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Abstract

The spread of antibiotic resistance is always a consequence of evolutionary processes. The

consideration of evolution is thus key to the development of sustainable therapy. Two main

factors were recently proposed to enhance long-term effectiveness of drug combinations:

evolved collateral sensitivities between the drugs in a pair and antagonistic drug interac-

tions. We systematically assessed these factors by performing over 1,600 evolution experi-

ments with the opportunistic nosocomial pathogen Pseudomonas aeruginosa in single- and

multidrug environments. Based on the growth dynamics during these experiments, we

reconstructed antibiotic combination efficacy (ACE) networks as a new tool for characteriz-

ing the ability of the tested drug combinations to constrain bacterial survival as well as drug

resistance evolution across time. Subsequent statistical analysis of the influence of the fac-

tors on ACE network characteristics revealed that (i) synergistic drug interactions increased

the likelihood of bacterial population extinction—irrespective of whether combinations were

compared at the same level of inhibition or not—while (ii) the potential for evolved collateral

sensitivities between 2 drugs accounted for a reduction in bacterial adaptation rates. In sum,

our systematic experimental analysis allowed us to pinpoint 2 complementary determinants

of combination efficacy and to identify specific drug pairs with high ACE scores. Our findings

can guide attempts to further improve the sustainability of antibiotic therapy by simulta-

neously reducing pathogen load and resistance evolution.

Author summary

Bacterial infections are commonly treated with a combination of antibiotic drugs. How-

ever, not all combinations are equally effective, and success is variable. One reason for this

variation is that we usually do not know to what extent bacteria are able to adapt to differ-

ent types of drug combinations. If they can and do adapt, then antibiotic resistance can

spread, potentially aggravating the current antibiotic crisis. In the current study, we there-

fore asked whether combination therapy can be improved by considering the evolutionary

potential of the bacteria. To address this question, we systematically assessed the efficacy

of antibiotic combinations using controlled laboratory evolution experiments with the
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opportunistic human pathogen Pseudomonas aeruginosa as a model. We found that 2 fac-

tors consistently increase treatment efficacy. First, synergism between the combined

drugs (i.e., the 2 drugs enhance each other’s effects) increases the rate of bacterial popula-

tion extinction and thus clearance rate. Second, evolved trade-offs such as collateral sensi-

tivity (i.e., evolution of resistance to one drug increases susceptibility to the other drug)

limit the ability of bacteria to adapt to the antibiotic pair. Our findings may help to opti-

mize combination therapy by focusing on drug pairs that interact synergistically and also

lead to evolved collateral sensitivities.

Introduction

The rise of antibiotic resistance is reducing the arsenal of available drugs to treat bacterial

infections [1–3]. Some infections are already nearly untreatable because the infecting patho-

gens are resistant to virtually all available drugs [4,5]. The identification and establishment of

new antibiotics has become a major focus of national and international health programs, and

substantial investments have been directed towards drug discovery, for example, by the United

States and the European Union [6–10]. Yet even if these attempts succeeded and dozens of

novel compounds became available tomorrow, the antibiotic crisis would not subside. The

evolution of resistance is inevitable, and new drugs will be incapacitated within short time

periods [2,3]. So how can we hamper this evolutionary march towards resistance? To some

extent, we cannot escape the open-ended arms race between compound discovery and resis-

tance evolution. Nevertheless, we may still use evolutionary thinking to enhance treatment

efficacy and sustainability [11]. Combination therapy, the simultaneous deployment of 2 or

more drugs, is commonly proposed [12]. Indeed, WHO has endorsed it as the first-line strat-

egy to treat diseases such as tuberculosis, malaria, or HIV [13–15]. However, the nature of the

drug combination is crucial for treatment success because initially effective combinations may

maximize selection for antibiotic resistance [16,17].

The approach of experimental evolution has proven highly informative on exploring the

dynamics that shape the emergence and spread of drug resistance [11,18]. Using this approach,

drug pairs were previously suggested to be most effective at limiting bacterial adaptation if (i)

antimicrobials display collateral sensitivity, such that bacteria that evolve resistance to one of

the compounds immediately suffer exacerbated suppression by the other [19–22], or (ii) anti-

biotics interact antagonistically, such that they inhibit each other’s effect [16,23,24]. A mathe-

matical model indicated that the latter empirical findings may not be generally applicable but

depend on the exact conditions during evolution [25]. In particular, synergistic drug pairs gen-

erally favor bacterial clearance but only sometimes low adaptation rates. The strong reduction

in population size by synergistic drugs decreases the likelihood of resistance mutations emerg-

ing and increases the chances of population extinction. However, these effects only correlate

with low adaptation rates when resource competition is weak. When resource competition is

high, resistance mutations have a strong selective advantage and may spread rapidly through

the population due to competitive release. Under these conditions, antagonistic rather than

synergistic drugs are most efficient in reducing adaptation rates [25]. To date, few experimen-

tal data are available to explore these particular model predictions—and, moreover, test the

role of evolutionary trade-offs, such as the evolved collateral sensitivities—on bacterial adapta-

tion in multidrug environments.

In the current study, we performed a systematic analysis using an experimental evolution

approach and the gram-negative opportunistic human pathogen Pseudomonas aeruginosa as a
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model. We evaluated 38 drug pairs for their ability to effectively constrain bacterial adaptation

in multidrug environments and calculated 2 antibiotic combination efficacy (ACE) networks

based on either the rate of adaptation or bacterial clearance (i.e., frequency of population

extinction). These measures provide complementary information on treatment efficacy. First,

population extinction represents the ultimate aim of any antibiotic intervention; its frequency

is a highly informative indicator of treatment efficacy under our specific experimental condi-

tions, in which antibiotics are always applied at sublethal doses. Second, for the surviving pop-

ulations, we further evaluated increases in growth rates as a measure of the bacteria’s adaptive

potential in antibiotic environments [16]. We subsequently employed complementary statisti-

cal approaches, including an integrative Bayesian network (BN) analysis, to disentangle the rel-

ative impacts of drug interaction type and evolved collateral effects between individual drugs

on the characteristics of the inferred ACE networks. For selected drug pairs, we additionally

explored to what extent adaptation to the combinations is driven by the single-component

drugs or by initial drug inhibitory levels.

