteins and metabolites, in addition to the
previously mentioned electrolytes, while the data surrounding
the sweat lipid content is still emerging (Patterson et al.,
2000; Agrawal et al., 2017, 2018; Yu et al., 2017; Delgado-
Povedano et al., 2018). Although sweat proteomic analysis
has struggled due to low sweat protein abundance, high salt
content, and an observation of a large quantity of non-specific
peptides, sweat metabolomics has proven more favorable for
analyte identification and preliminary biomarker applications
(Calderón-Santiago et al., 2014; Delgado-Povedano M. del M.
et al., 2016; Macedo et al., 2017; Yu et al., 2017; Delgado-
Povedano et al., 2018; Harshman et al., 2018, 2021). For example,
the sweat metabolome has been primarily defined by amino
acids and amino acid like compounds with connections of
metabolite abundance to health and disease (Delgado-Povedano
M. M. et al., 2016; Macedo et al., 2017; Delgado-Povedano et al.,
2018; Harshman et al., 2018). However, inherent difficulties exist
in metabolite compound identification, such as adducts and
dimerization, access to neat standards, competing background
ions, instrument noise, co-elution of isomeric species, source
fragmentation, and the relatively simplistic nature of metabolites
(Xu et al., 2015; Domingo-Almenara et al., 2017; Cho et al.,
2021). Furthermore, MS detector speed can limit the type of
quantitative and/or qualitative data to be collected, guiding
the experiment to be targeted, untargeted, or semi-targeted in
a blended data dependent acquisition (DDA) approach (Cho
et al., 2021). Because of these intrinsic conditions, novel sweat
metabolite identifications have remained sparce. For instance, a
recent sweat metabolomic discovery experiment confirmed the
identity of 40 metabolomic compounds, of which nine were
previously unidentified by other groups (Harshman et al., 2018).
Furthermore, data indicate expression of many intercorrelated
metabolites within sweat suggesting compound adducts could
be prevalent (Harshman et al., 2018, 2021). As a result of the
lack in complexity among sweat content and the link between
metabolite abundance and performance, the need to move from
relative quantitation toward absolute quantitation is necessary to
achieve the goal of successful biomarker discovery and real-time
sensor design.

While many quantitative ranges have been defined for ions,
such as sodium and potassium, in sweat, the metabolomic
quantitation has lacked (Brusilow and Gordes, 1968; Fukumoto
et al., 1988; Patterson et al., 2000, 2002; Morgan et al., 2004;
Alvear-Ordenes et al., 2005; Meyer et al., 2007; Sakharov

et al., 2010; Harshman et al., 2018). For instance, recent
data suggest amino acid quantities in sweat have been shown
to range from ∼360 to <5µM with alanine illustrating the
greatest overall amount (Harshman et al., 2019) To advance
the potential for sweat to be used for biomarker discovery
and ultimately transition to real-time sensor development,
additional metabolites must be quantitated and sources of
variability must be determined to truly understand the sweat
metabolome dynamics.

Although many sources of variability could contribute to
sweat dynamics, prominent sources include diet and sweat
rate. The link between diet and altered sweat content has
been established although the metabolites investigated were
limited. For example, Patterson et al. illustrated sweat pH
could be increased by ingesting NaHCO−

3 (Patterson et al.,
2002). Additionally, Czarnowski et al. showed sweat ammonia
concentrations could be affected by a low carbohydrate diet
(Czarnowski et al., 1995). The remaining research surrounding
the link between sweat and diet has focused on electrolytes
and minerals such as Na, Zn, Fe, Ca, and Cu (Baker, 2019).
Furthermore, the impact of localized sweat rate normalization on
the sweat metabolite abundance was recently shown to increase
variability among individuals sampled (Harshman et al., 2021).
However, the normalization strategy determined by Harshman
et al. is not applicable to a bulk patch collection. Therefore,
additional experimentation is required to expand the link
between small molecule metabolites and nutrition, in addition
to identifying an alternative method for data normalization from
patch collected sweat.

Here, a targeted metabolomics approach is applied to
sweat collected from participants in an exercise program
ingesting either a low or high nutritional supplementation.
Using the dried powdered mass of the sweat for normalization,
the data support the hypothesis that ingestion of dietary
supplementation can quantitatively affect the sweat metabolome.
Furthermore, correlation between physical performance,
nutritional supplementation, and the sweat metabolome are
established. The results illustrate the need to account for
nutrition in biomarker discovery applications involving sweat as
a biosource.

