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Abstract. Freeze-etch preparation of the laminated 
bundles of microtubules in motile axostyles demon- 
strates that the cross-bridges populating individual 
layers or laminae are structurally similar to the dynein 
arms of cilia and flagellae. Also, like dynein, they are 
extracted by high salt and undergo a change in tilt 
upon removal of endogenous ATP (while the axostyle 
as a whole straightens and becomes stiff). On the 
other hand, the bridges running between adjacent 
microtubule laminae in the axostyle turn out to be 
much more delicate and wispy in appearance, and dis- 
play no similarity to dynein arms. Thus we propose 
that the internal or "intra-laminar" cross-bridges are 
the active force-generating ATPases in this system, and 
that they generate overall bends or changes in the heli- 
cal pitch of the axostyle by altering the longitudinal 
and lateral register of microtubules in each lamina in- 
dividually; e.g., by "warping" each lamina and creat- 

ing longitudinal shear forces within it. The cross-links 
between adjacent laminae, on the other hand, would 
then simply be force-transmitting elements that serve 
to translate the shearing forces generated within in- 
dividual laminae into overall helical shape changes. 
(This hypothesis differs from the views of earlier 
workers who considered a more active role for the lat- 
ter cross-links, postulating that they cause an active 
sliding between adjacent layers that somehow leads to 
axostyle movement.) Also described here are physical 
connections between adjacent intra-laminar cross- 
bridges, structurally analogous to the overlapping com- 
ponents of the outer dynein arms of cilia and flagella. 
As with dynein, these may represent a mechanism for 
propagating local changes from cross-bridge to cross- 
bridge down the axostyle, as occurs during the passage 
of bends down the length of the organelle. 

T 
HE vigorous undulation of the axostyle in certain 
primitive protozoa is a fascinating example of micro- 
tubule-based motility. Previous observers have dem- 

onstrated that the axostyle is composed of thousands of par- 
allel microtubules arranged in a characteristic laminar 
pattern in which each lamina is composed of several dozen 
microtubules spaced evenly apart, and several dozen of these 
laminae are stacked on top of each other to form a relatively 
thick ribbon (15-17, 28, 34). The undulation is presumed to 
be an active process involving conformational changes in the 
cross-links amongst the microtubules. This somehow gener- 
ates bends perpendicular to the long axis of the whole ribbon 
(3, 8, 17, 24-26, 29, 34), and because the axostyle is perma- 
nently twisted along its length, it also involves a change in 
helical pitch. Additionally, the bends propagate from one end 
of the axostyle to the other, causing the organelle to rotate 
inside the cell as well as to undulate. 

Isolated axostyles can regenerate this movement in vitro 
when exposed to ATP in an appropriate ionic environment 
(2, 29, 40). The challenge is thus to explain how molecular 
ATPases that presumably reside in the cross-bridges between 
microtubules can affect the helical pitch of the overall lattice. 
This is generally thought to involve some sort of sliding of 
microtubules relative to each other (2, 17, 26, 29, 40), analo- 

gous to the dynein-generated sliding of microtubules in cilia 
and flagellae (33); but the geometrical complexity of the axo- 
style has thwarted efforts to specify exactly which cross- 
bridges are involved and what sort of sliding occurs. 

A previous report by Woodrum and Linck (40) provided 
the first deep-etch images of axostyle cross-bridges. These 
turn out to look sufficiently similar to dynein cross-bridges 
in deep-etched ciliary and flagellar axonemes (11-14) to sug- 
gest a functional homology. Woodrum and Linck did not de- 
scribe any changes in cross-bridge structure in the presence 
vs. absence of ATE but because such changes have been seen 
in axonemal dynein cross-bridges (11, 39), further deep-etch 
study of axostyles seemed warranted. 

The present study provides additional deep-etch images of 
the various cross-bridges that exist in the axostyle, as they 
appear in vivo as well as in vitro in the presence vs. absence 
of ATE and demonstrates that a change in cross-bridge con- 
formation accompanies the straightening that occurs when 
axostyles are removed from inside the cell and depleted of 
ATP (i.e., when they enter a "rigor" condition). This change 
involves only the cross-bridges that link microtubules to- 
gether laterally within each lamina. These cross-bridges as- 
sume a more upright or perpendicular configuration in vitro, 
some 20-40 ° different from the inclined configuration they 
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Figure 1. Isolated axostyles exposed to 
Mg-ATP display this increase in heli- 
cal pitch by phase-contrast micros- 
copy. A few axostyles display rhythmic 
conversions back and forth between 
these two extremes in ATP. The more 
typical undulation of the organelle in 
situ involves the propagation of short 
segments of the more tightly coiled 
configuration, on the right, down the 
length of an axostyle that is otherwise 
in the configuration on the left. 

display in more helical regions in vivo. In interpreting these 
new data, we discuss how such microscopic changes in 
cross-bridge conformation, if they were actively controlled 
by ATP hydrolysis, could generate macroscopic changes in 
the helical twist of the whole organelle. 

Materials and Methods 

The two "classic" axostyle-bearing protozoa were studied together; Pyr- 
sonympha that reside in the guts of termites (Reticulotermes, supplied by 

Carolina Biological Supply Co., Burlington, NC) and several related spe- 
cies of Saccinobaculus that reside in the guts of wood-eating roaches (Cryp- 
tocercus, kindly provided by Dr. Hope Ritter [31], Department of Zoology, 
University of Georgia, and Cristine Nalepa [30], Department of Entomol- 
ogy, North Carolina State University). In both cases, living organisms were 
quick-frozen in as close to their natural state as possible by dissecting out 
an insect's gut, expressing its contents onto the sample stage of our freezing 
machine (the "Cryopress" manufactured by Med-Vac, Inc., St. Louis, MO), 
and immediately dropping the sample onto the machine's liquid helium- 
cooled copper block. The protozoa thus remained in their natural environ- 
ment of gut contents and were frozen within 30 s of dissection, so they 
should not have been damaged by atmospheric oxidation (cf. reference 32). 
In other experiments, the contents of an insect's gut were extruded into a 
"suspension solution" whose composition was compiled from previous 
recipes (25, 32, 38, 41) and found empirically to maintain protozoan viability 
for >112 h; this was composed of 60 mM K ÷, 2 mM Na ÷, 3 mM Mg +÷, 1 
mM Ca ÷+, 20 mM CI-, 20 mM acetate-, 10 mM PO4-, and 10 mM 
HCO3-. To prevent oxidation in this case, 2 mM fresh dithiothreitol (DTT) 
was added to the above solution just before use, and thereafter it was kept 
under mineral oil. Each fresh batch of gut contents was allowed to stand in 
this solution for 5 rain to permit settling of larger protozoa and wood chips, 
which were discarded. The Pyrsonympha and Saccinobaculus species under 
study were then pelleted out of the 1-g supernatant at 300 g and briefly ex- 
posed to either of two "rupturing solutions" to obtain their axostyles, one 
solution being 0.5% Nonidet P-40 (NP-40) in 70 mM KC1, 30 mM Hepes 
buffer, pH 7.2, 5 mM MgCI2, 3 mM EGTA, 1 mM DTT, and 0.1 mM 
phenylmethylsulfonyl fluoride (PMSF). The second rupturing solution was 
simply hypotonic buffer (5 mM Na-Pipes, pH 7.0). Within 60 s, both of 
these solutions ruptured most of the larger axostyle-bearing protozoa but left 

Figure 2. Deep-etch appearance of the axostyle (lower right corner) and adjacent cytoplasm in a Pyrsonympha that was extruded from 
the hindgut of a termite directly into glutaraldehyde fixative. Note that the granular components of the cytoplasm do not penetrate the axo- 
style, which thus can he examined in a "clean" form in situ. Bar, 0.1 ~n .  
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smaller flagellates intact. Thereupon, axostyles were collected by centfifu- 
gation at 3,000 g for 3 rain, resuspended in the first solution without NP- 
40, and then exposed to 1 mM Mg-ATP. (Their behavior upon such ATP 
exposure will be described in Results.) Finally, the extracted and reacti- 
vated axostyles were quick-frozen as above, without intervening chemical 
fixation. 

