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Background: Pyrroloquinoline quinone (PQQ) is a redox cofactor that can participate in a variety of 
physiological and biochemical processes, such as anti-inflammatory, cytoprotection, anti-aging, and anti-
apoptosis. PQQ plays an important protective role in the central nervous system (CNS). However, the effects 
of PQQ on astrocytes of the CNS and spinal cord injury (SCI) of rats is still unclear. The present study 
investigates the role of PQQ in inflammation, apoptosis, and autophagy after SCI in rats. And the effect of 
PQQ on lipopolysaccharide (LPS)-induced apoptosis and inflammation of astrocytes in vitro, to explore the 
neuroprotective mechanism of PQQ.
Methods: Sixty specific pathogen free (SPF) SD male rats (200–250 g) were randomly divided into Normal 
group, Sham group, SCI group, and SCI + PQQ group, with 15 rats in each group. BBB score, HE staining, 
Nissl staining, Western blot, immunofluorescence, and other methods were used for detection.
Results: Our results showed that PQQ could upregulate BBB score in SCI rats. In the second place, 
PQQ can increase the number and improve the morphology of neurons after SCI. The expression of IL-1β, 
TNF-α, IL-6 was significantly decreased after PQQ treatment. And then, the ratio of B-cell lymphoma-2 
(Bcl-2)/Bcl-2 associated X protein (Bax) increased significantly, and the positive signal of NeuN increased 
obviously after PQQ treatment. There are a large number of co-localizations between Bcl-2 and NeuN. 
Meanwhile, PQQ could down-regulate the expression of Active-Caspase3, and PQQ treatment could reverse 
the transfer of Active-Caspase3/Caspase3 from the cytoplasm to the nucleus in neurons and astrocytes after 
SCI. At the same time, PQQ had no significant effect on the LC3b/a ratio. PQQ could decrease the LAMP2 
expression in spinal cord after injury. The expression level of phospho-Akt (p-AKT) increased after SCI and 
decreased after PQQ treatment. In primary astrocytes, LPS could induce the expression levels of IL-1β, 
TNF-α, and IL-6, and which were inhibited by PQQ treatment at 12 hours. After treatment with LPS, the 
expression level of Active-Caspase3 increased, which could be reversed by PQQ treatment for 24 h.
Conclusions: These results suggest that PQQ can ameliorate the motor function of hind limbs and the 
pathological changes of neurons and injured spinal cord after SCI, down-regulate the expressions of IL-
1β, TNF-α, and IL-6, inhibit apoptosis after SCI, and inhibit LPS-induced apoptosis and inflammation of 
astrocytes.
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Introduction

Pyrroloquinoline quinone (PQQ) is an important nutrient 
existing in foods such as vegetables and meat (1-4), which 
cannot be synthesized by biology, but trace PQQ is 
detected in humans and rats (5-7). PQQ is a redox cofactor 
that can participate in a variety of physiological and 
biochemical processes in bacteria and mammals, such as 
preventing liver injury (8), preventing myocardial ischemia-
reperfusion injury, stimulating the production of nerve 
growth factor (NGF) in astrocytes, and eliminating free 
radicals (9). Studies have shown that the loss of PQQ in 
mammals will lead to systemic reactions such as weakened 
immune response, growth disorder, reduced respiratory 
entropy, and abnormal reproductive function (10-12). 
PQQ is a multifunctional biological agent with the effects 
of antioxidant growth, anti-inflammatory, anti-cancer, and 
aging (2,13-16). The role of PQQ in cultured cells and 
animal models involves the activation and expression of 
cyclic adenosine monophosphate (cAMP) response element, 
mitochondria, peroxisome proliferator-activated receptor, 
and other nutritional factors (17,18); these co-activators and 
transcription factors can regulate the biological origin of 
mitochondria and cell energy metabolism (17-20). PQQ can 
enhance the production of NGF and play a role in nerve 
protection (15,21,22).

Spinal cord injury (SCI) is a disease that causes huge 
economic losses to patients and the health care system (23). 
Ninety percent of SCI patients are traumatic injuries caused 
by violence, exercise, traffic accidents, or falls, which usually 
results in loss of all sensory and/or motor functions or even 
paralysis (24). In SCI, the initial mechanical force is called 
primary injury (25-27). The secondary injury starts within 
minutes after the primary injury by mechanical force and 
will continue for weeks or months, making the injury spread 
from the lesion site to the surrounding crushed tissue (25). 
The secondary injury can occur inflammation, edema, 
neurotransmitter accumulation (excitotoxicity), necrotic 
cell death, and vascular injury (25,28); Axon death, glial scar 
evolution around the injury site, demyelination of surviving 
axons and apoptosis occur (23). Mouse SCI models have 
been widely used. Metz and his colleagues compared 

the function and anatomical structure of human chronic 
SCI and rats contusion injury (29), using high-resolution 
magnetic resonance imaging (MRI) evaluation in human 
and rat contusion injury, found that the neuroanatomical 
changes and electrophysiological function are related (29), 
which proves that the rats SCI model can be used as an 
experimental model to study the biological function of 
SCI. Basso Beattie Bresnahan Scoring Assay (BBB) scale 
is a scale related to histopathological changes after SCI. 
It distinguishes the recovery stage of SCI according to 
the injury time or the recovery degree injury, which is 21 
subscales (30-32). Therefore, the BBB score was used to 
evaluate the recovery of rats after SCI in this study.