Results

Most tested antibiotics interact synergistically in P. aeruginosa
Antibiotic interactions are defined as synergistic, additive, or antagonistic when the drug pair

has a stronger, equivalent, or weaker inhibitory effect on bacterial growth than the correspond-

ing single drugs (i.e., monotherapies), respectively. Here, we determined this interaction quan-

titatively using an estimator denoted α [17]. This estimator is obtained from a quadratic

regression applied to growth measurements as a function of different drug proportions of 2

drugs. The concentration of each of the single drugs is chosen to fall onto the line of equal

dose, in our case defined to inhibit 75% of growth (i.e., inhibitory concentration [IC] 75; Fig

1A, S1 Fig and Table 1). The estimator α describes the shape of the resulting response in

growth whereby positive values indicate synergism and negative values antagonism (Fig 1B).

This approach has two advantages: first, it provides a statistical framework for testing the sig-

nificance of positive or negative α; and second, its inference is less laborious than alternative

procedures, thus facilitating characterization of a larger number of drug interactions. Even

though the approach was carefully evaluated previously [17], we specifically validated its suit-

ability for our model system. We compared the inferred α values for 8 selected combinations

(S2A Fig and S3 Fig) to the corresponding results obtained with one of the commonly used

alternative methods, based on Bliss independence and the checkerboard approach (S1 Data for

a key to all datasets and S2 Data), as previously described for Escherichia coli [16,26]. This com-

parison demonstrated that α correlates significantly with the degree of synergy (S), irrespective

of whether S is calculated from the average of all viable concentrations across a grid defined by

the 2 drugs (ABij = Ai + Bj; S2B Fig) or from combinations for which the 2 individual drugs

had the same level of inhibition (ABij for which IC50[Ai] = IC50[Bj], S2C Fig). We thus conclude

that the α estimator provides an informative, quantitative indicator of a 2-drug interaction.

We subsequently evaluated the interactions among 12 different antibiotics representing 5

classes (Table 1). We chose these drugs as representatives of the main classes of antibiotics,

which are commonly used in combination to treat P. aeruginosa and to which most clinical P.

aeruginosa strains are still susceptible [27–29]. Even though this choice could have introduced

a bias in the overall pattern of inferred interaction types, these should nevertheless be represen-

tative of the clinically applied drug combinations. We characterized drug interactions for

almost all of the possible combinations, resulting in a total of 52 measures that we summarized

in an interaction network (Fig 1C, S3 Fig, S1 Table, S3 Data). Overall, synergistic combinations

were more common than other interaction types (synergistic = 24/52; additive = 14/52; and
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Fig 1. Drug interaction network for P. aeruginosa. (A) Schematic representation, adapted from [17], of the principle underlying the drug proportion parameter θ (line

of equal dose; dashed lines), which is subsequently used to determine drug interactions, in comparison to different shapes of isobolograms (solid lines), as observed in

synergistic (in red; top panel) or antagonistic (in blue; bottom panel) interactions. (B) Schematic illustration of the different interaction types as a function of the drug

proportion parameter θ, ranging from synergism to antagonism. Drugs are combined in 9 different proportions (n = 9 for each combination), with each drug alone set to

inhibit 75% of growth (S1 Fig). After a fixed time (12 h), bacterial growth is measured, and a quadratic model is used to fit the observed data. The α test [17] was used to

determine significance of synergism or antagonism (S1 Table). (C) The α parameter was inferred from measured data to reconstruct a drug interaction network

including 52 different antibiotic combinations. Combinations were formed from 12 different drugs, here represented as the nodes of the network, spanning 5 different

antibiotic classes (see outer ring). The drug interaction profile is shown through the links (lines) formed between the nodes, and its strength is highlighted by the

thickness of the lines and color. Red, black, and blue lines correspond to synergistic, additive, or antagonistic interactions, respectively (see also S3 Fig). The data for this

panel are provided in S3 Data. AZL, azlocillin; CAR, carbenicillin; CEF, cefsulodin; CEZ, ceftazidime; CIP, ciprofloxacin; DOR, doripenem; GEN, gentamicin; IC75,

concentration inhibiting 75% of bacterial growth; IMI, imipenem; PIT, piperacillin + tazobactam; STR, streptomycin; TIC, ticarcillin; TOB, tobramycin.

https://doi.org/10.1371/journal.pbio.2004356.g001

Table 1. List of antibiotics used in this study.

Functional target Class Drug Abbreviation

DNA repair Fluoroquinolones Ciprofloxacin CIP

Protein synthesis Aminoglycosides Tobramycin TOB

Gentamicin GEN

Streptomycin STR

Cell wall synthesis Penicillins Piperacillin + tazobactam PIT

Azlocillin AZL

Ticarcillin TIC

Carbenicillin CAR

Carbapenems Doripenem DOR

Imipenem IMI

Cephalosporins Ceftazidime CEZ

Cefsulodin CEF

https://doi.org/10.1371/journal.pbio.2004356.t001
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antagonistic = 14/52). Combinations between cell wall inhibitors (β-lactams) and aminoglyco-

sides most often produced synergisms, whereas those including ciprofloxacin (CIP) had exclu-

sively antagonistic effects (Fig 1C).

ACE networks demonstrate substantial variation in the effect of

combinations on adaptation rates and population extinction

We used evolution experiments to assess ACE, which is the ability of drug combinations to

constrain bacterial adaptation either through population extinction or, in the case of surviving

populations, reduced adaptation rates. Based on the inferred drug interactions and the previ-

ously obtained frequencies of collateral sensitivity between 8 of the considered antibiotics (Fig

2) [30], we selected 38 drug pairs covering all different types of drug interactions and collateral

effects.

Based on this choice of drugs, we evolved a total of 1,672 populations through serial trans-

fers into fresh media containing the respective antibiotics using a transfer period of 12 h and a

total of 10 transfers (total duration of 120 h; Fig 3A and S4 Data). We assessed bacterial adap-

tive potential by integrating quantitative growth measurements taken in 15-min intervals from

each evolving population (a total of 783,464 measurements for all treatments and populations;

for a validation of our optical density (OD) measures as a proxy for bacterial growth, see Mate-

rials and methods and S4 Fig). For each population in a growth season, we then calculated the

growth rate r during the exponential phase (Fig 3B). Following previous work [16], we defined

the rate of adaptation as the change in growth rate over time for each evolving population (Fig

3C; for a validation of using growth characteristics as a proxy of evolutionary adaptation, see