EXPERIMENTAL

Human Subjects
All volunteer human subjects (n = 13) were male members of
the United States Air Force of variable age (19–35) and rank
stationed at Wright-Patterson Air Force Base (AFB), Ohio, USA
for this proof-of-concept study. Permission to perform human
subjects research was obtained, prior to the study’s start, from
the Wright-Patterson AFB Institutional Review Board (IRB#
FWR20150032H). Volunteers were informed of the protocol
and permitted to ask questions, then provided informed written
consent to participate.

Sweat Stimulation and Sample Collection
Participants’ sweat was sampled during an ongoing physical
fitness and nutritional intervention study within the Air Force
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Research Laboratory (Zwilling et al., 2020). Prior to (Pre)
and following (Post) the 12-week fitness program, physical
performance was evaluated by measuring weight, VO2 max,
resting heart rate (HR), abdominal circumference (Ab Circ), %
body fat, push-ups, sit-ups, and upper body (UBW) & lower
body Wingate (LBW) testing as outlined by Zwilling et al.
(2020). Additionally, as part of the experiment by Zwilling
et al., volunteers were provided a twice daily (7 days a week
for 12 weeks), orally ingested, liquid high nutritional dietary
supplementation (n = 7) or low nutritional supplementation
(n = 6) drink of which subjects were blinded (Zwilling et al.,
2020). No traditional placebo group was utilized. Finally,
study participants performed programmed daily (Monday
through Friday) strength training and/or cardiovascular exercise
routines over the 12-week period. Please refer to Figure 1 and
Supplementary Data 1, 2, 3 for additional information regarding
the experiment design, physical performance evaluation results,
and participant exercise information, and to Zwilling et al. (2020)
for the composition of the two supplementations.

Sweat was collected from forearms of participants performing
their routine cardio workout on either a stationary bike, elliptical,
or treadmill, as part of the larger Zwilling et al. experiment,
on week 1, week 5, 6, or 7, and week 12 (Figure 1) (Zwilling
et al., 2020). Week 5, 6, or 7 was used as a mid-point sweat
collection as participant attendance varied and was not 100%
amongst all participants throughout the study. Depending on the
week the participant missed, either week 5, 6, or 7 was utilized
as the mid-point. The temperature and humidity (% RH) within
the exercise laboratory was measured during collection with a
Kestrel 4500NV weather tracker (Temperature: 22.2 ± 1.3◦C, %
RH: 0.2%, Supplementary Data 4). Percent max heart rate (%
maxHR), determined during a prior VO2 max test was utilized
to regulate intensity among workouts (Parvo Medics, Sandy, UT,
USA). Workouts consisted of periods of variable %maxHR over a
22-min exercise program. Please refer to Supplementary Data 3

for a summary of the exercise protocols, exercises performed, and
training loads from exercises.

Sweat was collected via a forearm patch, as described
previously (Brisson et al., 1991; Harshman et al., 2019). Briefly,
both forearms at the inner side of the arm between the elbow
and wrist with minimal hair were wiped thoroughly with a brand
new 2-propanol wipe (BD Biosciences, San Jose, CA, USA).
Following, each forearm was rinsed for 5–10 s with tap water and
allowed to air dry. As described in Harshman et al., a modified
patch was applied to the center, estimated as the hairless area
approximately at the middle between the elbow and wrist, of the
dried forearm (Harshman et al., 2019).

Immediately at the conclusion of the exercise, free sweat
within the patch was aspirated with a 5mL syringe and needle,
blunt tipped (needle and syringe, Hamilton, Reno, NV, USA).
The aspirate was placed in the top of a 0.1µm polyvinylidene
difluoride (PVDF) centrifugal filter, one filter per arm (Ultrafree-
CL PVDF filter, Millipore, Burlington, MA, USA). Additionally,
the nylon piece from the collection pouch was added to the
corresponding arm’s centrifugal filter, using forceps, and both
filters were spun at 3,000 × g for 10min. The filtrates, from
both arms were pooled together. A 250 µL aliquot of the

combined filtered sweat was placed into a dried, preweighed lo-
bind Eppendorf tube and frozen on liquid nitrogen (balance,
Mettler Toledo, Columbus, Ohio, USA, Eppendorf, Hamburg,
Germany). Aliquots were lyophilized to dryness, reweighed, and
stored at −80◦C until use (Labconco, Kansas City, MO, USA).
The mass of the dried sweat was determined by subtracting the
dried sweat mass from the dried empty tube mass. Please refer to
Supplementary Data 5 for the determined dried sweat masses.