Apoptosis is a kind of energy-dependent programmed 
death, which occurs within a few hours after primary 
SCI (25). In the rats SCI model, apoptosis begins at 4h 
after injury and reaches the peak at 7 d (33). The main 
pathological feature of SCI is neuronal apoptosis (34). 
The induction pathways of apoptosis can be divided into 
exogenous and endogenous pathways in terms of triggering 
mechanisms (35). The exogenous pathway is activated by 
the combination of factors associated with apoptosis (FAS), 
tumor necrosis factor receptor 1 (TNFR1), and other death 
receptors with specific ligands, Caspase3 is lysed to form 
phosphorylated Active-Caspase3, leading to the degradation 
of cells in the final stage of apoptosis (36). The endogenous 
pathway is induced by the balance between intracellular 
anti-apoptotic proteins, and pro-apoptotic proteins, and 
triggered by activation of Caspase9 and mitochondrial 
release of cytochrome C (37). Bcl-2 superfamily members 
play an important role in maintaining the integrity of 
mitochondria, which are mainly divided into two categories: 
Bak and Bax that promote apoptosis (38), and Bcl-2 and 
Bcl-xL that resist apoptosis. The endogenous pathway is 
triggered by the dimerization of pro-apoptotic Bak and Bax 
into the mitochondrial outer membrane. The apoptotic 
body activates Caspase9 and lyses Caspase3 to form Active-
Caspase3 for promoting the execution of apoptosis (39). 
Caspase3 is the intersection of exogenous and endogenous 
pathways that induce apoptosis, indicating that the study 
of Caspase3 changes in apoptosis after SCI is expected to 
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be used for the treatment of SCI (23). Therefore, in the 
present study, apoptosis-related proteins such asCaspase3, 
Active-Caspase3, Bcl-2, and Bax were used to clarify the 
effect of PQQ on apoptosis after SCI.

Autophagy plays an important role in intracellular 
homeostasis by assisting the conversion of organelles 
and proteins. Lysosomes in cells can degrade excess or 
harmful organelles and cytoplasmic proteins (40,41). 
Autophagy has neuroprotective effects (39,42), which can 
promote cell survival by removing damaged mitochondria 
and harmful proteins in the body (43). For a long time, 
microtubule-associated protein 1 light chain 3 (LC3) has 
been considered as a specific marker of autophagy. It can 
bind to the lipid phosphatidylethanolamine on the growing 
isolation membrane through the ubiquitin-binding system, 
and then interacts with the protein containing the LC3 
interaction domain to form an LC3 positive isolation 
membrane and seal the phage to form a double-membrane 
autophagosome (44-46). Lysosome-associated membrane 
protein 2 (LAMP2) has the stability of lysosomes and 
protects the lysosome membrane from hydrolysis (47,48). 
LAMP2 can mediate oxidative stress cell death in the 
central nervous system (CNS). It has been reported that the 
concentration of LAMP2 in cerebrospinal fluid of patients 
with Parkinson’s disease (PD) decreased (49), and increased 
in patients with Alzheimer’s disease (AD) (50,51). LC3-
mediated double-membrane autophagosomes can bind to 
lysosomes and produce autolysosomes, indicating that LC3 
and LAMP2 play a very important role in the CNS system. 
Interestingly, autophagy has two-way functions. Studies 
have shown that autophagy under physiological conditions 
is conducive to the cell protection of ischemic SCI (52), 
while other studies have shown that excessive autophagy 
can lead to cell death (53). Although the mechanism of 
autophagy after SCI is not clear, autophagy can eliminate 
excess and harmful proteins and cells in the body to 
maintain environmental homeostasis. Autophagy has been 
considered a beneficial mechanism after SCI (23).

Astrocytes are a kind of nerve cells derived from the 
ectoderm and neuroepithelium, which can maintain the 
CNS defense function and homeostasis of the internal 
environment (54). They provide growth and nutritional 
factors for neurons and remove glutamate, ions, and other 
neurotransmitters in the extracellular environment (55). 
They play an important role in the CNS, including the 
reconstruction of the blood-brain barrier and the transport 
and maintenance of immune cell activity (56). Astrocytes 
can activate different intracellular signaling pathways after 

SCI and participate in immune response (56). After SCI, 
activated glial cells produce several inflammatory factors, 
such as interleukin-1β (IL-1β), interleukin-6 (IL-6), and 
tumor necrosis factor (TNF-α). IL-1β can induce an 
inflammatory response and has a variety of characteristics 
for injury, infection, and immune response (57). IL-6 is an 
important cytokine in an inflammatory response and has the 
characteristics of promoting inflammation (58). TNF-α is 
a pro-inflammatory cytokine secreted by lymphoid T cells 
and plays an important role in various processes, such as 
inflammation and apoptosis (59,60).

PQQ plays an important role in anti-inflammation, 
apoptosis, and autophagy. Therefore, this study investigated 
the effects of PQQ on inflammation, apoptosis, and 
autophagy in the rats SCI model. Besides, the effects 
of PQQ on apoptosis and inflammation of astrocytes 
induced by lipopolysaccharide (LPS) in vitro explore the 
neuroprotective effect of PQQ. We present the following 
article in accordance with the ARRIVE reporting checklist 
(available at https://dx.doi.org/10.21037/atm-21-1951). 

Methods

Grouping of experimental animals

Adult male Sprague-Dawley rats (200–250 g) were 
obtained from the experimental Animal Center of Nantong 
University (Nantong, China). All animal care, breeding, 
and testing procedures were approved according to the 
Animal Care and Use Committee of Nantong University 
(license number: S20190920-003) and the Animal Care 
Ethics Committee of Jiangsu Province, in compliance with 
internationally recognized and institutional guidelines for 
the care and use of animals. A protocol was prepared before 
the study without registration.