Subsequent preparation of deep-etch replicas and three-dimensional (3- 
D) electron microscopy was performed as described in previous reports (11, 
18-21). All stereo micrographs were taken at 68,000x initially, then studied 
at 10× further magnification with a Wdd APT-1 stereo map reader. Data 
were transferred directly from the 3-D viewing field of this instrument to 
the digitizing tablet ofa  Zeiss MOP-3 stereology calculator, or to graph pa- 
per for drawings such as Fig. 22 below, via a standard Wild camera lucida 
attachment. 

Results 

Phase-contrast Microscopy of Living 
Organisms vs. Reactivated Axostyles 

The vigorous undulation typical of axostyles in living Pyr- 
sonympha and Saccinobaculus is rarely observed in isolated 
axostyles after they are prepared according to the bulk 
methods used here. Successful reactivation has generally 
been obtained only when detergent extraction and ATP ex- 
posure are performed in rapid succession directly on the mi- 
croscope stage, without washing away soluble cellular con- 
tents or subjecting axostyles to centrifugation (2, 29, 40). In 
fact, the only axostyles in our preparations that show rhyth- 
mic, propagated activation upon exposure to ATP are ones 
that attach to the glass slide during viewing; these happen to 
retain their nucleus and other cytoplasmic components. Most 
axostyles in our hands simply convert upon ATP exposure 
from extended, shallow coils to shorter more obvious spirals 
(Fig. 1) and thereafter remain stationary. This was appar- 
ently also the experience of Woodrum and Linck (40) who 
prepared axostyles by techniques very similar to ours. 
Rarely, a few unusually large Saccinobaculus axostyles dis- 
play dramatic coiling-uncoiling movements that occur si- 
multaneously along their entire length. Such overall changes 
in helical pitch between the two states shown in Fig. 1 were 
also seen by Mooseker and Tilney in a few of the axostyles 
in their reactivation studies (29). Witnessing this unusual 
"clockspring" movement in the present study inspired a 
mechanistic interpretation, based on a general theory of 
helices, that will be offered in the Discussion. 

Electron Microscopy of Whole Cells 

In previous studies of other cell types, deep-etch imaging of 
motile organelles in situ has been thwarted by the inevitable 
presence of uniformly dispersed, non-etchable granular ma- 
terial in the cytoplasm. This we have called "granola,' for 
lack of a better term (21, 23). We believe this "granola" 
represents the freeze-dried counterparts of what were for- 
merly the soluble contents of the cells' cytoplasm. The con- 
centration of soluble proteins in most cells is thought to be 
~10% wt/vol. Likewise, this "granola" is so concentrated in 
most ceils that organized protein lattices such as muscle 
fibrils or ciliary axonemes are almost totally obscured (11, 
20). To study such motile lattices by deep etching, it has been 
necessary to interject detergent extraction or osmotic rupture 
of the cells before quick-freezing, to wash out the obscuring 
material. Thus it was surprising to find that axostyles, on the 
other hand, always look "clean" in situ (Fig. 2). The cyto- 

plasm of these protozoa looks like "granola", as usual, but ap- 
parently this material does not penetrate into the axostyle 
proper. (Either the mierotubules are too closely packed or 
the granola is too internally cohesive.) In any case, it be- 
comes possible to observe this motile organelle, in situ, in 
a cell that was living up to the moment of freezing. 

One advantage this offers is that we can determine whether 
any changes occur when the organelle is removed from the 
cell and manipulated in vitro. On this point deep-etching 
agrees with previous thin-section studies, which have all 
concluded that isolation does not alter the basic architecture 
of the axostyle (2, 4, 8, 28, 29, 40). Readily apparent in vitro 
as well as in vivo is the bundling of microtubules into a series 
of sheets or "laminae" in which each lamina is composed of 
a planar, parallel array of tightly cross-linked microtubules 
(Fig. 3) and laminae are stacked on top of each other to form 
a thick, close packed bundle (Fig. 4). Also visible in vivo 
as well as in vitro are the two different sets of microtubule 
appendages that maintain this arrangement: those within 
each sheet (henceforth called "intra-laminar cross-bridges") 
and those between adjacent sheets of microtubules (hence- 
forth called "inter-laminar cross-links"). Both sets of append- 
age are visible in cross-fractures such as Fig. 4, but are indi- 
vidually much more apparent in longitudinal fractures such 
as Fig. 3, which will be described in some detail next. Since 
one or both of these sets of cross-links are thought to be the 
critical force-generators in the axostyle, space will be taken 
here to review what is currently known about the geometry 
of movement vis-a-vis these structures, and what is known 
about their ultrastructural organization. 

Past Work on the Geometry of Microtubule 
Cross-bridges vis-iz-vis Overall Axostyle Movements 

Unfortunately, any attempt to analyze the local structural 
changes that underly bend formation in axostyles is compli- 
cated by the fact that there is currently no accepted descrip- 
tion of the geometry of the bend. Two diametrically opposed 
views are held (Fig. 5), one claiming that Saccinobaculus 
axostyles bend in a plane perpendicular to the broad axis 
of their laminae (Fig. 5 b), and the other claiming that 
Pyrsonympha axostyles bend in a plane parallel to the broad 
axis of their laminae (Fig. 5 d). This discrepancy would not 
be suspected from light microscopy alone; it shows that in 
both organisms, bends occur in a plane perpendicular to the 
broad axis of the axostyle as a whole (8, 17, 25, 34, 40). How- 
ever, the electron microscopy has shown that the microtubule 
laminae run across the narrow axis of Pyrsonympha axo- 
styles (15, 16, 25, 34), but across the broad axis of Sac- 
cinobaculus axostyles (28, 29, 40). The bend imagined for 
Saccinobaculus (Fig. 5 b) would require slippage of one lam- 
ina over another longitudinally and thus would boil down to 
active "rowing" movements by inter-laminar cross-links, as 
most former authors have entertained. The bending in Pyr- 
sonympha would require longitudinal displacements of ad- 
jacent microtubules within one lamina, which would boil 
down to active "rowing" movements by the intra-laminar 
cross-bridges. Thus, differing interpretations of the geome- 
try of the bends in the two organisms leaves ambiguity about 
which set of cross-bridges ought to be involved. 