Sweat Metabolomics Sample Preparation
All metabolomics samples were reconstituted in 250 µL
of 50% acetonitrile (aq) supplemented with 30µM of each
isotopically labeled standard: taurine, choline, creatinine,
citrulline, pyrrolidine, alanine, arginine, glutamic acid, histidine,
isoleucine, leucine, lysine, methionine, phenylalanine, proline,
tyrosine, and valine (Resuspension Buffer, solvents: Optima
Grade, ThermoFisher Scientific, Waltham, MA, USA). Refer to
Supplementary Data 6 for information regarding the isotopic
label, manufacturer, and purity. Samples were thoroughly mixed.
Tenmicroliters of each sample were removed, combined to create
a pooled sample, and thoroughly mixed. The samples and pooled
sample were transferred to vials for liquid chromatography
mass spectrometry (LC-MS) analysis. All samples were run in a
random order determined within the Microsoft Excel program
using the RANDBETWEEN function (Redmond, WA, USA).
Pooled samples were analyzed after every 10 unknown sweat
samples with blank injections [50% acetonitrile (aq)] run after
every sweat sample and pooled sample.

Liquid Chromatography-Mass
Spectrometry (LC-MS)
All sweat samples, pooled samples, standard curves, and blanks (2
µL injections) were separated via hydrophilic interaction liquid
chromatography (HILIC) on a Vanquish Horizon UPLC system
paired with high resolution accurate mass (HRAM) detection on
a Q-Exactive HF mass spectrometer (Thermo Fisher Scientific).
Separations were performed at 170 µL min−1 using a Waters
Acquity BEH Amide column (130 Å, 1.7µm, 2.1 × 100mm)
with mobile phase A consisting of 10mM ammonium formate
in 4.5% acetonitrile (aq) and mobile phase B consisting of
10mM ammonium formate in 95.5% acetonitrile (aq) (MS grade,
≥99.0%, Sigma Aldrich, St. Louis, MO, USA). A 30-min gradient
of mobile phases was run, beginning with 90%mobile phase B for
5min. The percent B transitioned to 65% at 18.5min and held
at 65% for 5min (23.5min). The gradient returned to 90% B at
24.5min and remained at 90% B for the remainder of the run.
Themass spectrometer source was operated in positive ionization
modewith 3.5 kV spray voltage, 250◦C capillary temperature, and
sheath gas of 30. The intact mass scans (MS1 only) were acquired
at 60,000 resolution over a 65–400 m/z range (profile) with a 1×
106 AGC target and a 50ms maximum ion accumulation time.

Sweat Metabolomics Calibration
Calibration curves for 23 compounds previously identified in
human sweat, were generated in Resuspension Buffer across
various ranges (5 and 300µM) (Liappis et al., 1979; Calderón-
Santiago et al., 2014, 2015; Dutkiewicz et al., 2014; Hooton
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FIGURE 1 | An illustration depicting the experimental design for the overall experiment and sweat collection time points.

et al., 2016; Macedo et al., 2017; Delgado-Povedano et al., 2018;
Harshman et al., 2018, 2019). Calibration curves were analyzed,
in increasing concentration, by LC-MS at the beginning, middle,
and end of the overall sample analyses, as described in the
following section. Peak areas and retention times for each
compound, including the isotopically labeled compounds, were
determined using the Tracefinder EFS software package (v. 3.2,
Thermo Fisher Scientific). Calibration curves were created for
each individual compound by plotting theoretical concentration,
in µM, on the x-axis and the unlabeled/isotopically labeled
peak area ratio of all calibrant injections on the y-axis. A
line of best fit was fit to the data and an equation of the
line was generated (Prism Graphpad Software, v. 9.0, La Jolla,
CA, USA). For those compounds where an isotopically labeled
version of the compound were unavailable, raw peak areas of
all calibrant injections were plotted on the y-axis rather than
the unlabeled/isotopically labeled peak area ratios. Please refer
to Supplementary Data 6 for individual compound: quantitative
ion, calibration ranges, line of best fit equation, and R2 value of
the best fit line.