All animals (n=60) were divided into four groups: Normal 
group, Sham group, SCI group, SCI + PQQ group (there 
were 15 rats in each group). At each stage of the experiment, 
the corresponding author Meijuan Yan was aware of the 
group allocation. The SCI (SCI) model was established 
at the 9th thoracic vertebra of rats using IH-0400 spinal 
cord striker (precision systems and instrumentation, PSI). 
The specific steps are as follows: Animals were given 
an intraperitoneal injection of compound anesthetics  
(0.2–0.3 mL/100g). After anesthesia, the back hair of rats 
was removed with a hair shaving device and disinfected 
with iodophor. Cut the skin above the thoracic vertebrae 
with a scalpel, separate the muscles above the spine and on 
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both sides with ophthalmic scissors, expose the 8th thoracic 
vertebrae to the 10th thoracic vertebrae, and open the 
lamina with bite forceps in the 9th thoracic vertebrae to 
expose the spinal cord without damaging the dura.IH-0400 
spinal cord striker with a 2.5 mm impact head was used to 
strike the spinal cord at the position of spinal cord exposure, 
and the striking intensity was 150 kDynes. Observe whether 
there is edema and congestion in the hitting area to 
preliminarily judge whether the establishment of the SCI 
model is successful, and then suture the wound with suture. 
During modeling and breeding, some rats may die, which 
were taken out and replaced with new rats for ensuring the 
same number of rats in each group. In the Sham group, only 
the lamina was opened without SCI. In the SCI + PQQ 
group, PQQ (5 mg/kg/d) was injected intraperitoneally  
2 h in rats after anesthesia recovery. Then the rats were sent 
to the animal center of Nantong University (18–26 ℃, free 
diet, weak light). After the establishment of the SCI model, 
we assisted the rats in urinating until they could urinate 
autonomously.

Basso Beattie Bresnahan Scoring assay

Basso, Beattie, and Bresnahan open field scale were used 
to evaluate the recovery of hind limb movement after SCI 
in rats. The score range was 0 (complete paralysis) to 21 
(normal movement). According to the BBB rating scale, rats 
in each group were observed and scored at different time 
points after SCI.

 Hematoxylin and Eosin (HE) staining and Nissl staining

The spinal cord tissues of each group were fixed with 4% 
paraformaldehyde at 4 ℃. The spinal cord tissue was placed 
at the bottom of a 50-mL centrifuge tube and dehydrated in 
10%, 20%, and 30% sucrose solution. Twelve micrometers 
frozen sections were made and detected. Experiments 
were performed according to Hematoxylin and Eosin 
Staining Kit (Beyotime Biotechnology) and Nissl staining 
instructions (Beyotime Biotechnology). 

Western Blot analysis

Cells and tissue samples were lysed with extraction 
buffer. The tissues were pulverized with an ultrasonic 
pulverizer, placed on ice for 30 min, and then centrifuged 
at 12,000 r/min for 15 min. The concentration of the 
protein was tested by using a Bicinchonininc acid (BCA)

analysis kit (Beyotime, Jiangsu, China). Protein extracts 
were heat-denatured at 95 ℃ for 5 min, electrophoretically 
separated on Sodium dodecyl sulfate-polyacrylamide 
gel electrophoresis (SDS-PAGE), and transferred to 
polyvinylidene fluoride (PVDF) membrane (Millipore, 
Bedford, MA, USA) for 120 min at 100 V. The membranes 
were blocked with 5% skim milk and then incubated at 4 ℃.

Overnight with Bcl-2 antibody [diluted 1: 500 in tris 
aminomethane-hydrochloric acid buffer saline (TBS); 
Santa Cruz, Cell Signaling Technology], Rabbit-anti-
Active-Caspase3 (1:1,000, ab49822, Abcam), Rabbit-anti-
Caspase3 (1:1,000, ab184787, Abcam), Rabbit-anti-Bax 
(1:1,000, ab12503, Abcam), Rabbit-anti-Bcl2 (1:1,000, 
NB100-56101, NOVUS), Rabbit-anti-LC3 (1:500, 
ab128025, Abcam), Rabbit-anti-LAMP2 (1:1,500, L0668, 
Sigma), Rabbit-anti-phospho-Akt (p-AKT) (1:1,000, 8200S, 
Cell Signaling), Rabbit-anti-AKT (1:1,000, C67E7, Cell 
Signaling) and Mouse-anti-β-actin (1:5,000, A1978, Sigma). 
The PVDF membrane was washed with tris aminomethane-
hydrochloric acid buffer saline tween (TBST) (TBS with 
0.1% Tween 20) for 10 min at least three times and followed 
by a reaction with the secondary antibody conjugated with 
goat anti-rabbit or goat anti-mouse horseradish peroxidase 
(HRP) dilution 1:1,000 (Santa Cruz) at room temperature 
for 2 h. After the membrane was washed, the HRP activity 
was detected using Beyo enhanced chemiluminescent (ECL) 
Star (Beyotime, Jiangsu, China). The image was scanned 
with a GS800 Densitometer Scanner (Bio-Rad), and the 
data were analyzed using PDQuest 7.2.0 software (Bio-Rad). 

Enzyme-linked immunosorbent assay (ELISA)

Spinal cord tissue samples were prepared or astrocytes were 
treated with or without 1 μg/mL LPS or/and 10 μg/mL 
for 3, 12, and 24 h. Cell supernatants were collected, and 
the tissues were lysed by radio immunoprecipitation assay 
(RIPA) lysis buffer (Absin). The lysates were centrifuged at 
12,000 r/min for 15 min. Levels of TNF-α, IL-6 or IL-1β 
were assessed using the ELISA kits (BD Biosciences, R&D 
Systems) according to the manufacturer’s directions. Results 
were read using a 96-well plate reader (Biotek Synergy2) at 
a 450 nm wavelength.

Tissue immunohistochemistry

The spinal cord tissues of each group were fixed with 4% 
paraformaldehyde at 4 ℃. The spinal cord tissue was placed 
at the bottom of 50 mL centrifuge tube and dehydrated in 
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10%, 20%, and 30% sucrose solution. Twelve micrometers 
frozen sections were made and detected. All sections were 
blocked with blocking solution [10% goat serum, 3% 
bovine serum albumin (BSA), and 0.1% Triton X-100] for  
1 h at 37 ℃ and then incubated overnight at 4 ℃ with 
Rabbit-anti-Active-Caspase3 (1:500, ab49822, Abcam), 
Rabbit-anti-Caspase3 (1:500, ab184787, Abcam), Rabbit-
anti-LC3 (1:100, ab128025, Abcam), Rabbit-anti-LAMP2 
(1:400, L0668, Sigma), Rabbit-anti-Bcl-2 (1:500, NB100-
56101, NOVUS) and Rabbit-anti-Bax (1:500, ab12503, 
Abcam); 0.01 M phosphate buffer saline (PBS) was used 
to wash them for 10 min at 3 times and followed by 
incubating with a mixture of FITC- or Cy3-conjugated 
secondary antibodies for 2 h at room temperature and then 
being washed again with PBS for 10 min at 3 times. The 
stained sections were examined with a Leica fluorescence 
microscope (Leica DM 5000B, Germany). 