Electron microscopic studies have not resolved this am- 
biguity, to date. Varying interpretations of the organization 
and relative abundance of the two sets of cross-bridge have 
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Figures 3 and 4. (Fig. 3) Surface view of the lateral edge of an isolated Saccinobaculus axostyle (in Mg-ATP before freezing), illustrating 
that the microtubules forming stacks of laminae run strictly parallel to each other and to the edges of the laminae, as was generally thought 
before one recent claim to the contrary (40). Bar, 0.1 lam. (Fig. 4) A cross-fracture through an axostyle extracted from Saccinobaculus 
by NP-40 detergent treatment and then exposed to ATP before aldehyde fixation and quick-freezing, showing adequate preservation of its 
overall architecture after these mampulatlons. It remains a thick hehcal ribbon composed of sheets or laminae of mlcrotubules (here oriented 
horizontally). Microtubules in adjacent laminae are packed in hexagonal register in this area, but in general have no fixed position from 
layer to layer. Bar, 0.1 lain. 

been offered (see Fig. 6 and its legend for elaboration), but 
no concensus has been reached. One source of the discrepan- 
cies here may be differences in sample preparation; namely, 
thin sectioning accentuates the relative abundance of inter- 
laminar cross-links while deep-etching reveals very few of 
them. Thin sectioning is of course subject to image-overlap 
problems; for example, a typical 100-nm thick cross section 
of an axostyle will superimpose six or seven intra-laminar 

cross-bridges (since, as we shall see below, they are spaced 
every 16 nm along the microtubules). Hence, if the inter- 
laminar cross-links were even 5 % as abundant, they would 
end up appearing in thin sections at ~30% the frequency of 
the former. In fact, careful review of previously published 
thin section electron micrographs suggested to us that inter- 
laminar cross-links have always looked frail and insubstan- 
tial. Moreover, they often allow laminae to separate or dislo- 
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Figure 5. Comparison of the two purely orthogonal bending mo- 
ments possible in Saccinobaculus axostyles (a and b) vs. Pyrsonym- 
pha axostyles (c and d). The two on the left show bends parallel 
to the broad axis (or "width") of the axostyle; the two on the right 
show bends perpendicular to their broad axis. Light microscopy has d. 
revealed that only the two on the right actually occur. Note, how- 
ever, that the bend that occurs in Saccinobaculus (that shown in b) 
would be mechanically equivalent to the Pyrsonympha bend shown 
in c, relative to the cross-links that form the laminae of microtubules 
(shown here simply as diagonal lines). However, according to cur- 
rent interpretations (24, 25), the bend that actually occurs in Pyr- 
sonympha is that shown in d. This complication is discussed in 0. 
Results. (The blackened microtubule profiles illustrate the area en- 
larged in Fig. 6.) 

cate from each other, even in healthy in vivo axostyles. On 
the other hand, intra-laminar cross-bridges have always 
looked stout and immutable, and obviously hold adjacent 
microtubules in near perfect register. The former set seems 
too frail and the latter set too robust to be the prime generator 
of axostyle movement. Thus past electron microscopy of the 
cross-bridges has also left ambiguity about which set is in- 
volved in axostyle movement. 

With these unresolved issues in mind, we determined to 
examine axostyles more closely with freeze-etching, which 
offers certain technical advantages. First, platinum replicas 
provide enface views with such high contrast that individual 
cross-bridges can be seen; and second, these images are to- 
tally free from image-overlap problems because they repre- 
sent true surface views of structures supported by ice that has 
been fractured in various planes. 

Q O  O O 6 D 

Appearance of Intra-laminar Cross-bridges in 
Longitudinal Fractures 

The most commonly observed fracture of the axostyle is one 
that travels along its length in a plane roughly parallel to the 
broad axis of  the laminae. Here, deep-etching exposes en 
face views of  laminae from either an outer or inner vantage 
point relative to the central axis of the axostyle. Views of the 
outer surfaces of  laminae (Fig. 7) display the intra-laminar 
cross-bridges most distinctly, since these are located slightly 
above an imaginary axis joining the centers of the microtu- 
bules. (Laminae look generally convex in such views be- 
cause the axostyle is usually cupped across its width as well 
as helically wrapped along its length.) As was noted in thin 
section studies, these intra-laminar cross-bridges are abun- 
dant and are regularly spaced every 16 nm along the microtu- 
bules (four times the microtubule's 3-start period [1]). Previ- 
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Figure 6. Changing views of the organization and deployment of 
microtubule cross-bridges in the axostyle, redrawn from earlier 
thin section studies in order to achieve a consistent vantage point, 
with rows of microtubules (here termed "laminae") oriented hor- 
izontally. The view in a (from reference 28) stressed the relative 
prominence of small "dog ears" that appeared to be separate from 
the lateral "intra-row links," as they were called in that study; deep- 
etching indicates that these "dog-ears" are in fact the inner domains 
of the intra-laminar cross-bridge "heads". The view in b (our in- 
terpretation of the thin sections of tannic acid-stained axostyles in 
references 29 and 37) revealed additional small projections on the 
bottoms of microtubules. These were interpreted to be the origins 
of inter-laminar bridges (dotted in this drawing). The view in c 
(from reference 4) was the author's interpretation of the relative 
abundance and hexagonal deployment of "inter-row bridges" seen 
in freeze-fractures of glycerinated axostyles; however, in our opin- 
ion the relative abundance of these structures was exaggerated by 
the form of freeze-etching used in this study. The view in d is our 
redrawing of the conclusions of the deep-etch study of reference 40, 
showing that this technique actually reveals very few inter-laminar 
cross-bridges and accentuates the relative prominence and abun- 
dance of the cross-bridges within laminae. The drawing in e is our 
current view of the organization and relative abundance of these two 
sets of axostyle cross-bridges. It also shows that deep-etching 
clearly displays both sets of granules that were seen before on the 
bottoms of the microtubules. Either of these sets could be the ori- 
gins of inter-laminar cross-bridges, but the paucity of dotted con- 
nections between the laminae indicates how rare we think these ac- 
tually are. 

• us deep-etch views of these cross-bridges by Woodrum and 
Linck (40) further illustrated that each bridge is differen- 
tiated into a globular "head" (~9-nm diameter) and a thinner, 
elongated "stalk" (4 nm wide and 14 nm long). By monitoring 
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Figure 7. Oblique fracture through a Saccinobaculus axostyle isolated by detergent extraction and depleted of ATP (e.g., placed in "rigor") 
before quick-freezing. From this outer vantage point, laminae are curved convexly and intra-laminar cross-bridges are readily visible. The 
circle denotes two examples of a few cross-bridges in this field that are lacking their stalks, discussed further in Results (see also Fig. 
21). Bar, 0.1 lain. 

the orientation of our replicas and comparing these features 
with other landmarks on the microtubules (Fig. 8), we can 
show that when the anterior end of the axostyle is up and it 
is viewed from the outside (i.e., it looks convex), the globu- 
lar "head" of each cross-bridge rests on the leftward member  
of  each pair of microtubules and its stalk extends to the right. 
In addition, optimal replicas ofPyrsonympha axostyles dem- 
onstrate that the globular "heads" can be further resolved into 
two relatively distinct domains (Fig. 9). These sit roughly 
side-by-side in the gap between microtubules, so that only 
the one domain of the head rests on the microtubule to the 
left, while the elongated "stalk" emerges from the other 
domain. 

Fig. 10 illustrates two additional features of the intra- 
laminar cross-bridges. First, an axis through the center of the 
two head-domains is usually slightly tilted, relative to a per- 
pendicular between the microtubules. (This point bears on 
the description of changes in cross-bridge inclination pre- 
sented below.) Second, the outer domain of the head (i.e., 
the portion that does not sit directly upon a microtubule) of- 
ten appears to be linked to the next cross-bridge along. That 

is, this domain is teardrop-shaped, with a tapering exten- 
sion that brings it into contact with the cross-bridge one up 
from it. A few such cross-bridge "links" are pointed out in 
Fig. 10 (they will be seen even more clearly in the rigor axo- 
style in Fig. 13; see below). The overall intra-laminar cross- 
bridge geometry determined from these observations is dia- 
grammed in Fig. 11. 