Fig 2. Collateral sensitivity network. The FCRs among 8 of the 12 drugs used in this study were obtained from our

previous work [30]. FCR ranges from 0 to 1, such that 0 indicates that all populations (12–20 populations per

combination) were sensitive to the corresponding other drug, thus having complete reciprocal sensitivity, whereas 1

highlights that none of the populations with resistance to one of the antibiotics in a pair suffered exacerbated sensitivity

against the other. For the graphical illustration, we divided the combinations into 4 groups: complete collateral

sensitivity (FCR� 0.25; dark purple lines), partial collateral sensitivity (0.25< FCR� 0.5; light dashed pink lines),

partial cross-resistance (0.5< FCR< 0.75; light green dashed lines), and complete cross-resistance (FCR� 0.75; dark

green lines). CAR, carbenicillin; CEF, cefsulodin; CIP, ciprofloxacin; DOR, doripenem; FCR, frequency of collateral

resistances; GEN, gentamicin; IMI, imipenem; PIT, piperacillin + tazobactam; STR, streptomycin.

https://doi.org/10.1371/journal.pbio.2004356.g002
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Materials and methods and S5 Fig). For subsequent analysis, we focused on the results of the

50:50 drug proportion (S6 Fig) and the single-drug treatments (S7 Fig).

We reconstructed the 2 ACE networks based either on adaptation rates of the surviving

populations (Fig 4A) or on population extinctions (Fig 4B). Below, we first describe the pat-

terns seen in the ACE networks, while their statistical analysis is explained in the next section.

In all cases but one (for carbenicillin [CAR] plus gentamicin [GEN], all populations went

extinct), adaptation to the combination treatment was possible. However, the rates of ada-

ptation varied substantially across the different drug combinations, with lower rates of adapta-

tion (below the 50th quantile) predominantly, but not exclusively, seen among antagonistic

Fig 3. Experimental design and inference of adaptation rates. (A) Schematic representation of the evolution experiment with

antibiotic combinations. Thirty-eight combinations were serially transferred every 12 h (season) into fresh medium containing

antibiotics mixed in 5 different proportions (n = 8 per proportion and drug combination). An uninhibited control was also included,

replicated 4 times, resulting in a total of 44 populations per combination and 1,672 for all combinations. Single-drug treatments of any

drug A and B aimed at inhibiting 75% of growth relative to a drug-free environment (i.e., IC75). (B) An example of the quantitative

growth measures obtained for a particular combination (CIP plus GEN) and the various drug proportions. Each panel shows 1 out of 5

seasons of growth (measured with OD as a proxy ± SD) over a 12-h period. Vertical grey lines denote the time window from which the

slope was calculated to infer the growth rate r of each evolving population during exponential growth. All the drug proportions

considered are highlighted in different colors (yellow to red), as well as the no-drug control (black). (C) Six exemplary populations

from the CIP plus GEN combination experiments illustrating the change in growth rate r over 10 seasons of growth for each of the

drug proportions. The rate of adaptation was calculated following previous work [16], and as indicated on the left of panel C, tadapt is

defined as the time required to reach half of the change in growth rate, Δr. The data for this figure are provided in S4 Data. CFU,

colony-forming unit; CIP, ciprofloxacin; GEN, gentamicin; OD, optical density; IC75, concentration inhibiting 75% of bacterial

growth.

https://doi.org/10.1371/journal.pbio.2004356.g003

Antibiotic combination efficacy (ACE) networks for P. aeruginosa

PLOS Biology | https://doi.org/10.1371/journal.pbio.2004356 April 30, 2018 6 / 25

https://doi.org/10.1371/journal.pbio.2004356.g003
https://doi.org/10.1371/journal.pbio.2004356


combinations that included CIP (Fig 4A; S8 Fig and S9 Fig show separate ACE networks for

each drug interaction type and the 2 types of evolved collateral effects, respectively). Several

synergistic drug pairs, combining an aminoglycoside with either a penicillin or carbapenem,

led to similarly low rates of adaptation (below the 50th quantile, S8 Fig). Moreover, almost all

cases of collateral sensitivity included in this study were associated with reduced adaptation

rates (S9 Fig). This was not the case for combinations with cross-resistance. Furthermore,

when estimating clearance efficacy, we found that extinctions almost exclusively occurred with

the synergistic combinations (Fig 4B, S8 Fig). The synergistic combinations that did select for

lower rates of adaptation did not necessarily have higher rates of extinction and vice versa

(populations surviving synergistic combinations were not necessarily adapting more slowly;

see azlocillin [AZL] plus streptomycin [STR], cefsulodin [CEF] plus CAR, or ticarcillin [TIC]

plus GEN; S8 Fig).

Fig 4. The ACE networks. (A) ACE network built from the rates of adaptation of surviving populations in the combination environment. The color and thickness of

the lines (links) formed between the drugs (nodes) reflect the quantiles within which the inferred adaptation rates are found relative to the entire distribution: orange

thick lines denote the combinations with the slowest adaptation rates (one of the aims of treatment efficacy), and grey thin lines highlight those with fast adaptation. (B)

ACE network on the number of extinction events observed in the combination treatments. Thickness and color of the links represent the number of extinct

populations, ranging from 0 (grey) to 8 (dark orange). Adaptation rates and extinction frequencies are inferred from the growth characteristics provided in S4 Data.

ACE, antibiotic combination efficacy; AZL, azlocillin; CAR, carbenicillin; CEF, cefsulodin; CEZ, ceftazidime; CIP, ciprofloxacin; DOR, doripenem; GEN, gentamicin;

IMI, imipenem; PIT, piperacillin + tazobactam; STR, streptomycin; TIC, ticarcillin; TOB, tobramycin.

https://doi.org/10.1371/journal.pbio.2004356.g004

Antibiotic combination efficacy (ACE) networks for P. aeruginosa

PLOS Biology | https://doi.org/10.1371/journal.pbio.2004356 April 30, 2018 7 / 25

https://doi.org/10.1371/journal.pbio.2004356.g004
https://doi.org/10.1371/journal.pbio.2004356


Statistical ACE network analysis reveals complementary roles for

synergism and collateral sensitivity in treatment efficacy

We next performed 2 types of statistical analyses to assess to what extent the overall charac-

teristics of the 2 ACE networks are determined by the 2 considered predictors of combina-

tion efficacy: interaction type inferred from α (Fig 1C) and collateral sensitivity profiles

previously obtained from experimentally evolved resistant populations of P. aeruginosa (Fig

2, [30]). We first used a BN approach to assess the relationships among the considered vari-

ables (i.e., adaptation rate, extinction frequency, drug interaction, and frequency of collateral

resistances [FCR]). The BN approach is based on a constraint-based interleaved incremental

association algorithm [31–33] to dissect the relationships between our variables (see Materi-

als and methods for details). The results are summarized in the BN (Fig 5A), in which nodes

represent the different variables and arrows indicate the inferred dependencies. The BN

analysis revealed that the type of antibiotic interaction strongly influenced the proportion of

extinction, but not the rate of adaptation. Instead, the rate of adaptation was found to depend

solely on the frequency of collateral sensitivities. No other dependency was inferred by the

analysis.