Primary astrocytes culture

Pure astrocytes culture was prepared from 1-day-old 
Sprague-Dawley rats. The spinal cord was exposed after 
opening the spine, and the surface membrane of the spinal 
cord was removed. Then spinal cord was cut in tissue 
dissection solution (99% PBS, 1% penicillin/streptomycin) 
and centrifuged at 1,200 r/min for 5 min. Enzymatic 
hydrolysis with 0.25% trypsin (Gibco-BRL) at 37 ℃ for  
15 min. After the cells were incubated at 37 ℃ and 5% CO2 
for 72 h, the medium was replaced to remove cell debris and 
non-adhesion cells.

Cell Counting Kit-8 (CCK-8) test

Cells were seeded onto a 96-well plate and then treated 
with or without 1 μg/mL LPS for 12 h. Subsequently, cells 
were incubated in a humidified atmosphere with 5% CO2 
at 37 ℃ for 2 h after adding CCK-8 test solution (Dojindo, 
Japan), and the cell proliferation ability was detected by 
using a microplate reader at 450 nm.

Statistical analysis

All data were expressed as mean ± standard deviation (x ± s), 
using one-way analysis of variance (ANOVA, comparison 
between multiple groups) and Tukey multiple comparison 
processing (comparison between the two groups), With 
a P value <0.05 indicating statistical significance. All 
experiments in this subject were repeated at least three times 

under the same conditions. Drawing software and statistical 
analysis software are Image J, Adobe Photoshop 6.0, and 
GraphPad Prism 8.0. All experimental data of this study can 
be obtained from the Key Laboratory of Neuroregeneration 
and the Archives of Nantong University.

Results

Effect of PQQ on pathological changes after SCI in rats

In order to understand the pathological changes in 
the spinal cord after SCI in rats, four days after the 
establishment of the SCI model, The SCI + PQQ group 
was continuously administered for four days after SCI. The 
spinal cord tissue 0.5 cm above and below the injury center 
was taken for HE staining. After the establishment of the 
SCI model, compared with the Normal group and the Sham 
group, the cell infiltration was increased in the SCI group, 
and the nerve fibers and cells were disordered (Figure 1A). 

To understand whether neurons changed in the process 
of SCI, Nissl staining was used to observe the changes of 
cell morphology in frozen sections. In the Normal group, 
the cell body and nucleus of neurons were observed clearly, 
the cell body was hypertrophy and the cytoplasm staining 
was obvious (m in Figure 1B). The morphology of neurons 
in the Sham group was changed, the cell body was reduced 
and the cytoplasm staining was weakened (n in Figure 1B).  
After SCI, the number of cells increased and neurons 
decreased significantly (o in Figure 1B). In the SCI + PQQ 
group, the number of neurons increased, the cytoplasm 
staining increased, and the cell morphology was sparsely 
visible (p in Figure 1B).

Effect of PQQ on BBB score after SCI in rats

To investigate whether PQQ can promote the recovery of 
motor function after SCI in rats, a rat model of SCI was 
established and randomly divided into Normal group, Sham 
group, SCI group, and SCI + PQQ group (continuous 
administration of 5 mg/kg/d by intraperitoneal injection 
2 h after SCI). The total cycle of the model was 28 d. The 
BBB scores of rats in each group were detected at 4, 7, 14, 
21, and 28 d. Compared with the Normal group and Sham 
group, the hind limb motor function of the SCI group and 
the SCI + PQQ group at each time point was significantly 
decreased (P<0.05); Although the scores of the SCI + PQQ 
group at 0, 4, 7, 14, 21, and 28 d after SCI were significantly 
higher than SCI group, they were still lower than Normal 
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Figure 1 Pathological changes of spinal cord and BBB score in rats after SCI. (A) HE staining in spinal cord; (a,e,i): Normal group; (b,f,j): Sham group; 
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group and Sham group, and the difference was statistically 
significant (P<0.05, Figure 1C). 

Effect of PQQ on Bcl-2, Bax after SCI in rats

Bcl-2, Bax are proteins related to apoptosis. The expression 
changes of Bcl-2, Bax, and Bcl-2 / Bax ratio after SCI in 
each group were detected by Western Blot. After SCI, 
compared with the Normal group and Sham group, the 
expression level of Bax in the SCI group was significantly 
increased (P<0.05), the expression level of Bcl-2 was 
significantly decreased (P<0.05), and the ratio of Bcl-2/Bax 
was significantly decreased (P<0.05). In the SCI + PQQ 
group, the protein expression level of Bax was decreased 
(P<0.05), the protein expression level of Bcl-2 was increased 
(P<0.05), and the ratio of Bcl-2/Bax was significantly 
increased (P<0.05, Figure 2A-2D). 

Western Blot results showed that the expression level 
of anti-apoptotic protein Bcl-2 changed. To observe 
the localization of Bcl-2 in neurons after SCI, the 
localization of Bcl-2 in neurons was detected by tissue 
immunofluorescence. In the Sham group, the positive signals 
of Bcl-2 and NeuN were evenly distributed and there was 
a large number of co-localization (Figure 2E). Compared 
with the Sham group, the positive signals of Bcl-2  
and NeuN in the SCI group were weakened, and there was 
few co-location (Figure 2F). Compared with the SCI group, 
the positive signal of NeuN in the SCI + PQQ group was 
significantly increased, and there was a large number of co-
localization between Bcl-2 and NeuN (Figure 2G). 