Variations in Cross-bridge Inclination 

The exceptional clarity of intra-laminar cross-bridges in 
deep-etch replicas has allowed us to recognize that their 
stalks assume distinctly different inclinations under different 
conditions. Sometimes they tilt downward from left to right 
(using the convention of orienting the axostyle with anterior 
end upwards and viewing from the convex outer surface). 
This is seen, for example, in the three rightward rows of Fig. 
9. Since this stalk inclination is opposite to the upward cant 
of the two head-domains, the cross-bridges in this case ap- 
pear slightly check-shaped. In other axostyles, stalks can be 
found with the opposite inclination, upward to the right 
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Figure 8. An isolated Saccinobaculus axostyle (in rigor) in which 
the microtubules are split open in the lower portion of the field to 
reveal their internal "ribbing" (sight along the arrow inclined in par- 
allel with the ribs). We know from previous deep-etch work (19, 21) 
that these ribs represent the microtubule's three-start genetic 
helices, which repeat at 4 nm and are left-handed (1); thus they 
should slope up to the right when seen on the inside wall of the 
microtubule. These internal standards permit unambiguous deter- 
mination of the actual spacing of the intra-laminar cross-bridges 
(4 × 4 nm) and of their proper orientation in our replicas (head 
to the left, stalk to the right when the axostyle apex is off the top 
of the picture and the lamina is viewed from its outer convex sur- 
face). Bar, 0.1 tam. 

(Figs. 7 and 8). Since this is in the same direction as the cant 
in the head-domains, it eliminates their checked shape and 
makes the cross-bridges look straighter. 

One interesting aspect of the observed differences in stalk 
inclination from axostyle to axostyle is that they are nearly 
always of sufficient magnitude, and sufficiently uniform 
across the width of each lamina, to bring all of the laminae's 
cross-bridges into oblique "register" (Figs. 12 and 13). This 
curious phenomenon is manifest in two ways. First, the 
heads of intra-laminar cross-bridges within any single lam- 
ina usually remain in almost perfect transverse registration 
(i.e., perpendicular to the long axis of the microtubules), 
regardless of how tilted the cross-bridges are. Second, the 
stalks of tilted cross-bridges generally point toward the next 
cross-bridge up (or down) in the adjacent row, or towards the 
second or third cross-bridge up or down. (This second point 
would of course be a necessary concomitant of the main- 

tenance of transverse head-registration, if cross-bridge ori- 
gins and insertions were fixed.) Such is the case, for ex- 
ample, in the drawing of Fig. 14, in which adjacent 
microtubules were displaced by 32 nm relative to each other, 
without detaching the cross-bridges. Both before and after 
this displacement, heads remain in transverse (horizontal) 
registration because the displacement was an integral of their 
natural repeat (2 x 16 nm). Moreover, cross-bridges con- 
tinue to point at the same neighboring cross-bridge in the 
next row as they had pointed at before, which is drawn as ei- 
ther one 16-nm "step" up or down from the horizontal. What 
results is formation of oblique planes of cross-bridge regis- 
tration. (This is also due to certain features of axostyle geom- 
etry explained in the legend to Fig. 14.) 

In fact, the observed range of cross-bridge tilts suggests 
that 1, 2, or rarely 3 such 16-rim "steps" of microtubule dis- 
placement can occur in the axostyle. Angles of registration 
at '~18 ° and '~33 °, either up or down, are most commonly 
observed (Figs. 3 and 7-10), while angles of ~44 ° are seen 
occasionally (Fig. 15). Since adjacent rows of cross-bridges 
are separated by 50 nm (transversely) and cross-bridges are 
spaced 16 nm apart (longitudinally), one step should create 
a tilt of TAN 16/50 = 17.7 °, 2 steps a tilt of TAN 2× 16/50 
= 32.6 °, and 3 steps a tilt of TAN 3 x 16/50 = 44 °. Though 
we did not measure large numbers of cross-bridges individu- 
ally to confirm that their me,an angles matched these predic- 
tions, it was readily apparent (simply from looking di- 
agonally across all our negatives, as suggested in the legend 
to Fig. 15) that one or another of these three patterns of regis- 
tration was always present. 

Indeed, the images strongly suggest that we are witnessing 
"quantal" differences in microtubule registration amongst 
different axostyles, reflecting perhaps the existence of several 
different stable states in which all the shearing forces within 
an axostyle are distributed amongst the cross-bridges uni- 
formly. Rarely do we observe sudden shifts in cross-bridge 
inclination within any one axostyle, whether between adja- 
cent laminae or within one lamina, although Fig. 9 illustrates 
an exception. Foreshortening this field in a plane perpendic- 
ular to the microtubules illustrates an abrupt shift from one 
step down (-18 ° ) to two steps up (+33°). The interface 
where this occurs is enlarged in Fig. 9 b. Note that cross- 
bridges in the upwardly tilted (left-most) row look identical 
to those throughout Fig. 13. Such an abrupt, internal varia- 
tion in cross-bridge angle is extremely rare; we have seen it 
only in a few isolated axostyles that were collected by cen- 
trifugation, and suspect that under these conditions a rela- 
tively rigid axostyle may have been subjected to artifactual 
shear. 

The important question raised by the observations so far 
is whether such differences in cross-bridge inclination are 
passive manifestations of different degrees of shear within 
different axostyles, or whether they are actively generated 
changes in conformation that create the different shearing 
forces. In either case, it would be helpful to correlate the 
different internal cross-bridge conformations with overall 
axostyle shapes. Unfortunately, this has been hard to do, 
simply because freeze-fracture rarely provides enough ex- 
posure of an axostyle to determine the latter parameter; e.g., 
its overall degree of"bending" (longitudinal helicity) or "cup- 
ping" (transverse curvature). Nevertheless, an obvious trend 
in our observations bears mentioning. Downward cross- 
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Figure 9. En face stereo views 
of intra-laminar cross-bridges 
in a Pyrsonympha axostyle 
isolated with detergents and ex- 
posed to Mg-ATP before quick- 
freezing. The high power view 
below (taken from the brack- 
eted area above) includes four 
rows of cross-bridges, the 
three on the right displaying a 
"partitioning" of each head 
into two domains (labeled L 
and R on one head). (The row 
of cross-bridges on the left 
display a different "extended" 
morphology described in de- 
tail in Fig. 11.) Bars, 0.1 gm. 

bridge tilts are found more commonly in situ (Figs. 2 and 12) 
and in ATP-reactivated axostyles (Figs. 3, 9, 5, 16, and 17), 
axostyles that would be expected to contain a greater propor- 
tion of bends or to be more helically coiled throughout. On 
the other hand, upward cross-bridge tilts are found more 
commonly in isolated axostyles frozen in the absence of ATP 
(Figs. 7, 8, 10, and 13). These nonmotile, "rigor" axostyles 
are typically longer and straighter, but narrower and more 
crescent-shaped transversely than are ATP-reactivated ones. 