Metabolite Semi-Quantitation
Peak areas and retention times for pooled samples and unknown
sweat samples were determined using the Tracefinder EFS
software and quantitative ions as described for the calibration
standards. The semi-quantitative values for each unknown and
pooled sample injection were determined by inputting the
unlabeled/isotopically labeled peak area ratio or peak area for
those compounds without an isotopically labeled compound
pair into the equation (y) of the line of best fit for each

individual compound and solving for x (Supplementary Data 7).
All processed data have been provided as Supplementary Data 8.

Statistical Analysis
Basic statistical analysis was performed within the Prism
Graphpad Software Suite (v. 9.0.0, LaJolla, CA, USA). All
additional statistical analyses, including calculation of the log2
fold change utilized to evaluate proportional changes in the
data, were performed using RStudio software suite (v. 3.6.3)
within the R statistical platform (v. 1.2.1335, Boston, MA, USA,
(R Computing Team, 2020). PCA plots and heatmaps were
illustrated using “gplots” and “ggbiplot” packages (Vu; Warnes
et al., 2020).

RESULTS

Sweat Metabolite Semi-Quantitation
Excreted sweat has primarily been a matrix investigated with
respect to cation and anion analysis (Morimoto and Johnson,
1967; Brusilow and Gordes, 1968; Allan and Wilson, 1971;
Fukumoto et al., 1988; Falk et al., 1991; Shirreffs and Maughan,
1997; Patterson et al., 2000, 2002; Hayden et al., 2004; Morgan
et al., 2004; Saat et al., 2005; Buono et al., 2007; Meyer et al.,
2007; Baker et al., 2009; Harshman et al., 2021). More recently
mass spectrometry approaches have been applied to sweat to
further investigate the other non-volatile components (Calderón-
Santiago et al., 2014; Delgado-Povedano M. del M. et al., 2016;
Hooton et al., 2016; Macedo et al., 2017; Delgado-Povedano
et al., 2018; Harshman et al., 2018, 2019, 2021). However,
quantitation of discovered sweat metabolites has remained sparce
(Harshman et al., 2019). To further establish semi-quantitative
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FIGURE 2 | (A) An autoscaled and mean centered PCA of the non-normalized metabolite log2 fold change, relative to week 1, parsed by nutritional supplementation.

(B) An autoscaled and mean centered PCA of the dried sweat mass normalized metabolite log2 fold change values, relative to week 1, parsed by nutritional

supplementation. (C) A cluster map of the calculated Pearson correlation coefficients of non-normalized metabolite values. (D) A cluster map of the calculated

Pearson correlation coefficients of dried sweat mass normalized metabolite values. Cluster maps utilize Euclidean distance and average linkages. The data illustrate

greater explained variability and higher intercorrelation of metabolite data when normalized to the dried powder mass of sweat.

values associated with sweat metabolite abundance, calibration
curves for 23 previously identified compounds were generated
(Supplementary Data 7). Determination of the unknown peak
areas illustrated that 15 of the 23 compounds (creatinine,

phenylalanine, leucine, isoleucine, methionine, valine, proline,
tyrosine, alanine, glutamic acid, citrulline, histidine, arginine,
lysine, ornithine) had abundances consistently within the
detectable and calibrated ranges. The remaining compounds,
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FIGURE 3 | (A) An autoscaled and mean centered PCA of the dried sweat mass normalized log2 fold change, relative to week 1, parsed by nutritional

supplementation and individual subjects. (B) A cluster map of the dried sweat mass normalized log2 fold change values, relative to week 1, for 15 measured

metabolites in sweat by individual and nutritional supplementation. W indicates week and Cluster map utilize Euclidean distance and average linkages. The data

suggest relative sweat metabolite abundance can separate individuals based on high or low nutritional supplementation.