Effect of PQQ on Active-Caspase3/Caspase3 protein 
expression after SCI in rats

Apoptosis is a cascade reaction of proteases, apoptosis signal 
can induce the activation of apoptosis marker Caspase3 and 
degrade intracellular proteins to death. Caspase3 can be 
used as a downstream regulatory mechanism of Bcl-2 and 
Bax. Bcl-2 can be used as a direct substrate of Caspase3, 
cleavage into pro-apoptotic fragments. In this study, the 
expression of Active-Caspase3 after SCI was detected by 
Western Blot. The expression of Active-Caspase3 in the 
SCI group was significantly higher than that in the Normal 
group and Sham group (P<0.05). After PQQ treatment, the 
expression level was higher than that in the Normal group 
and Sham group. However, compared with the SCI group, 
the expression level was decreased obviously, the difference 
was statistically significant (P<0.05, Figure 3A,3B). 

Expression of Active-Caspase3 and Caspase3 in neurons 
after SCI in rats treated by PQQ

To further observe the localization of Active-Caspase3 
and Caspase3 in neurons, double immunofluorescence 
staining was used. Active-Caspase3 is mainly located in the 
cytoplasm of neurons in the Normal group (Figure 4A), 
expressed in the nucleus and cytoplasm of neurons in the 
Sham group (Figure 4B), mainly localized in the nucleus in 
the SCI group (Figure 4C), and expressed in the nucleus and 
cytoplasm of neurons in the SCI + PQQ group (Figure 4D). 

Caspase3 was mainly located in the cytoplasm of neurons 
in the Normal group and Sham group (Figure 4E,4F), 
distributed in the nucleus of the SCI group (Figure 4G), and 
expressed in the nucleus and cytoplasm of neurons in the 
SCI + PQQ group (Figure 4H). 

Expression of Active-Caspase3 and Caspase3 in GFAP 
positive astrocytes after SCI in rats treated by PQQ

It has been reported that astrocytes after SCI may undergo 
apoptosis (33,61). To further observe the localization of 
Active-Caspase3 and Caspase3 in glial fibrillary acidic 
protein (GFAP) positive astrocytes, the frozen sections 
of the spinal cord were stained by immunofluorescence. 
Active-Caspase3 was mainly located in the cytoplasm 
of astrocytes in the Normal group (Figure 5A) and was 
expressed in the nucleus and cytoplasm of astrocytes in the 
Sham group (Figure 5B). In the SCI group, Active-Caspase3 
was mainly located in the nucleus (Figure 5C). After PQQ 
treatment, Active-Caspase3 was expressed in the nucleus 
and cytoplasm of astrocytes (Figure 5D). 

Immunofluorescence double-labeling results showed that 
Caspase3 was mainly localized in the cytoplasm of astrocytes 
in the Normal group and Sham group (Figure 5E,5F), 
and was mainly localized in the nucleus in the SCI group  
(Figure 5G). After PQQ treatment, Active-Caspase3 was 
expressed in the nucleus and cytoplasm of astrocytes (Figure 5H). 

Effect of PQQ on LC3 after SCI in rats

Autophagy has two-way functions of inhibiting apoptosis and 
activating apoptosis, and LC3a/b is a marker of autophagy. 
Therefore, in this study, Western Blot was used to detect the 
expression of LC3a/b in spinal cord tissue of rats after SCI. 
Compared with the Normal group and Sham group, the 
expression level of LC3 in the SCI group was significantly 
increased, and the difference was statistically significant 
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Figure 2 Expression change of Bcl-2, Bax and their co-localization with neurons and astrocytes after SCI. (A) Western Blot detect the 
expression Bcl-2 and Bax; (B) Statistical diagram of Bax/β-actin; (C) Statistical diagram of Bcl-2/β-actin; (D) Statistical diagram of Bcl-2/Bax; 
*, P<0.05 vs. Sham; **, P<0.01 vs. Sham; #, P<0.05 vs. SCI; (E-G) Double immunofluorescence of Bcl-2 and neurons in spinal cord; (E) Sham 
group; (F) SCI group; (G) SCI + PQQ group. Bcl-2 (Red); NeuN (Green); Hoechst (Blue). SCI, spinal cord injury; PQQ, pyrrroloquinoline 
quinone.
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Figure 3 Expression of Active-Caspase3/Caspase3 after SCI by Western Blot. (A) Western Blot detect the expression of Active-Caspase3 
protein; (B) the statistical figure of Active-Caspase3/Caspase3. ***, P<0.001 vs. Sham; ##, P<0.05 vs. SCI. SCI, spinal cord injury; PQQ, 
pyrrroloquinoline quinone.
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Figure 4 Double immunofluorescence of Active-Caspase3 and Caspase3 with NeuNin spinal cord Expression of Active-Caspase3 in 
Neurons of Rats after SCI; (A) Normal group; (B) Sham group; (C) SCI group; (D) SCI + PQQ group. Active-Caspase3 (Green); NeuN 
(Red); Hoechst (Blue); bar =200 μm; Bar =50 μm. Expression of Caspase3 in Neurons of Rats after SCI; (E) Normal group; (F) Sham group; 
(G) SCI group; (H) SCI + PQQ group. Caspase3 (Green); NeuN (Red); Hoechst (Blue); bar =200 μm; Bar =50 μm. SCI, spinal cord injury; 
PQQ, pyrrroloquinoline quinone.

(P<0.05); Compared with the SCI group, the expression level 
of the SCI + PQQ group was increased, but the difference 
was not statistically significant (P>0.05, Figure 6A,6B). 