This suggests a correlation: cross-bridges down in bent axo- 
styles vs. cross-bridges up in straight axostyles. However, a 
complete review of  all our observations (Table I) indicates 
that, to date, this correlation is no more than a trend. Appar- 
ent exceptions are common, though some of them can be ex- 
plained. Upwardly canted bridges in whole cells or in ATP- 
reactivated samples (at least 25 % of the total in Table I) could 
come from relatively straight regions between bends, or 
from axostyles that were inactive at the moment of freezing. 
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Figure 10. Our best replica (in terms of its subtlety of platinum shadowing) of intra-laminar cross-bridges in an isolated Pyrsonympha axo- 
style in rigor (oriented 90 ° counterclockwise relative to Figs. 8 and 9, so the apex of the axostyle is to the left), showing most clearly 
the partitioning of their "heads" into two domains, as well as the longitudinal "linkers" between their heads (a few of which are pointed 
out by the arrows). Bar, 0.1 pan. 

On the other hand, downwardly tilted bridges in rigor axo- 
styles (found in roughly one-third of them) could come from 
bent regions that became "frozen in" during ATP depletion, 
as are observed occasionally. In any case, the data in hand 
are consistent with the possibility that a conversion of cross- 
bridges from tilted up to tilted down could actively generate 
microtubule sliding within individual laminae. How this in- 
ternal shear could lead to overall changes in the axostyle will 
be considered in the Discussion. 

OUTER ~ ,, 

. . . . . . . . .  

Figure 11. Diagram of our conclusion on the deep-etch appearance 
of intra-laminar cross-bridges, illustrating (a) the partitioning of 
their "heads" into two domains, inner and outer; (b) the diagonal 
"links" between adjacent cross-bridges; and (c) the relative posi- 
tioning of the "stalks" that reach across to the adjacent microtubule. 

Table L Cross-bridge Inclinations Tabulated 

Intra-laminar cross-bridge inclination 

No. of No. of Tilted Tilted 
replicas axostyles down up Mixed Indeterminant 

P whole 15 35 14 4 3 14 
P rigor 11 23 5 9 7 2 
P ATP 13 27 2 17 1 7 

S whole 9 20 9 6 1 4 
S rigor 10 22 8 4 3 7 
S ATP 12 18 6 10 2 0 

Summary of our total number of observations of different axostyles in freeze- 
etch replicas of Pyrsonympha (P) and Saccinobaculus (S). The first two 
columns indicate the total number of replicas examined and the total number 
of axostyles found in them. The final four columns indicate the predominant 
intra-laminar cross-bridge orientation in each of the observed axostyles. Note 
that downward tilts are generally more abundant in whole organisms that are 
wiggling up to the moment of fixation or freezing, while upward tilts are rela- 
tively more abundant in extracted axostyles, regardless of whether they are 
placed in rigor by ATP depletion or provided with 5 mM Mg-ATP in the mo- 
ments before freezing. 

Structures Seen on the Undersides of  the Laminae 

En face views of the undersides of microtubule laminae 
(Figs. 16 and 17) reveal the same crystalline arrays of intra- 
laminar cross-bridges; however, from this vantage point, 
these cross-bridges appear less prominent because they are 
below the microtubules and hence partially lost in the 
shadows of the metal replica. Also, only the outermost do- 
mains of their dimeric "heads" can be seen, because their in- 
ner domains are underneath the microtubules. The terminal 
portions of their "stalks" look broader and more distinct in 
this view, on the other hand, indicating that the stalks are 
slewed inward in the radial direction relative to an axis join- 
ing microtubule centers. This geometry was indicated in Fig. 
U, above. 
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Figures 12 and 13. (Fig. 12) An in situ axostyle in a Saccinobaculus that was wiggling until the moment of quick-freezing, showing the 
basal tilt of intra-laminar cross-bridges typical of the in situ organelle. Bar, 0.1 Inn. (Fig. 13) An isolated Pyrsonympha axostyle that was 
allowed to go into rigor (via ATP depletion), showing an upward inclination of its intra-laminar cross-bridges that is so steep that the two 
portions of their heads appear slightly separated (one such bridge is circled). Note that the diagonal "links" between adjacent cross-bridges 
are much more visible when the heads are this extended (arrows). Bar, 0.1 Inn. 

Saccinobaculus axostyles viewed from beneath display 
two further sets of microtubule appendages that have not 
been explicitly described before. One consists of barely visi- 
ble 7-nm "granules" that are extremely abundant and regu- 
larly deployed (16 nm center-to-center in regions of closest 
packing) along one edge of the underside of each microtu- 
bule (Figs. 16 and 17, small arrows). (Being not much wider 
than a microtubule protofilament, this set of granules is often 
very hard to see unless one sights down along the length of 
the microtubules to foreshorten the image.) The second set 
consists of larger (,,o10 nm) "granules" that are less abundant, 
but partially occupy another set of 16 nm-spaced sites on the 
microtubules (cf. ref. 27). These are located on the opposite 
edge of the microtubule from the small granules, immedi- 
ately beneath the heads of the intra-laminar cross-bridges 
(Figs. 16 and 17, large arrows). Fig, 6 included these granules 
when comparing our results to previous reports. In retro- 
spect, the small granules were particularly prominent in the 
thin section images of tannic acid stained axostyles of Tilney 

et al. (37), while the large granules were particularly appar- 
ent in Woodrum and Linck's thin section images (Fig. 4 c of 
reference 40). The latter authors concluded, in agreement 
with earlier interpretations (28), that one or both of these sets 
of appendages might be the more visible parts of cross- 
bridges that extend between rows of microtubules. As de- 
scribed next, the present deep-etch views of such inter- 
laminar cross-bridges do not support this conclusion. 
Moreover, neither of these two types of granule are found in 
Pyrsonympha axostyles. In the following description, how- 
ever, bear in mind the possibility that the granules in ques- 
tion could represent detached inter-laminar cross-bridges, 
and that we have failed so far to maintain the physiological 
conditions needed to preserve their attachment. 

Inter-laminar Cross-links in Edge-views o f  Laminae 

The second major plane of fracture along the length of the 
axostyle, which occurs much less often, is in a plane or- 
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Figure 14. Diagram showing how 16-rim "quantal steps" of microm- 
bole displacement lead to oblique registration of cross-bridges in 
adjacent rows. This occurs because stalks do not point directly at 
a cross-bridge in the adjacent row, but rather at the space immedi- 
ately between its closest neighbors. Stated another way, the head- 
binding sites and stalk-binding sites on opposite sides on any single 
microtnbule are exactly out of phase (i.e., 8 nm apart). This half- 
stepping combines with the fact that the cross-bridges are about half 
as long as the center-to-center spacing between micrombules (a nat- 
ural consequence of the fact that the microtubule diameter is also 
about half of this spacing) to create the registration. (This is best 
understood by raising the journal page and citing down along the 
dotted lines.) 

thogonal to that described above: namely, perpendicular to 
the broad axis of the laminae. Here, deep-etching exposes 
edge-on views of the laminae, in which intra-laminar cross- 
bridges are transected (Fig. 18). Such edge-views are valu- 
able because they reveal most distinctly the links that extend 
between laminae. Of course, such inter-laminar cross-links 
have to exist for the axostyle to hold together. A key question, 
however, is whether they play a primary role in motility, as 
most previous investigators have assumed by analogizing 
them to ciliary dynein (2, 26, 28, 29). Actually, the deep-etch 
images obtained in this study, like those obtained by Wood- 
rum and Linck (40), show that the inter-laminar connections 
in question are relatively few in number, thin and wispy in 
appearance, and variable in deployment and inclination (Fig. 
18); hence they do not look at all like the substantial dynein 
side-arms that generate microtubule sliding in cilia and 
flagella (11-14, 39). Fig. 18 is in fact from an axostyle frozen 
in situ (a different part of Fig. 2), where there should be no 
suspicion that certain cross-bridges were extracted during 
sample preparation. Nevertheless, the inter-laminar links are 
<5 % as abundant as the stout intra-laminar cross-bridges de- 
scribed above. These links course randomly across the gaps 
between laminae, which are much more variable in width 
than the spaces between microtubules within each lamina, 
hence the links are of widely variable length and inclination. 
They look rather like the bridges we find in nonmotile sheets 
of microtubules, such as those found beneath the plasma 
membrane of trypanosomes (Fig. 19; see also reference 35). 
They also look like the nondescript "wisps" that span mi- 
crotubules and neurofilaments in nerve axons (22) and the 
cross-links between microtubules and pigment granules in 
chromatophores (23). 