pyrrolidine, choline, dimethanolamine, prolinamide, trolamine,
diolamine, carnitine, and taurine, were consistently quantified
below the calibrated range (<5µM) and were removed from
the analysis. Interestingly, while preliminary results and previous
data suggested the upper limit of the calibrated range (300µM)
would be sufficient to encompass all sweat samples, six of the
15 compounds (creatinine, alanine, citrulline, histidine, arginine,
and ornithine) have unknown concentrations greater than the
calibrated range (Supplementary Data 9A) (Harshman et al.,
2019). Conversely, a single compound, isoleucine, had a single
value below the lower limit of the calibration (5µM). Due
to the unanticipated large dynamic range of several unknown
sample concentrations, the values were included in the analysis
but considered estimations based on extrapolating the line of
best fit. The results illustrate a large dynamic range for several
compounds among individual sweat samples.

To evaluate instrument and sample stability over the entire
analysis, the mean area, standard deviation, and % relative
standard deviation (%RSD) of each compound in the pooled
sample was tabulated and provided in Supplementary Data 9B.
Of note, a large pooled sample %RSD values were observed
for methionine and ornithine (>10%). Upon manual inspection
of the raw data, the result can be attributed to retention time
variability and/or coelution of similar masses at retention times
close to that of methionine and ornithine in two of the eight
pooled sample injections. The two injections in question were
in the middle of the analytical run suggesting the variability
was not related to sample degradation or instrument instability.

As a result, the large pooled sample %RSD for methionine and
ornithine were noted but the compounds were included in the
overall analysis. Conversely, the remaining compounds from the
pooled samples illustrate overall low variability (<10% RSD)
for all eight injections (Supplementary Data 9B). Collectively,
these data suggest analytical stability for the entire semi-
quantitative analysis.

Normalization of Sweat Metabolite
Abundance to Dried Powder Mass
A recent report suggests that sweat rate normalization
significantly influenced sweat global metabolomic data
(Harshman et al., 2021). While the collection methodologies
as described by Harshman et al. (2021) were unavailable at the
time of sampling to determine localized sweat rate, the dried
powdered mass of sweat was determined for each 250 µL sweat
sample following lyophilization (Supplementary Data 5). To
evaluate the utility of normalizing sweat metabolomics data
with the dried powder mass, two principal component analyses
(PCA) were performed using log2 fold change metabolite values
relative to week 1 and either non-normalized or normalized
to the dried powder mass of the sweat (Figures 2A,B). The
results illustrate the dried powder mass normalized data
has greater explained variation within the first two principal
components (95.8%) compared to the non-normalized data
(92.0%). Furthermore, the dried powder mass normalized
data show greater spread among the data points particularly a
within the high nutritional supplement group (Figures 2A,B).
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FIGURE 4 | (A) An ROC curve for predicting if an individual received the high or low nutritional supplement using all of the dried sweat mass normalized log2 fold

change values. AUC indicates area under the curve. (B) A table of results from stepwise multiple linear regression modeling, utilizing bidirectional elimination, to predict

performance metrics from using sweat metabolite quantities. The high and low nutritional supplement grouping variable was added as a confounding variable to

account for differences in starting performance. The data illustrate the ability of relative sweat metabolite concentrations to predict if an individual was provided a high

or low nutritional supplement with <20% false positivity. Furthermore, the relative sweat metabolite concentrations allow for significant prediction of several physical

performance metrics.

Previous results indicated a high amount of intercorrelation
among sweat metabolite abundances with increased correlation
following rate normalization (Harshman et al., 2018, 2021)
To evaluate if similar trends exist within these data, Pearson
correlation coefficients were determined among the log2 relative
metabolite abundance of non-normalized and dried powder
mass normalized data (Figures 2C,D). The results indicate the
dried powder mass normalized data has a higher amount of
intercorrelation among the metabolite abundances compared to
the non-normalized values. Collectively, these results indicate a
greater variability among the data is accounted for with dried
powder mass normalization in line with previous observations
surrounding sweat data normalization (Harshman et al., 2021).
However, further research and validation surrounding this data
normalization is needed.