Western Blot results showed that the expression level of 
autophagy marker LC3a/b changed. In order to observe the 
localization of LC3 in astrocytes after SCI, the expression 
of LC3 in astrocytes was detected by immunofluorescence 

double labeling. LC3 was expressed in the cytoplasm and 
nucleus of GFAP positive cells; Compared with the Normal 
group (Figure 6C) and the Sham group (Figure 6D), the co-
localization of LC3 and GFAP positive cells in the SCI 
group was decreased (Figure 6E); compared with SCI group, 
the co-localization of LC3 and GFAP positive cells was 
increased in the SCI + PQQ group (Figure 6F). 
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Figure 5 Double immunofluorescence of Active-Caspase3 and Caspase3 with GFAP in spinal cord. Expression of Active-Caspase3 in GFAP 
positive astrocytes of Rats after SCI; (A) Normal group; (B) Sham group; (C) SCI group; (D) SCI + PQQ group. Active-Caspase3 (Red); 
GFAP (Green); Hoechst (Blue); bar =200 μm; Bar =50 μm. Expression of Caspase3 in Neurons of Rats after SCI; (E) Normal group; (F) 
Sham group; (G) SCI group; (H) SCI + PQQ group. Caspase3 (Red); GFAP (Green); Hoechst (Blue); bar =200 μm; Bar =50 μm. SCI, spinal 
cord injury; PQQ, pyrrroloquinoline quinone; GFAP, glial fibrillary acidic protein.

Effect of PQQ on LAMP2 and p-AKT protein expression 
after SCI in rats

LAMP2 i s  a  l y sosomal  marker  in terac t ing  wi th 
autophagosomes. Since the expression level of autophagy 
marker LC3 changes during SCI, the expression level 
of LAMP2 in SCI tissues was detected by Western Blot. 
Compared with the Normal group and Sham group, the 
protein expression level of LAMP2 was up-regulated 
after SCI (P<0.05). After PQQ treatment, although the 
expression level of LAMP2 was higher than that in the 
Normal group and Sham group, the expression level of 
LAMP2 was lower than that in the SCI group, and the 
difference was statistically significant (P<0.05, Figure 7A,B). 

Phosphatidylinositol 3 kinase (PI3K)-AKT is an 
important anti-apoptotic signaling pathway in vivo. When 
apoptosis occurs, P13K can activate AKT, phosphorylate it, 
indirectly or directly help cells survive. Western Blot was 
used to detect the level of phosphorylated AKT (p-AKT). 
The results showed that compared with the Normal group 

and Sham group, the expression level of p-AKT was 
significantly increased after SCI (P<0.05). The expression 
level of the SCI + PQQ group was higher than that in the 
Normal group and Sham group, but the expression level of 
p-AKT was significantly lower than that in the SCI group, 
and the difference was statistically significant (P<0.05, 
Figure 7A,C). 

Effect of PQQ on primary astrocytes treated with LPS

PQQ has a corresponding effect on an inflammatory 
response, apoptosis, and autophagy SCI model of rats. 
Some studies have shown that astrocytes will also undergo 
apoptosis after SCI (33,62). In order to observe whether 
PQQ affects these processes in primary cultured astrocytes, 
the purity of primary cultured astrocytes was identified. 
The results showed that the purity of astrocytes was above 
95% (Figure 8A-C), which could be used for subsequent 
experiments.

In order to select the appropriate concentration of 
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Figure 6 Expression and localization of LC3 in spinal cord. (A) Western Blot detect the LC3a/b expression; (B) Statistical diagram of LC3a/
b; *, P<0.05 vs. Sham; ns, >0.05 vs. SCI. (C,D,E,F) Double immunofluorescence of LC3 with GFAP. (C) Normal group; (D) Sham group; 
(E) SCI group; (F) SCI + PQQ group. LC3 (Red); GFAP (Green); Hoechst (Blue); bar =200 μm; bar =20 μm. LC3, microtubule associated 
protein 1 light chain 3; SCI, spinal cord injury; PQQ, pyrrroloquinoline quinone; GFAP, glial fibrillary acidic protein.
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**, P<0.01 vs. Sham; ##, P<0.01 vs. SCI. LAMP2, lysosomal associated membrane protein 2; SCI, spinal cord injury; PQQ, pyrrroloquinoline 
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Figure 8 Effect of PQQ on LPS-induced astrocytes. Immunofluorescence staining was used to identify the purity of primary astrocytes, 
GFAP (Green, A); Hoechst (Blue, B); Merge of A and B (C), bar =20 μm. (D) Detection of primary astrocyte activity by CCK-8; *, 
P<0.05 vs. Control; **, P<0.01 vs. Control; (E) Western Blot was used to detect the protein expression changes of Active-Caspase3 
inprimary astrocytes; (F) Statistical diagram of Active-Caspase3; *, P<0.05 vs. LPS 12 h; #, P<0.05 vs. LPS 24 h; (G-I) The expression of 
pro-inflammatory cytokines IL-1-β, IL-6 and TNF-α in astrocytes were detected by ELISA; *, P<0.05 vs. LPS 12 h; #, P<0.05 vs. LPS  
24 h. Control: Normal group without any treatment; LPS 3 h: astrocytes were treated with 1 μg/mL LPS for 3 h; LPS 12 h: astrocytes 
were treated with 1 μg/mL LPS for 12 h; LPS 24 h: astrocytes were treated with 1 μg/mL LPS for 12 h; PQQ 3 h: astrocytes were treated 
with 1 μg/mL LPS + 10 μg/mL PQQ for 3 h. PQQ 12 h: astrocytes were treated with 1 μg/mL LPS + 10 μg/mL PQQ for 12 h; PQQ  
24 h: astrocytes were treated with 1 μg/mL LPS + 10 μg/mL PQQ for 24 h. PQQ, pyrrroloquinoline quinone; LPS, lipopolysaccharide; 
ELISA, enzyme-linked immunosorbent assay.
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PQQ, CCK-8 was used to detect the effect of different 
concentrations of PQQ (0, 10, 20, 50, 100, 200 μg/mL) 
on the viability of astrocytes after 24 h. The normal group 
without any treatment was set as the control group. The 
results showed that when the concentration of PQQ was 
greater than or equal to 50 μg/mL, the viability of astrocytes 
was inhibited, and the difference was statistically significant 
(P<0.05, Figure 8D). It showed that when the concentration 
of PQQ was too high, it would have cytotoxicity. Therefore, 
10 μg/mL PQQ was selected for subsequent experiments.