Figure 15. An exceptional Saccinobaculus axostyle exposed to ATP 
before quick-freezing, whose cross-bridges were tilted more se- 
verely than usual, thus creating the "three-step" downward registra- 
tion described in the text. This produces 44 ° diagonals that can be 
seen when the image is foreshortened along the arrow. Bar, 0.1 Inn. 

Comparison of  Cross-bridges in 
Cross-fractured Views 

Fractures perpendicular to the long axis of the axostyle pro- 
vide images analogous to transverse thin sections, but are 
somewhat less informative because the cross-bridges are 
more deformed by fracturing than by thin sectioning. Even 
so, their preservation is usually adequate to confirm the 
above-mentioned differences between the two sets of cross- 
bridges (Fig. 20). Those within laminae are ubiquitous while 
those between laminae occur between <10% of the subjacent 
microtubules, regardless of whether the axostyles are viewed 
in situ (Fig. 2) or after removal from the cell (Fig. 20). Un- 
derscoring our impression that links between laminae are 
relatively rare and physically insubstantial is the common 
finding that upon removal from the cell, adjacent laminae of- 
ten peel apart from each other (2, 17, 29, 40). Earlier ob- 
servers also noted that adjacent laminae are not uniformly 
spaced in fixed whole cells (3, 15, 16, 34), and that axostyles 
can even split completely apart in living cells, with both 
halves continuing to function (25). 
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Figures 16 and 17. (Fig. 16) Oblique fracture through a Saccinobaculus axostyle (bathed in Mg-ATP before freezing) which yielded en 
face views of the concave undersides of several laminae, opposite to the side on which the intra-laminar cross-bridges occur (such as Fig. 
7). Portions of the underlying cross-bridges can be seen in the gaps between microtubules. Also visible are large and small granules dotting 
the lateral edges of the microtubules (large and small arrows). Bar, 0.1 Inn. (Fig. 17)Purely en face view of the underside of a lamina 
in a rigor Saccinobaculus axostyle, illustrating particularly clearly the two sets of large and small granules that decorate the inner edges 
of the microtubules (/arge and small arrows). The distribution of these granules suggests random occupation of regularly repeating sites 
(cf. reference 27), sites that are in register with the 16-nm repeat of the underlying intra-laminar cross-bridges, portions of which can be 
seen in the gaps between microtubules. Bar, 0.1 jma. 

At a grosset level, the cross-fractures obtained here dis- 
play overall features of  the axostyle lattice that substantiate 
previous thin section images; namely, by demonstrating that 
they are also found in unfixed samples. These features in- 
clude, most importantly, the distinct curvature of each lam- 
ina, which creates the overall "cupped" appearance of the 

transected axostyle (Figs. 2, 7). Mclntosh et al. (26, 28) were 
the first to note that this transverse curvature diminishes 
where longitudinal (helical) bending increases, an observa- 
tion that required careful serial thin sectioning and thus is not 
accessible to confirmation by random freeze-fracturing. 
Freeze-fractures do show, however, that the degree of trans- 
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Figure 18. Four different edge-on views of an axostyle in situ, from a Pyrsonympha that was aldehyde fixed while still wiggling, in order 
to reduce the likelihood of any cross-bridge breakage or extraction. The axostyle runs horizontally here, so adjacent laminae are stacked 
on top of each other. Foreshortened views of fractured intra-laminar cross-bridges look like "corn kernels" in the plane of each lamina 
(a few are circled). Inter-laminar cross-links run more-or-less vertically between the stacks; these are extremely thin, amounting to only 
one platinum grain in width (2-3 nm), and occur in much lower frequency than the intra-laminar cross-bridges shown heretofore. Bar, 
0.1 lan. 

verse curvature varies from one axostyle to the next and 
varies even within each axostyle, tending to be more extreme 
at its lateral edges (not shown). In addition, transverse 
freeze-fractures confirm that although the microtubules in 
adjacent laminae run parallel to each other, the stacking of 
adjacent laminae varies continuously, as would be expected 
from their variable radius of curvature. Thus the overall 
packing of microtubules is sometimes orthogonal (Fig. 20), 
sometimes hexagonal (Fig. 4), and sometimes intermediate 
(Fig. 2). Unlike the strict order within laminae, there ap- 
pears to be no fixed position of microtubules in one lamina 
relative to those in the next. The cross-links between laminae 
must thus be flexible enough to adapt to these changes in 
packing, or must be capable of "jumping" from one binding 
site to another. 

Cross-bridge Extraction 

As earlier studies uncovered the structural analogies between 
axostyles and ciliary axonemes, efforts were made to see if 

dynein-like molecules could be extracted from axostyles by 
the sorts of protocols that remove dynein from axonemes (9, 
10). Two earlier reports claimed some success with the typi- 
cal high salt extraction (2, 29). Thin sections in Bloodgood's 
report (2) showed that extracted axostyles fall apart into in- 
dividual laminae, indicating that cross-bridges between lam- 
inae were broken or gone. Since these cross-bridges are now 
shown to be unlike dynein in morphology, a key question is 
the response of the dynein-like intra-laminar cross-bridges 
to high salt exposure. Fig. 21, C and D, provides en face 
views of laminae from Saccinobaculus and Pyrsonympha, 
respectively, separated by high salt extraction. These demon- 
strate that a considerable proportion of the intra-laminar 
cross-bridges are also removed by such treatment. Thin sec- 
tions of single laminae embedded in plastic apparently did 
not provide adequate contrast to demonstrate this (2), yet it 
is readily apparent in the present high-contrast surface 
replicas. We conclude that high salt extraction can remove 
a major proportion of the intra-laminar cross-bridges as well 
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Figure 19. Sub-pellicular ar- 
ray of microtubules from a 
trypanosome protozoan ex- 
tracted with detergents to re- 
move the overlying plasma 
membrane. Delicate cross- 
bridges hold the microtubules 
in permanent parallel align- 
ment; these are similar in 
thickness and nondescript ap- 
pearance to the inter-laminar 
cross-links ofaxostyles in Fig. 
18. This array is considered to 
be nonmotile. Bar, 0.1 Inn. 

as the inter-laminar cross-bridges; apparently, however, this 
does not show up as internal "fraying" of  laminae because 
their internal cross-bridges are so abundant to start with. 
Thus the extracted dynein-like ATPase (2, 29) could just as 
well reside in either type of cross-bridge (assuming it is not 
simply extracted from the flagellar axonemes that inevitably 
contaminate such preparations), 