Sweat Metabolite Abundance and
Nutritional Supplementation
To determine if the data separate based on the dietary
supplement group, further evaluation of the PCA shown in
Figure 2B was conducted. The results suggest the data separate
based on the nutritional supplementation provided to the
individual, high (black) and low (gray) (Figure 2B). Evaluation
of the variable biplot and PCA loadings indicate all variables
contribute equally to PC1 except methionine which contributes
primarily to PC2 (Supplementary Data 10). Furthermore, as

individual samples within the PCA are labeled, the data show
individual’s week 5, 6, or 7 and week 12 log2 fold change data,
relative to week 1, are in close proximity with data points of the
same color, suggesting small amounts of change from the middle
samples (week 5, 6, or 7) to the end samples (week 12, Figure 3A).
To evaluate how the metabolomics data are influenced by high
and low nutritional supplementation, a cluster map of the mass
normalized log2 fold change, relative to week 1, was constructed
(Figure 3B). The results show the individuals provided the high
nutritional supplement had lower quantities of the measured
metabolites, relative to week 1, when compared to those given
the low nutritional supplement. Collectively, the data support the
hypothesis that the sweat metabolome can be impacted by an
individual’s nutritional intake.

Sweat Metabolomics, Nutritional
Supplementation, and Human Performance
The data presented in Figures 2, 3 suggest nutritional
supplementation can influence sweat metabolomic results.
To further illustrate that the sweat metabolome is impacted by
nutritional supplementation, a receiver operating characteristic
(ROC) curve was produced to identify if the metabolomics data
(mass normalized log2 fold change values relative to week 1) can
predict an individual’s nutritional supplementation. Figure 4A
shows the ROC curve utilizing all of the metabolomics data with
an area under the curve (AUC of 0.82), suggesting with than
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82% accuracy against false positives the sweat metabolomics
data can predict if an individual ingests high or low dietary
supplementation. When ROC curves are generated using only
the data from the middle weeks (week 5, 6, or 7, AUC of
0.69) or the final week (week 12, AUC 0.81), the AUC values
are less than the curve produced using all of the data points
(Supplementary Data 11). These data provide further support
for the hypothesis that nutritional intake can significantly impact
the excreted sweat metabolome.

To determine the impact of nutritional supplementation on
the relationships between sweat metabolites and performance,
multiple linear regression modeling was applied to each
individual performance metric. Delta performance, utilized to
account for specific individual’s change over time, between week
1 and 12 were used where applicable (Supplementary Data 1,
Figure 4B). As significant difference in VO2 max was observed
for the two groups, the supplement groups were added as
a confounding variable within the analysis to account for
the potential influence of baseline difference in performance
(Supplementary Data 2). The results suggest three performance
metrics: VO2 max, peak lower body Windgate, and abdominal
circumference, have significant p-values (p < 0.05), showing
that a linear relationship of metabolite values can significantly
predict these metrics (Figure 4B). Collectively, the results
suggest nutritional supplementation affects the excreted sweat
metabolome, independent of dietary supplementation, and sweat
metabolites can predict physical performance metrics.

DISCUSSION

As the biomarker discovery field expands into novel biosources,
sweat has become an attractive non-invasive real time media
for performance monitoring. As such, it is important to define
new approaches for data normalization purposes. Previously,
data was shown illustrating localized sweat rate normalization
of metabolomics data caused greater dispersion among global
metabolomics data while illustrating high intercorrelation among
metabolite abundances when compared to non-normalized or
gravimetric normalized data (Harshman et al., 2021). While
the collection methodology to determine sweat rate outlined by
Harshman et al. is advantageous when smaller volumes of sweat
can be utilized for analysis, sufficient normalization approaches
for larger quantities, such as those obtained from patches, have
yet to be determined. Although historically gravimetric data
normalization has been applied to bulk sweat collections like
patches, gravimetric approaches are likely inaccurate (Patterson
et al., 2000, 2002; Hayden et al., 2004; Morgan et al., 2004; Alvear-
Ordenes et al., 2005; Buono et al., 2007; Meyer et al., 2007;
Harshman et al., 2021) The results shown in Figure 2 indicate,
similar to those using localized sweat rate, dried powder mass
normalization caused a greater separation among the data when
compared to the non-normalized/gravimetric normalization
(Figures 2A,B) (Harshman et al., 2021). Additionally, as shown
previously with localized sweat rate, there is a greater correlation
among the metabolite abundances when normalized to the
dried powder mass compared to the non-normalized/gravimetric

normalized abundances (Figures 2C,D) (Harshman et al., 2021).
Overall, these results suggest dried powder mass normalization
of sweat metabolite values show similar trends as other sweat
data normalization approaches (Harshman et al., 2021). These
data suggest dried powder mass normalization is a viable
option for data normalization collected from large volume sweat
collection approaches.