Based on the BN structure, we calculated the conditional probabilities for the inferred

dependencies between the frequencies of collateral sensitivity and the rates of adaptation as

well as for the proportion of extinction and drug interaction type. In particular, we used the

different types of evolved collateral effects (i.e., partial collateral sensitivity, partial cross-

resistance, and cross-resistance; none of the combinations evaluated during evolution had

complete collateral sensitivity between their components, as shown in Fig 2) and calculated

the conditional probability of obtaining the distribution of observed adaptation rates across

5 equal quantile bins (Fig 5B, top panel). Similarly, given the different drug interaction types

(synergism, additivity, and antagonism), we calculated the conditional probabilities of differ-

ent extinction frequencies across 5 equal quantile bins (Fig 5B, bottom panel). These 2 addi-

tional analyses describe more clearly the inferred dependencies within the BN. Antibiotic

combinations for which at least half of the populations had collateral sensitivity against one

or both of the individual drug components (i.e., partial collateral sensitivity; purple bars in

Fig 5B, top panel) have a higher probability of selecting for low but not high rates of adapta-

tion. Conversely, combinations with partial or complete cross-resistance (green bars in Fig

5B, top panel) have a higher probability of producing the top scores of inferred adaptation

rates. In addition, high probabilities of extinction are associated with synergistic and additive

combinations, whereas the reverse is found for antagonistic drug pairs (Fig 5B, bottom

panel).

We further validated the inferred dependencies between variables using partial correla-

tion analysis, following the approach previously established for a similar analysis of combina-

tion efficacy in E. coli [16]. This approach allowed us to control for drug pair membership

using the average rate of adaptation towards the corresponding single drugs of a particular

combination as a covariate (Materials and methods). Statistical significance was subse-

quently inferred using a permutation test [16]. This analysis revealed a significant correlation

between the FCR and the rate of adaptation (ρs = 0.52, P = 0.038) and between the propor-

tion of extinction and the drug interaction type α (ρs = 0.51, P = 0.043), but not between the

FCR and the proportion of extinction (ρs = 0.39, P = 0.146) or the drug interaction α and the

rate of adaptation (ρs = 0.3, P = 0.262). This analysis, based on a distinct statistical approach,

thereby corroborated the findings of the BN analysis. We conclude that synergistic drug

interactions enhance bacterial clearance, whereas collateral sensitivity limits the adaptive

potential of the bacteria.

Antibiotic combination efficacy (ACE) networks for P. aeruginosa
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Adaptation to the strongest component influences adaptation to multidrug

environments

We next assessed whether the ability of bacteria to adapt to the combination is mainly driven

by adaptation to only one of the drugs rather than dependent on a unique property of the anti-

biotic pair. For our dataset, we related the inferred rates of adaptation in the combination

treatments to those inferred for the corresponding single-drug environments (S10 Fig). We

Fig 5. BN analysis of antibiotic resistance evolution under combination therapy. (A) BN obtained from a

constraint-based interleaved incremental association algorithm including 4 different random variables: drug

interaction types, FCR, proportion of extinctions, and rate of adaptation. (B) Based on the BN, we calculated the

conditional probabilities of rate of adaptation for different types of collateral effects (top panel) and extinction

frequencies for different antibiotic interaction characteristics (bottom panel). The Bayesian analysis is based on data

for drug interaction characteristics (S2 Data), collateral effects [30], and extinction frequencies, and adaptation rates

are inferred from growth characteristics during experimental evolution (S4 Data). Adap., rate of adaptation; BN,

Bayesian network; Ext., proportion of extinctions; FCR, frequency of collateral resistances; Int., drug interaction types.

https://doi.org/10.1371/journal.pbio.2004356.g005
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first compared the 2 corresponding monotherapies of a given drug pair and defined the drug

leading to lower rates of adaptation as the stronger component (i.e., higher ability to minimize

resistance evolution) and the other as the weaker component (i.e., lower ability to minimize

resistance evolution). Thereafter, we calculated the relative rate of adaptation of the combina-

tion by standardizing it against either the stronger or the weaker component of the pair. The

resulting ACE networks are shown in Fig 6A and 6B, respectively. Interestingly, the original

ACE network for adaptation rates (Fig 4A) is more similar to that standardized by the weaker

Fig 6. Weighted ACE networks and their Bayesian analysis. We assessed to what extent adaptation to one of the drugs of a pair determined the overall rate of

adaptation to the combination treatment. The stronger component drug of each pair was identified as the one with lower adaptation rates in monotherapy. We

subsequently standardized the adaptation rates towards the combination by those towards either (A) the stronger or (B) the weaker component drug, resulting in 2

weighted ACE networks. Orange thick lines indicate slower adaptation, while grey thin bands denote fast adaptation. (C) Results of the BN analysis on the original

network versus the 2 standardized networks. The relationship between drug interaction type and extinction frequency was stable across all analyses, while the

dependence of adaptation rate on evolved collateral effects disappeared when adaptation rates were standardized by the stronger component. Adaptation rates are

inferred from the data on growth characteristics during experimental evolution, provided in S4 Data. ACE, antibiotic combination efficacy; AZL, azlocillin; BN, Bayesian

network; CAR, carbenicillin; CEF, cefsulodin; CEZ, ceftazidime; CIP, ciprofloxacin; DOR, doripenem; GEN, gentamicin; IMI, imipenem; PIT, piperacillin + tazobactam;

STR, streptomycin; TIC, ticarcillin; TOB, tobramycin.

https://doi.org/10.1371/journal.pbio.2004356.g006
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but not the stronger component drug (Fig 6; S2 Table). This suggests that the characteristics of

the original ACE network (Fig 4A), and thus the efficacy of drug combinations to reduce adap-

tation rates, is primarily driven by adaptation to the stronger component, which—if accounted

for by the standardizing scheme—removes important properties of the network (see as promi-

nent examples the disappearance of the strong reduction in adaptation rate for doripenem

[DOR] plus TIC, or DOR plus PIT [piperacillin + tazobactam]; Fig 4A and Fig 6A).