A further observation, made s~rendipitously, may contrib- 
ute toward localizing the ATPases in axostyles. While ex- 
ploring methods to obtain axostyles from protozoa by hypo- 

tonic shock, in an effort to avoid exposing them to detergents, 
we found that solutions of  very low ionic strength containing 
low divalent cations (for example, 5 mM Pipes buffer, pH 7.0 
with Mg ÷÷ <0.3 mM) also extract intra-laminar cross- 
bridges, but without separating adjacent laminae. This may 
be related to Gibbon's early success at removing ciliary 
dynein by exposing axonemes to low ionic strength, divalent 
cation-free solutions (9), a procedure that was used before 
the advent of  high salt extraction of  dynein (10). Images of 
axostyles partially extracted by this protocol are particularly 

Figure 20. Stereo view of a 
cross-fractured Pyrsonympha 
axostyle, after in vitro treat- 
ment with ATP and aldehyde 
fixation (this protocol being 
chosen to increase the likeli- 
hood of finding inter-laminar 
cross-links and to "toughen" 
them against distortion during 
fracturing and etching). In com- 
parison with the ubiquitous 
intra-laminar cross-bridges, 
which here run horizontally, 
inter-laminar cross-links are 
few and far between. A few 
are circled; others can be 
found, but in a small pro- 
portion to the former. Bars, 
0A lun. 
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informative (Fig. 21, A and B). They illustrate that in some 
regions, the stalks of the intra-laminar cross-bridges are ex- 
tracted selectively; that is, they leave their heads behind, still 
attached to the microtubules of origin (Fig. 21 B). In other 
regions, cross-bridges appear to be extracted wholly but ap- 
parently at random (Fig. 21 A). Such intra-laminar changes 
are found throughout axostyles that are exposed to low salt 
for as little as 0.5-2 min at 4°C, at which point they still ap- 
pear to be held together normally, so their inter-laminar 
cross-links ought to be relatively intact. Clearly, the thesis 
proposed in this report would be strengthened by showing 
that such low salt treatment extracts a dynein-like ATPase 
from the axostyle. We are currently attempting to collect 
enough organisms to do such biochemistry. 

Discussion 

The relative fraility and variability of the cross-links between 
microtubule laminae in the axostyle was once considered to 
be evidence that they were dynein-like (26, 28, 29, 34), but 
with the realization that dynein cross-bridges are stout, 
multi-faceted structures (9-12), this analogy no longer holds. 
Indeed, deep-etching shows that intra-laminar cross-bridges 
in the axostyle look much more like dynein arms. This, plus 
our demonstration that intra-laminar cross-bridges assume 
different tilts under different conditions (Fig. 22) and also fall 
out under extraction protocols used to remove dynein from 
cilia, would suggest that they, instead, are the dynein ana- 
logs. If so, they would be expected to generate longitudinal 
displacements of adjacent microtubules within laminae. This 
would produce the type of bend imagined for Pyrsonympha 
axostyles (diagrammed in Fig. 5 d), but whether it would pro- 
duce enough of a bend seems doubtful. For example, a 
change in cross-bridge angle of +18 ° would displace adja- 
cent microtubules by only 32 nm (Fig. 23). Projected into 
the total width of a lamina 100 microtubules wide, this would 
produce a shape change roughly like that shown in Fig. 23 
a. If constrained at one end, as in cilia, this would generate 
only a very shallow curvature in the plane of the lamina (Fig. 
23 b). The amount of curvature actually observed in Pyr- 
sonympha axostyles would require that cross-bridges detach, 
rebind downstream, and repeat this change in angle several 
times. Microtubule displacements in cilia and flagella, for 
example, exceed ~100 nm in maximally curved areas (33). 
This is thought to require at least four dynein outer arm cy- 
cles of attachment and detachment, since these arms are 
spaced 24 nm apart (11). However, we should stress that there 
is no evidence for cross-bridge cycling in axostyles. At least, 
we have never observed a phase of detachment of the intra- 
laminar bridges, nor has anyone ever obtained even indirect 
evidence that any of the bridges normally detach. Such evi- 
dence has of course been obtained for cilia and flagella (36); 
since they actively slide apart if they are exposed to proteases 
and then reactivated with ATP. No such "telescoping" has 
ever been observed in reactivated axostyles, however. 

Barring cross-bridge "cycling," the only other way to in- 
crease curvature in the plane of the axostyle laminae would 
be to shorten or contract the microtubules on one side rela- 
tive to those on the other. This of course would alter the spac- 
ing of the intra-laminar cross-bridges. Indeed, Mclntosh ob- 
tained indirect evidence, from optical diffraction of thin 
sections, for a reduction in spacing of these cross-bridges on 

the insides of bends in three Saccinobaculus axostyles (26). 
Unfortunately, in the present study we have never observed 
such changes in spacing, even though we can scan across in- 
dividual laminae and view their cross-bridges directly. We 
have seen only the changes in tilt and resultant patterns of 
oblique registration, described above. We suspect that opti- 
cal diffraction may have picked up some of these differences. 
(Looking diagonally down a row of obliquely registered 
cross-bridges would give the impression that they were 
closer together, due to the foreshortening introduced via the 
cosine rule.) Moreover, in the years since Mclntosh's study, 
no other evidence for microtubule contraction in any other 
system has come to light. Thus it is hard to imagine that it 
plays a role in axostyle movement. 

On the other hand, we can envisage a way in which con- 
certed changes in the conformation of cross-bridges, even if 
they didn't cycle, could generate major bends. If we assume 
that conformational changes in the cross-bridges create 
shearing forces between adjacent microtubules and that these 
changes tend to occur uniformly across the breadth of a lam- 
ina and for some limited distance up and down it, then the 
involved area would attempt to shear until it looked like a 
parallelogram (Fig. 23 a). If we further assume that regions 
above and below the involved area resist actual displacement 
of microtubules, then it seems likely that the shearing forces 
would be relieved by altering the helical twist of the involved 
area. Simple planar bending would not occur, because unlike 
the situation in cilia and flagella where sliding of microtu- 
bules is permitted at the top of the axoneme (Fig. 23 b), here 
we imagine that sliding would be resisted at both ends by 
the intra-laminar cross-bridges that were not involved in the 
change. Instead of bending, the involved area would change 
its helical pitch (Fig. 23 c). At least this is the only way to 
insert a long parallelogram between two flat, horizontal sur- 
faces; it has to be twisted into a helix in order for its ends 
to become horizontal and parallel to each other. Another in- 
stance in which such local shear forces are converted into he- 
lical shape changes in a whole organelle-the actin bundle 
of limulus sperm-has been analyzed in detail by De Rosier, 
Tilney, and colleagues (5-7). Their papers may throw further 
light on the process envisioned here, especially Fig. 10 in ref- 
erence 6 which portrays most explicitly their prediction of 
analogous changes in cross-bridges between actin filaments. 