The data presented in Figure 2B suggests that the low
nutritional supplementation group had greater variability in
their data, illustrated by a greater spread of the gray data
points, compared to those taking the high nutritional supplement
(black data points). It is reasonable to hypothesize this result
is representative of a more complete total body nutrition
within the high supplementation group compared to the low
supplementation group. Furthermore, it is plausible that greater
variability in the low nutritional group observed in Figure 2B

is a result of participants relying more on their inconsistent
individual diets to provide adequate nutrition rather than
compensation by nutritional supplementation. Interestingly,
Figure 3B illustrates the high nutritional supplementation group
had a reduced log2 fold change relative to week 1 of the measured
metabolites compared to the low nutrition group. Again, it
is hypothesized that the reduction of the relative metabolite
abundance within the high nutritional supplement are a result
of stabile overall nutrition during the experiment while the low
nutritional group was more variable and reliant on outside diet
to provide nutrition. While merely hypotheses surrounding our
data, the historical literature is inconsistent surrounding diet
and sweat metabolite content. For instance, Hier et al. suggest
diet has little immediate impact on amino acid content of whole
body sweat, proposing a weak link between plasma and sweat,
although only a short timeframe was evaluated (Heir et al.,
1946) Conversely, Gitlitz et al. suggest amino acid content in
sweat is a result of transfer from the intestinal fluid indicating a
potential delayed link between the blood and sweat glands (Gitlitz
et al., 1974). While plausible, these hypotheses must be further
explored, in relation to blood level and potentially intestinal fluid
levels, to fully understand the relationship between diet and sweat
metabolites including amino acids.

Of the components contained in the high nutritional
supplement and measured within sweat, only one compound,
choline, was contained in both. Investigation of the choline
data illustrated that no direct increase of choline was observed
in the high nutritional supplement group suggesting an
indirect mechanism for its presence in sweat. For example,
the choline results show only a single sample (7.08µM),
among all the samples, was within the calibrated range (5–
100µM). These results suggest while choline was provided
directly within the high nutritional supplement, a relative
increase in choline abundance in sweat was not observed.
Interestingly, these data are in line with previous results
suggesting plasma choline levels do not change during training
with or without choline supplementation (Spector et al., 1995).
Although these data require further research, the results support
the hypothesis that specific metabolites are introduced into
sweat from many different potential sources (Baker and Wolfe,
2020).
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While research linking diet and physical performance is
well-established, examination of links between sweat small
molecule metabolite abundance and human performance are
less prevalent (See Purvis et al. (2013) and Baker (2019) for
a review). Lactate has been the primary sweat metabolite, due
to the link between blood lactate levels and muscle fatigue
during exercise, investigated linking performance and sweat
(Fellmann et al., 1983; Lamont, 1987; Pilardeau et al., 1988;
Green et al., 2004). For instance, several studies have illustrated
sweat lactate is inversely correlated with fitness level (Fellmann
et al., 1983; Lamont, 1987; Pilardeau et al., 1988). Furthermore,
Liappis et al. suggested that sweat amino acids are found
in lower quantities in trained individuals compared to those
untrained (Liappis et al., 1979). In this light, Figure 4B show
results from a multiple linear regression modeling analysis to
predict performance metrics using sweat metabolite abundance.
These data illustrate an ability of semi-quantitative sweat
metabolite values to predict performance metrics, such as VO2

max and peak lower body Windgate. Further investigation
of the fitted regression coefficients for the significant overall
models suggests features previously identified to correlate
with performance metrics significantly contribute to overall
models (Supplementary Data 12) (Harshman et al., 2021).
For example, Harshman et al. suggested features tentatively
identified as methionine and ornithine were correlated with
VO2 max values (Harshman et al., 2021). Similarly, the multiple
regression modeling within this study suggests both ornithine
andmethionine, significantly contribute to the prediction of VO2

max model. While it is currently unknown what underlying
physiological and biochemical mechanisms may contribute to
this observation, these data further support the growing evidence
utilizing sweat as a biosource for performance estimation.
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