It has been reported that LPS can induce cell apoptosis. 
In this study, 1 μg/mL LPS was used to treat astrocytes 
to obtain the apoptosis model of astrocytes. The protein 
expression level of Active-Caspase3 in astrocytes of each 
group was detected by Western Blot. The results showed 
that there was no significant difference in the protein 
expression of Active-Caspase3 between the PQQ treatment 
group and the LPS treatment group at 3 h (P>0.05). At  
12 h, the protein expression of Active-Caspase3 in the PQQ 
treatment group was not significantly different from that in 
the LPS treatment group (P>0.05). At 24 h, compared with 
the LPS treatment group, the expression of Active-Caspase3 
in PQQ the treatment group decreased, the difference was 
statistically significant (P<0.05, Figure 8E,8F). 

I t  has  been reported that  LPS can induce the 
inflammatory model of cells. In this study, astrocytes were 
treated with 1μg/mL LPS to obtain the inflammatory model 
of astrocytes. The following experiments were carried out 
on this model. The expression levels of pro-inflammatory 
cytokines IL-1β, IL-6, and TNF-α in astrocytes were 
detected by an ELISA kit. The results showed that there 
was no significant difference in IL-1β, IL-6, and TNF-α 
between the PQQ treatment group and the LPS treatment 
group at 3 h (P>0.05). Compared with the LPS treatment 
group for 3 h, the expression levels of IL-1β, IL-6, and 
TNF-α in the PQQ treatment group were significantly 
decreased (P<0.05). At 24 h, compared with the LPS 
treatment group, the expression level of IL-1β in the PQQ 
treatment group was decreased, and the differences were 
statistically significant (P<0.05). There was no significant 
difference in the expression of IL-6 and TNF-α (P>0.05, 
Figure 8G-8I). 

Discussion

PQQ is a small molecule aromatic tricyclic o-quinone 
compound that is ubiquitous in organisms. It is a new redox 
coenzyme and was first discovered as a dehydrogenase 

cofactor in 1964 (62). Although PQQ is widespread, there 
is still no evidence to prove that it can be synthesized by 
organisms themselves, and external intake seems to be the 
only source of mammals at present. The lack of PQQ will 
cause immune disorders, growth and reproduction disorders 
in mammals (11). The role of PQQ in cultured cells and 
animal models involves the activation and expression of 
nutritional factors, such as cAMP response elements, 
mitochondria, and peroxisome proliferator-activated 
receptors (17,18). These co-activators and transcription 
factors can regulate the biological origin of mitochondria 
and cell energy metabolism (17-20).

SCI is a life-threatening degenerative disease, which 
usually causes sensory abnormalities, motor dysfunction, 
and even paralysis (63,64). The results of this study showed 
that the BBB score decreased after SCI in rats, and the 
score increased significantly after PQQ treatment, which 
was consistent with the results of PQQ improving the 
complete motor paralysis function of rats' hind limbs after 
spinal cord hemisection (65), suggesting that PQQ has the 
effect of protecting the motor function of rats' hind limbs 
after SCI. However, the BBB score after PQQ treatment 
was still lower than Normal group and Sham group at each 
time point, and the differences were statistically significant. 
These results suggest that PQQ can improve the motor 
dysfunction of hind limbs after SCI at the time point of this 
experimental study, but it cannot completely cure SCI.

After the initial mechanical injury of the spinal cord, 
macrophages and monocytes were recruited in the injured 
site (64), neurons and glial cells changed destructively, 
and neurons around the injured site were lost (66,67). 
In this study, the results of HE staining showed that the 
pathological changes of cell aggregation, congestion, and 
disorder of cell arrangement appeared in the injured site 
after SCI, which was significantly improved after PQQ 
treatment. The results of Nissl staining showed that the cell 
body and nucleus of neurons could be observed clearly in 
the Normal group, and the cell body of neurons was large 
and the staining was clear. In the Sham group, the cell body 
of neurons was slightly decreased and the staining became 
shallow, which might be due to the pathological changes of 
spinal cord tissue caused by stimulation such as stripping the 
spinal canal and exposing the spinal cord during the Sham 
group. After SCI, the number of neurons decreased, and the 
cell morphology of neurons could not be observed clearly. 
After PQQ treatment, the number of neurons increased, 
and the cell morphology of neurons was rare. These 
results indicated that PQQ improved cell aggregation and 
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decreased the number of neurons.
Mechanical injury of the spinal cord causes strong 

inflammatory immune response, which will further lead to 
secondary injury (68). Some studies suggest that melatonin 
can exert its neuroprotective effect by inhibiting the 
inflammatory response after SCI (69). In this study, the 
expression levels of pro-inflammatory cytokines IL-1β, 
IL-6, and TNF-α were significantly increased after SCI, 
and the expression level was significantly decreased after 
PQQ treatment, suggesting that PQQ and melatonin have 
similar inhibitory effects on the inflammatory response 
in SCI. Studies have shown that PQQ can down-regulate 
the overexpression of TNF-α, IL-1β, IL-6, monocyte 
chemoattractant protein-1 (MCP-1), and macrophage 
inflammatory protein-1 alpha (MIP-1α) mRNA in LPS-
induced microglia (70). In CNS, besides microglia, 
astrocytes also play an important role as neuroimmune 
cells. Astrocytes are the largest number of cells in the CNS, 
which plays a key role in maintaining the blood-brain 
barrier, regulating local blood flow, providing nutrition for 
neurons, regulating synapses and the inflammatory response 
(71-73). However, the role of PQQ in the inflammatory 
response of astrocytes has not been reported. In this study, 
astrocytes were induced by LPS and treated with PQQ 
to observe the effect of astrocytes on the inflammatory 
response. The results showed that PQQ treatment could 
reduce the expression of pro-inflammatory cytokines  
IL-1β, IL-6, and TNF-α in LPS-induced astrocytes, which 
is similar to the role of PQQ in microglial inflammation (70), 
indicating that PQQ treatment can inhibit LPS-induced 
inflammation of astrocytes. In conclusion, PQQ inhibits 
the inflammatory response after SCI by inhibiting the 
inflammatory response of microglia and astrocytes.