Another aspect of the observed helical shape of axostyles 
is that differences in cross-bridge inclination ought to exist 
amongst adjacent laminae at all times (see Fig. 25). This 
notion comes directly from a theoretical consideration of 
helices: the different radii of curvature of the laminae on the 
inside and outside of a helix dictates that they must have 
different overall shapes (e.g., parallelograms with more or 
less inclination of their ends). One simple way to envision 
this is to grasp the upper right corner of this journal and bend 
it down toward the lower left corner. This creates a laminated 
helix analogous to an axostyle, in which each page can be 
likened to a lamina of microtubules. Doing this creates a sub- 
stantial diagonal displacement of the comers of the upper- 
most pages vs. the last pages (Fig. 24); but in the axostyle 
we are assuming for the moment that all such "end displace- 
ments" are disallowed by terminal anchorages. This journal 
can only be bent into a helix, while keeping its ends in regis- 
ter, if the shapes of the pages are changed simultaneous- 
ly. For example, by converting the uppermost pages into 
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Figure 21. Partial extractions of intra-laminar cross-bridges that illustrate aspects of their subunit composition. A-C are from different Sac- 
cinobaculus axostyles and D is from a Pyrsonympha axostyle. Extraction was provoked in A and B by hypotonic shock (5 mM Pipes, pH 
7.0, for 5 min at 4°C); in C by high salt extraction (0.3 M KC1 for 5 min at 4°C); and in D by inadvertent exposure to high salt (the organism 
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Figure 22. (a) Camera lucida tracings of intra-laminar cross- 
bridges in the two predominant states found in this report, from Fig. 
9 (a Pyrsonympha axostyle in ATP) and from Fig. 13 (a Pyrsonym- 
pha axostyle in rigor). The vertical lines represent cracks between 
the protofilaments of the adjacent microtubules. (b) Three "ideal- 
ized" cross-bridges drawn to illustrate our interpretation of this 
configurational change. The stippling represents one cross-bridge 
and its linker, for comparison with the overlapping configuration 
of dynein outer arms, diagrammed at the same size scale in c, as 
they look in ATP and in rigor (cf. references 11-14). 

parallelograms whose upper right corners are cut away, 
while leaving the last pages as rectangles, registration would 
be maintained. Of  course, this could only be done to the 
journal with scissors; we wish to stress that it could be done 
to axostyle laminae by changing the inclination of their 
cross-bridges (Fig. 23). 

To grasp how large these lamellar shape changes might be, 
and how much axostyle curvature they might provoke, imag- 
ine for example that in one area, inter-laminar cross-bridges 
changed from two-step upward registration (~33  °) to two- 
step downward registration, a net displacement of  4 x 16 nm 
= 64 nm between each adjacent microtubule or 64 nm x 
100 microtubules across the breadth of a whole lamina, a 
~6-~tm displacement of  one edge versus the other. This 
could occur in an area <10 ~tm long (since local bends in the 
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PREVENTED PREVENTED 

AT BASE AT BOTH ENDS 
Figure 23. Illustration of the form and extent of overall lamellar 
shape changes expected to result from a two-step (i.e., 32-nm) 
"quantal" dislocation of microtubules. When summed across the 
~100 microtubules in a typical 5-pm-wide axostyle, this would re- 
sult in a ,,~3-pm downward displacement of its right edge. If uncon- 
strained, this would create the change to a parallelogram shown in 
a. If constrained at the base (as in cilia and flagella), this would cre- 
ate the curvature shown in b. We propose in the text that if the axo- 
style were constrained at both ends, it would undergo neither of the 
above shape changes, but instead would assume a helical twist 
something like that shown in c. 

axostyle are seen to occupy areas no longer than that), so the 
above displacement would amount to a dramatic change in 
shape of the affected area, even without cross-bridge cycling. 
(For comparison, the page displacement generated by bend- 
ing a corner of  this journal all the way down is ~10% of its 
height, at its usual monthly thickness.) 

One critical ingredient in this model is that axostyle lami- 
nae should not be able to slide passively relative to each 
other. Indeed, there is morphological evidence that laminae 
are anchored to each other at either end of the axostyle. The 
anterior end carries a special row of extensively cross-linked 
microtubules, orthogonal to the laminae and linked to each 
of their lateral edges (3, 15, 16, 28, 34). Geometrically, this 
"primary row" is in perfect position to bind laminae together 
and keep their ends aligned. At the posterior end, the lami- 
nae all wrap around each other to form concentric rings and 
end in a dense cytoplasmic "plug" (3, 14, 15, 28, 34). This 
would also appear to disallow any sliding displacement. In 
addition, laminae are cross-linked locally throughout the 
length of the axostyle by many inter-laminar links. These ob- 
viously hold the whole organelle together, but may also trans- 
mit shear forces generated by individual lamellar changes. 

While discussing how lamellar shear could change axo- 

ruptured and its axostyle was exposed to "artificial gut solution" described in Materials and Methods for 15 min at 4°C). A illustrates a 
random removal of whole bridges, with minimal change to the remaining ones. B illustrates nearly complete removal of the "stalks" but 
retention of one or both parts of their "heads". C illustrates complete removal of all bridges except a few that look like inter-laminar ones. 
D illustrates an interesting potpourri of remains, including half-heads, whole bipartite heads with no stalks, and some complete, quite normal 
looking bridges. Bars, 0.1 pan. 
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Figure 24. Illustration of the mis-registration that results from 
twisting a stack of rectangular laminae (e.g., journal pages) into a 
left-handed helix, first gently (left) and then more extremely (right). 
In the text, we propose that axostyle laminae become shaped like 
parallelograms in sharply curved regions, thereby preventing such 
mis-registration. 
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Figure 25. Illustration of the 
gradient of cross-bridge an- 
gles that ought to exist in an 
axostyle, to accommodate the 
differing degrees of helical 
twist of inner and outer lami- 
nae. In the text, we propose 
that active increases (or de- 
creases) in the relative obliq- 
uity of cross-bridges in sub- 
jacent laminae could be the 
molecular driving force be- 
hind active changes in helical 
pitch. See references 5-7 for 
elaboration of this concept in 
another system. 

style helices, we should also consider a concomitant struc- 
tural change noted previously: increased longitudinal bend- 
ing is accompanied by loss of the normal transverse 
curvature or "cupping" of the axostyle. Mclntosh et al. (26) 
were the first to stress the significance of this change, liken- 
ing it to the behavior of a carpenter's steel tape-measure, 
which is built with transverse curvature to make it stiff, but 
"pops" into a flat profile when flexed longitudinally. These 
authors considered the loss of transverse curvature in the 
axostyle to be a passive phenomenon that simply "permitted" 
the longitudinal bend to occur. We would offer, instead, that 
transverse curvature may also be controlled by active cross- 
bridge changes of the sort envisioned here. Until now, we 
have considered only the longitudinal vector of intra-laminar 
cross-bridge flip-flops, seen as a change in their inclination; 
but this change could also have a radial component, so that 
when cross-bridges tilted down to the right, they also ele- 
vated their rightward attachment points a bit toward the outer 
(convex) surface of the axostyle and thereby actively reduced 
its transverse curvature. Such a "down-and-out" cross-bridge 
movement would simultaneously create two (or more) vec- 
tors of force that could in principle be translated into com- 
plex shape changes in several different planes, depending on 
the different patterns of microtubule organization observed 
in different types of axostyles. 

Clearly, experimental evidence for the view expressed here, 
that configurational changes in intra-laminar cross-bridges 
drive the overall shape changes of axostyles, awaits a method 
of dissociating axostyles into individual laminae and proving 
that a single one will undergo a shape change on its own 
when exposed to ATP. One indication that this experiment 
may be accomplished some day comes from the study of 
Langford and Inou6 (25) who reported that axostyles in liv- 
ing cells occasionally split into several thinner ribbons that 
each continue to undulate on their own, albeit independently 
of each other. 
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