We further evaluated influence of the component drugs by repetition of the BN analysis.

We found that the dependency observed between the FCR and the rates of adaptation of the

combinations disappeared when the latter is weighted by the stronger but not the weaker com-

ponent drug (Fig 6C). At the same time, the dependency between drug interaction and extinc-

tion frequency remained, while no additional relationship was revealed. Similar results were

obtained when we repeated the correlation analysis with standardized adaptation rates. The

originally identified correlation between the FCR and the rate of adaptation was no longer sig-

nificant when the latter was standardized by adaptation to the stronger component drug (ρs =

0.33, P = 0.21), yet it still showed a statistical trend when we standardized by the weaker com-

ponent drug (ρs = 0.45, P = 0.078). In these 2 analyses, drug interaction did not correlate signif-

icantly with the weighted adaptation rates (ρs < 0.47, P> 0.09). These results consistently

indicate that adaptation to the stronger component drug influences adaptation to the combi-

nation and that this is dependent on the evolved collateral effects.

Initial inhibition levels correlate with adaptation rates, while extinction

events are almost exclusively restricted to synergistic combinations

We next performed a separate evolution experiment with 4 selected combinations to assess to

what extent the inherently different starting levels of inhibition—imposed by each type of

interaction during the first season of growth (Fig 1B and S3 Fig)—influenced both the number

of extinctions and adaptation rates. We performed this evolution experiment with 4 selected

combinations with different interaction profiles: 2 interacting synergistically (GEN plus

CAR and STR plus PIT) and 2 antagonistically (GEN plus CIP and Tobramycin [TOB]

plus CIP). For these combinations, we varied the initial inhibition level of the combination

across 8 steps, ranging from IC50 to>IC90. Populations were serially transferred into fresh

media as explained before (S5 Data; and for the obtained changes in growth rate r, see

S11 Fig).

This separate evolution experiment revealed that initial inhibitory levels of the tested com-

binations are significantly related to the rates of adaptation, irrespective of combination iden-

tity or drug interaction type (GLM, F1,336 = 37.735, P< 0.001; Fig 7A and S3 Table). In

particular, increasing levels of inhibition are generally associated with higher rates of adapta-

tion, suggesting that strong inhibition increases selection for an adaptive response [34,35]. At

higher levels of inhibition, the synergistic and antagonistic combinations produce clearly dis-

tinct responses, especially regarding population extinction. Here, the 2 synergistic pairs are

associated with a significant increase in the number of extinct populations (logistic regression,

F12,336 = 21.15, P< 0.001; Fig 7B and S4 Table), while antagonistic combinations produced

almost no extinction at all. Moreover, at the very high initial inhibitory levels, antagonistic

pairs showed a sudden drop in adaptation rates (Fig 7A), as expected from previous work

[16,24]. A similarly strong reduction is not observed for the synergistic combinations, possibly

owing to the fact that only few populations survived and could be used to infer adaptation

rates.

Taken together, the results from this separate evolution experiment suggest that the gener-

ally higher inhibition levels of the synergistic pairs in our main evolution experiment could

Antibiotic combination efficacy (ACE) networks for P. aeruginosa
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potentially have contributed to higher adaptation rates for this type of combination (even

though these were not found to be significantly increased compared to those for other interac-

tion types; see above). This seems less likely the case for extinction events, which are generally

more frequent in treatments with synergistic rather than antagonistic combinations, irrespec-

tive of the initial inhibition level.

Discussion

Our study provides a systematic experimental analysis of the efficacy of antibiotic combination

therapy in the opportunistic human pathogen P. aeruginosa. Based on evolution experiments

with 38 distinct combinations, ACE networks were reconstructed for 2 complementary mea-

sures of treatment efficacy: the frequency of population extinctions and the reduction in adap-

tation rates. Subsequent statistical analyses identified the likely ACE determinants: Synergistic

drug interactions enhanced the frequency of extinction, even at the same inhibitory level as

antagonistic interactions, while reduced adaptation rates depended on the evolved collateral

sensitivities among the drugs. The latter effect is likely driven by adaptation to the stronger

component drug in a pair. Consequently, our findings suggest that treatment efficacy against

P. aeruginosa can be optimized by drug combinations, which interact synergistically to

increase bacterial clearance and which can evolve collateral sensitivity to each other to slow

down the rate of adaptation.

The use of BN analysis enhanced dissection of the determinants of ACE. The BN approach

has been widely applied across different fields of biology in recent years but not yet in studies

on antibiotic resistance evolution [33,36–39]. Its accessible graphical output and the underly-

ing probabilistic theory facilitate the inference of causal relationships between different vari-

ables [31,32]. It further offers estimation of conditional probabilities that reflect the strength of

Fig 7. Influence of the initial inhibition level on adaptation rate and population extinction. In a separate round of evolution experiments, we

evaluated the consequences of the initial inhibition levels in synergistic and antagonistic combinations. The experiment was performed following the

protocol of the main evolution experiment (Fig 3A), with the exception that the starting doses of the combinations were fixed at different levels of

inhibition for the combinations. (A) Inferred rates of adaptation as a function of initial inhibitory levels. We determined initial inhibition by measuring in

the first season of the evolution experiment the AUC of growth over time (measured as OD as a proxy) for each replicate population and then

standardized it against the average AUC of the no-drug control (x-axis, AUCi). The rate of adaptation (y-axis) was inferred as for the main evolution

experiment (Fig 3). (B) Extinction was significantly more often observed in synergistic rather than antagonistic combinations, even at the same level of

inhibition (results for logistic regression analysis in S4 Table). Adaptation rates and extinction frequencies are inferred from growth characteristics during

experimental evolution, provided in S5 Data. AUC, area under the curve; AUCi, area under the curve of relative inhibition of growth; CAR, carbenicillin;

CIP, ciprofloxacin; GEN, gentamicin; OD, optical density; PIT, piperacillin + tazobactam; STR, streptomycin; TOB, tobramycin.

https://doi.org/10.1371/journal.pbio.2004356.g007
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the inferred dependencies; a strategy well suited for the stochastic nature of biological systems

and their measurements [40]. The latter is important for the analysis of antibiotic resistance

evolution, for which we are mainly interested in anticipating bacterial adaptation based on dis-

tinct drug properties or deployment strategies [11,12,41–43]. The suitability of the BN

approach for analysis of drug resistance evolution was corroborated with a previously estab-

lished statistical approach, based on partial correlation analysis [16], which identified a signifi-

cant relationship for the same pairs of variables.