It has been reported that apoptosis occurs immediately 
after SCI in rats and reaches its peak on the 7th day in 
the literature (33). In CNS, apoptosis is closely related 
to autophagy. Autophagy plays a neuroprotective role 
(40,42). It can promote cell survival by removing damaged 
mitochondria and harmful proteins in the body (43), and 
apoptosis is more likely to occur after autophagy imbalance 
(74,75). The balance between autophagy and apoptosis 
plays a crucial role in maintaining cell life, and members of 
the Bcl-2 family also play a certain role in maintaining the 
balance between autophagy and apoptosis (76). Therefore, 
the effects of SCI in rats and LPS-induced astrocytes on 
apoptosis and autophagy were considered. Studies have 
shown that brain injury can promote cell apoptosis, and 
PQQ can alleviate cell apoptosis, and it also has effects on 

the autophagy-related marker LC3 and lysosomal marker 
LAMP2 (77). In this study, the protein expression of 
apoptosis-related protein Bcl-2/Bax decreased after SCI, 
and the protein expression of its downstream apoptosis 
marker Active-Caspase3 increased. PQQ treatment could 
up-regulate the expression of Bcl-2/Bax and down-regulate 
the expression of Active-Caspase3, suggesting that PQQ 
can inhibit the apoptosis of the injured spinal cord. So 
the question “are neurons involved in PQQ inhibiting 
apoptosis after SCI?” was pointed out. In the present study, 
immunofluorescence double-labeling was used to observe 
the localization of Bcl-2, Active-Caspase3, Caspase3, and 
neuron marker NeuN. The results showed that the positive 
signals of Bcl-2 and NeuN were significantly decreased after 
SCI, and the positive signals of NeuN were significantly 
increased after PQQ treatment, and a large number of 
Bcl-2 and NeuN positive cells were co-located. After SCI, 
the localization of Active-Caspase3, Caspase3, and NeuN 
positive cells was transferred from cytoplasm to nucleus, 
which was reversed by PQQ treatment, suggesting that 
neurons were involved in the process of PQQ inhibiting 
apoptosis after SCI. Astrocytes have also been reported to 
undergo apoptosis during SCI (33,61). Therefore, this study 
was further observed the co-localization of Active-Caspase3 
and Caspase3 with astrocyte marker GFAP, which is similar 
to the localization of Active-Caspase3 and Caspase3 with 
neurons, suggesting that besides neurons, astrocytes also 
play a role in PQQ inhibiting apoptosis after SCI. Based on 
these results, this study used Western Blot to observe the 
changes in the protein expression level of Active-Caspase3 
in the LPS-induced astrocytes. PQQ treatment can down-
regulate the protein expression of Active-Caspase3 in the 
LPS-induced astrocytes apoptosis model, and play its role in 
inhibiting apoptosis in the LPS-induced astrocytes apoptosis 
model. These results suggest that neurons and astrocytes 
are involved in the process of PQQ affecting apoptosis. The 
autophagy-lysosomal pathway plays an important role in 
clearing aggregated proteins and preventing cellular stress 
and neurodegenerative diseases (78). 

Due to the close relationship between autophagy and 
apoptosis, the protein expression levels of LC3 and LAMP2 
were observed in this study. The results showed that the 
expression level of LC3 increased after SCI and continued 
to increase after PQQ treatment, but the difference was not 
statistically significant. LAMP2 expression increased after 
SCI and was down-regulated by PQQ treatment. in order 
to further observe the localization of LC3 in astrocytes, 
immunofluorescence double labeling results showed 
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that LC3 and GFAP positive cells were localized in the 
cytoplasm and nucleus, and the co-localization decreased in 
the SCI group, it suggested that the increase of autophagy 
level after PQQ induced SCI was not caused by astrocytes.

PI3K/AKT s igna l ing  pathway  i s  regula ted  by 
extracellular cytokines and growth factors (79), involved 
in a variety of physiological processes such as cell 
survival, migration, proliferation, differentiation, and 
metabolism (80). After activation, PI3K phosphorylates 
phosphatidylinositol (PIP) and generates PIP 3, thereby 
activating various downstream signaling pathways (79). 
Phosphorylation of PI3K/Akt inhibited the activity of Bax 
protein in chondrocytes and increased the expression of 
Bcl-2, thereby inhibiting apoptosis (81). Apoptosis and 
autophagy have an intricate relationship. So does PI3K/ Akt 
signaling pathway participate in the regulation of apoptosis 
and autophagy after SCI by PQQ? This topic has proved 
that PQQ can inhibit apoptosis after SCI by maintaining 
the balance of Bcl-2 and Bax, and then detect the expression 
of phosphorylated AKT after SCI. The results show that 
the protein expression level of phosphorylated AKT is 
up-regulated after SCI, and the protein expression level 
of phosphorylated AKT is down-regulated after PQQ 
intervention, suggesting that PI3K /AKT signaling pathway 
may play a role in the regulation of PQQ in SCI.

In conclusion, PQQ realizes its protective effect in SCI 
by improving the motor function of hind limbs, reducing the 
loss of neurons, and participating in the process of apoptosis 
and autophagy. The results at the cellular level and overall 
level suggested that astrocytes may also be involved in 
inflammation, apoptosis, and autophagy after SCI.
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