Our analyses consistently revealed that synergistic drug interactions are an important ACE

determinant, especially in terms of bacterial clearance (Fig 4A). The particular importance of

bacterial elimination as a component of treatment efficacy was previously considered in a math-

ematical model [25] but has not yet been evaluated empirically. The previous model assessed

the effect of antibiotic interactions on treatment efficacy [25] by modifying a previous infection

model based on data from mice infected with P. aeruginosa [44]. The model is related to the

design of our main evolution experiment in that the concentration of a particular drug in a

combination is standardized by its inhibitory effect in monotherapy. The model predicted con-

trasting treatment outcomes for synergistic combinations: On the one hand, synergism

enhances extinction, most likely because it strongly reduces population size, thereby decreasing

the likelihood of new resistance mutations arising. On the other hand, if resistance emerges,

synergism increases the selective advantage of the resistant mutants through competitive

release, enhancing bacterial adaptation [25]. Our experimental results are consistent with both

alternatives. Although synergism mainly favored bacterial extinction (Figs 5–7), it was in several

cases associated with low adaptation rates (Fig 4A). However, in our study, the effect of drug

interaction on adaptation rate was always insignificant, irrespective of the analytical approach.

Interestingly, we found higher population extinction for synergistic rather than antagonistic

combinations also at low initial inhibitory concentrations (Fig 7). This finding cannot have

resulted from the stronger reduction in population size (i.e., inhibitory levels were the same

for the 2 interaction types) but must have depended on other properties of the synergistic drug

pairs. A likely explanation may be found in the mechanism underlying synergism, which can

rely on increased membrane permeability induced by one of the drugs, subsequently enhanc-

ing cellular uptake of the second drug [45]. Such mechanisms may have a cumulative effect

across time [45] and/or may generally be difficult to counter. This, in turn, limits the number

of suitable resistance mutations and ultimately increases the likelihood of extinction. A

detailed exploration of this effect clearly warrants further research.

Our experiments further identified the potential to evolve collateral sensitivity as a key

determinant of low adaptation rates. This result is generally consistent with previous work on

E. coli and Staphylococcus aureus [46,47], although this is the first time it has been shown for P.

aeruginosa. Adaptation rates are thus significantly influenced by evolutionary trade-offs,

whereby adaptation to one of the drugs of a pair constrains adaptation to the other. Our find-

ings and those of colleagues [46,47] thereby highlight that such trade-offs may not only

improve treatment when drugs are applied sequentially, as originally proposed for evolved col-

lateral sensitivities in E. coli (i.e., collateral sensitivity cycling; [20–22]). Instead, they can also

optimize combination therapy. Our analysis further revealed that the involved dynamics are

likely driven by adaptation to the stronger component drug of a pair (Fig 6). This suggests

that, if adaptation to the stronger component comes with a higher likelihood of collateral sen-

sitivity to the second drug, adaptation to the combination is systematically slowed down, as,

for example, for CIP plus STR or CIP plus CAR (Fig 2, Fig 4A). In contrast, when adaptation

to the stronger drug is more likely to cause cross-resistance, then this can enhance adaptation

to the combination, as seen for GEN plus STR or CAR plus CEF (Fig 2, Fig 4A). The further

exploration of these trade-offs represents a promising avenue to improve treatment efficacy.
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Our finding of the high clearance efficacy of synergistic combinations shows some consis-

tency with clinical practice. For P. aeruginosa, we predominantly observed drug synergism

between β-lactams and aminoglycosides (Fig 1C). These 2 antibiotic classes are also most com-

monly used in combination therapy against this pathogen [29,48,49]. Our results empirically

confirm the potency of the β-lactam–aminoglycoside combinations, especially penicillin–ami-

noglycoside pairs, in causing higher numbers of extinct replicate populations (Fig 4B and S8

Fig). In some cases, the populations surviving these specific combinations also adapted more

slowly (e.g., STR plus PIT or TIC plus TOB in Fig 4A and 4B, and S8 Fig). Furthermore, the

effectiveness of these combinations may not only be caused by drug synergism but additionally

by reciprocal collateral sensitivity that can evolve among these pairs [30]. Our systematic anal-

ysis performed under controlled laboratory conditions thus provides empirical support for the

often experience-driven choice in clinical treatment. In the future, the clinical applicability of

our results should be further explored. For example, we identified high clearance efficacy of

certain combinations of penicillins and cephalosporins (Fig 4B) or low adaptation rates if fluo-

roquinolones (e.g., CIP) were combined with aminoglycosides or penicillins (Fig 4A). It would

be of particular interest to corroborate these patterns for clinical isolates in laboratory experi-

ments or under clinical conditions.

In summary, our systematic analysis of antibiotic combinations identified the role of drug

interactions and evolved collateral effects in determining 2 complementary properties of treat-

ment efficacy. The comprehensive dataset collected in our study may serve as a useful refer-

ence for further exploration of effective therapy, including more detailed statistical analyses

such as those that use the potency of pairwise interactions to estimate higher-order drug effects

[50,51]. Our approach and the specific results obtained may, moreover, help to improve the

design of medical treatment with the 2-fold aim of minimizing pathogen burden and reducing

resistance evolution. A similar combined assessment of the efficacy of drug interaction and

evolved collateral effects may not only be applicable to other pathogens and infectious diseases.

It could similarly help to improve cancer therapy, as previously evaluated for selected cancer

types and drug interactions [52–55].

Materials and methods

Bacteria and media

All experiments were conducted with P. aeruginosa PA14. Cells were grown at 37 ˚C in sterile

M9 minimal medium supplemented with 0.2% glucose and 0.1% casamino acids. All antibiot-

ics were prepared according to the manufacturer’s instructions and filter sterilized before each

experiment (Table 1). All experiments were carried out in randomized 96-well plates shaken

and incubated at 37 ˚C in BioTek Eon plate readers, which were also used for regular measure-

ment of ODs in 15-min intervals. Randomization schemes of plates for each experiment were

different from each other. All analyses were performed using the R platform (version 3.3.2)

unless specified otherwise [56].

Dose-response curves and minimal inhibitory concentration

We tested 14 different concentrations of each drug in order to establish dose-response rela-

tionships after 12 h of incubation. For all concentrations, a 1- to 2-ml 10× stock was prepared

and then diluted in a randomized 96-well plate with 6 replicates per concentration, resulting

in 90 replicates per antibiotic and 1,080 for all treatments. Ten microliters of an isogenic bacte-

rial population of PA14 were added to a final volume of 100 μl, equivalent to 104 to 105 CFU/

ml initial population size. In addition, 2 types of controls were included: one without antibiotic

and a second one without both antibiotic and bacteria, each also replicated 6 times. We used a
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logistic regression to analyze the dose-response relationship of each drug using the package

“drc” in R [57]. The obtained models (S1 Fig) allowed accurate calculation of different levels of

inhibitory concentrations for each drug, including the minimum inhibitory concentration

(MIC; here defined as the concentration inhibiting >90% of growth).

Checkerboards and degree of synergy

To measure the type of interaction using the checkerboard approach, we considered 9 concen-

trations of each antibiotic in a pair, including a no-drug control, and distributed them ran-

domly across a 96-well plate. Each pair was evaluated twice. Plates were incubated at 37 ˚C for

12 h with constant shaking and regular OD measurements taken every 15 min. We then calcu-

lated the growth rate r for each individual well and combination by fitting a linear regression

of growth over time during the exponential phase. Exponential phase was generally observed

during 195 to 360 min of each season.

We subsequently determined the degree of synergy of any drug pair AB using the Bliss

independence method described previously [16]:

S ¼ ðrA0=r00Þðr0B=r00Þ � ðrAB=r00Þ;

such that rA0 represents the growth rate at a given concentration of drug A in the absence of B,

and vice versa for r0B. r00 is the growth rate of the no-drug control, and rAB is the growth rate

at any concentration in which drugs A and B are found together. The degree of synergy S was

only calculated for drug combinations that had growth rates larger than 0. Positive values indi-

cate synergism, whereas negative ones denote antagonism.

Drug combinations and interaction profile

To classify the interaction between 2 drugs, we considered an environment in which each drug

separately inhibits 75% ± 10% of bacterial growth (IC75). For each combination, we evaluated

11 treatments: 9 different proportions of a given pair of antibiotics, a control of uninhibited

growth, and a control with only M9 medium. Nine replicates for all treatments were consid-

ered, except for the M9 control that consisted of only 6 wells. This resulted in 81 replicates per

drug combination and 4,212 for all 52 antibiotic pairs. OD measurements were taken every 15

min for 12 h, resulting in a total of 48 data points per individual replicate and 202,176 for all

combinations and replicates.

To determine whether interactions were antagonistic, synergistic, or additive, we used a t
test on the second-order term (α) of a quadratic regression of our data, as established previ-

ously [17]. The α parameter expresses convexity or concavity of observed bacterial-density

data in the model q(θ) = αθ2 + βθ + γ, such that θ represents any drug proportion between any

drugs A and B (Fig 1B). Positive values of α indicate synergy and negative values antagonism.

Collateral sensitivity network

We considered our previously published data on the evolved collateral effects of highly resis-

tant populations of P. aeruginosa PA14 [30] and used the frequency of cross-resistance in all

possible pairwise combinations of 8 of the drugs considered in this study. Briefly, the FCR

counts the number of populations resistant to drug A that show collateral resistance to drug B,

and vice versa, relative to the total number of populations resistant to A and B. Values close to

0 indicate reciprocal collateral sensitivity, and those close to 1 denote cross-resistance. We cat-

egorized the obtained values into 4 different groups and built a collateral sensitivity network

(Fig 2): complete collateral sensitivity (FCR� 0.25), partial collateral sensitivity
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(0.25< FCR� 0.5), partial cross-resistance (0.5< FCR < 0.75), and complete cross-resistance

(FCR� 0.75).

Experimental evolution of antibiotic combinations

Based on the interaction profile and the collateral sensitivity and/or resistance [30] scores, we

selected a total of 38 different combinations for a series of evolution experiments (Fig 3A). For

all combinations, we included 5 different proportions of the combined antibiotics, an uninhib-

ited control, and an M9 control, resulting in 44 populations per combination, randomly dis-

tributed in a 96-well plate (2 combinations were included in a single plate), for a total of 1,672

populations. The concentration was set for each individual drug to inhibit bacterial growth by

75% (IC75). We considered 10 transfers (hereafter referred to as seasons) of 1% volume into

fresh plates every 12 h (approximately 120 generations). For each season, OD600 measurements

were taken every 15 min, resulting in 48 measurements per replicate and season and a total of

781,440 measurements across all replicate populations. All plates were frozen at −80 ˚C with

1:4 (v/v) of 86% glycerol.

To validate our OD measurements as a proxy for bacterial growth during evolution, we rep-

licated the conditions of the first season for 4 selected combinations (only the 1:1 proportion),

6 corresponding single-drug treatments, and a no-drug control. We focused on those combi-

nations and the corresponding monotherapies for which we also evaluated the influence of ini-

tial drug inhibitory level (Fig 7) and the evolution of resistance (S5 Fig). Each treatment was

replicated 8 times. After 12 h of evolution, we performed a dilution series and standard plating

techniques to count viable colony-forming units (CFUs) for all replicates and treatments. The

obtained CFUs were then correlated with the endpoint OD measurements (S4 Fig). We found

a significant correlation between our OD measurements and the CFU counts at the end of

season 1 (Spearman rank correlation test, ρs = 0.782, P< 0.001). To further validate the OD

measurements, we performed a similar correlation analysis for the same combinations and

corresponding monotherapies, using evolved bacteria from the final transfer of the separate,

focused evolution experiment, in which the influence of initial drug inhibitory levels was

assessed. The evolved material was thawed from the frozen stock cultures, then exposed to 1

full season of experimental evolution under the exact treatment conditions already experi-

enced by populations during the evolution experiment. Thereafter, CFUs were counted using

a dilution series on Agar plates, as outlined above, and then compared to the OD measures

obtained during the above repetition of a full season. As before, CFUs were significantly corre-

lated with the corresponding OD measurements (Spearman rank correlation test, ρs = 0.339, P
= 0.002).

We further validated the suitability of changes in growth characteristics as a proxy for evo-

lutionary adaptation and therefore genetically fixed alterations by re-assessing cryo-preserved

material from the last transfer of experimental evolution. This analysis was performed with

material from the separate evolution experiment, which tested the influence of initial inhibi-

tory levels, and further details are outlined below in the description of this experiment.

Rates of adaptation

We first calculated the growth rate r as described above for each evolving population, treat-

ment, and season. Subsequently, we considered the rate of adaptation for each evolving line as

defined previously [16]:

Radapt ¼
Dr

2� tadapt
;

Antibiotic combination efficacy (ACE) networks for P. aeruginosa

PLOS Biology | https://doi.org/10.1371/journal.pbio.2004356 April 30, 2018 16 / 25

https://doi.org/10.1371/journal.pbio.2004356


such that Δr represents the change in growth rate over 10 seasons of growth, and the time of

adaptation, tadapt, corresponds to the interpolated time at which a population reached half of

its maximum growth rate. This measurement reflects how quickly resistance spreads in a pop-

ulation in a serial transfer experiment.

To determine to what extent adaptation to the drug combinations was determined by adap-

tation to each of the individual drugs, we measured which of the individual components in a

drug pair led to lower and higher rates of adaptation. The single antibiotic in a pair that alone

led to lower rates of adaptation was considered as the stronger of the components and the

other as the weaker one. The adaptation rate of each combination was then standardized by

the adaptation rate of either its weaker or stronger component drug. The 2 types of standard-

ized adaptation rates were visualized in ACE networks and statistically evaluated (see below).

BN analysis

We used BN analysis to assess the directional relationship between 4 variables, including the

inferred drug interaction type, the frequency of collateral sensitivities, the adaptation rates,

and the frequency of population extinctions. The entire BN analysis was repeated with the dif-

ferent types of inferred adaptation rates, including those obtained for the combinations in the

main experiment and then those that we standardized by either the stronger or the weaker

component drug.

The BN analysis generally followed 2 steps. In the first step, the approach identifies variables

that are related to each other and visualizes these as nodes in a network between variables. In

this step, it further infers the direction of each relationship and represents these as arrows in the

network, thereby implying a causality between the connected variables [31]. To achieve this first

step, the model first infers the graphical structure of the network by analyzing the probabilistic

relations between all nodes and thereafter constructs the network by setting directions for the

identified connections while satisfying an acyclicity constraint [58]. We implemented BN analy-

sis employing a constraint-based interleaved incremental association–optimized algorithm [59]

to reduce the likelihood of obtaining false positives and to obtain possible probabilistic depen-

dencies between our variables: drug interaction type (categorical: synergism, additivity, or

antagonism), FCR (categorical: complete collateral sensitivity, partial collateral sensitivity, par-

tial cross-resistance, and complete cross-resistance), proportion of extinction (numerical), and

rates of adaptation (numerical). We only included combinations with complete sets of data and

then followed the algorithm’s default parameters. From the obtained dependencies, we esti-

mated the conditional probabilities associated with the linked variables over an array of differ-

ent values. All tests were performed in R using the “bnlearn” package [60].

Additional correlation and partial correlation analysis

To validate the inferred dependencies from the BN analysis, we additionally performed corre-

lation analysis combined with permutation tests, following the approach previously established

for a similar analysis of ACE in E. coli [16]. For each round of permutation, we calculated cor-

relation coefficients, ρs, between any two given variables x and y by permuting the values of x

while keeping y constant, as in [16]. For each test, we considered 10,000 permutations and esti-

mated the P value as the proportion of the obtained distribution of correlation coefficients that

had an absolute value larger than the absolute value obtained for the observed ρs [16]. This

approach was used to correlate the measures of collateral effects and drug interaction to pro-

portion of extinction and, later on, to the standardized adaptation rates.

Furthermore, to account for the effect of adaptation to the single drugs (z) in the main anal-

ysis with nonstandardized adaptation rates, we performed a partial correlation analysis with z
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as a covariate, generally following the previously established approach [16]. For this, we first

obtained the residuals from the linear regression of x on z and those of y on z, such that y cor-

responds to the adaptation rates of the combination. Then, to estimate the correlation coeffi-

cient between x and y, with z as a covariate, we employed the permutation test as explained

above using the residuals of the corresponding regressions [16].

Experimental evolution with fixed inhibitory levels of antibiotic

combinations

To evaluate the effect of the starting inhibition level of the combinations, we considered a sec-

ond round of evolution experiments as described above. This time, the level of inhibition of

the combination was fixed instead of that of the individual drug treatments. Briefly, concentra-

tions of each drug were mixed 1:1 so that each would inhibit between 50% and 75% of growth.

These were then diluted to obtain a range of different inhibition levels and to evaluate their

effect on growth in P. aeruginosa after 12 h of incubation at 37 ˚C. Evolution experiments were

then initiated for 4 different combinations that included 11 different treatments: a no-drug

control, the individual monotherapies, and 8 different inhibition levels ranging from approxi-

mately IC50 to>IC90 of each combination. Each treatment was replicated 8 times and distrib-

uted randomly in 96-well plates.

Genetically fixed changes in growth characteristics

We used the focused set-up of the above separate evolution experiment to validate the suitabil-

ity of growth measurements as a proxy for evolutionary adaptation. Evolutionary adaptation

assumes that changes are genetically fixed rather than due to phenotypic (i.e., physiological)

responses. To assess this, we studied cryo-preserved material from the last drug-free season of

the evolution experiment and regrew them under defined antibiotic conditions. Purely pheno-

typic adaptations to antibiotics are unlikely to have persisted for this material, which was

grown under antibiotic-free conditions for 12 to 16 h (equivalent to a minimum of 6 genera-

tions) and additionally subjected to a cryo-preservation step. Therefore, any persistent changes

in growth characteristics under antibiotic exposure are likely based on genetic changes and

thus indicate evolutionary adaptation.

For this analysis, we considered material evolved in the presence of 2 synergistic (i.e., GEN

plus CAR and STR plus PIT) or 2 antagonistic combinations (i.e, CIP plus GEN and CIP plus

TOB), in all cases set to either IC50 or >IC90, and also included material from the corres-

ponding monotherapies. A total of 4 replicate populations was studied for each of the various

evolution treatments and compared to the ancestral PA14. Changes in growth characteristics

were inferred from dose-response curves in a 2-fold dilution series of each of the antibiotics

included in the pair. The evolved relative changes in resistance were calculated as the area

under the curve (AUC) of the dose-response curve for each of the populations and then di-

vided by that of the ancestral PA14. The results are shown in S5 Fig. They highlight a general

increase in growth characteristics and thus resistance across the various treatment groups even

if not significant in all cases (based on a 1-sample Wilcoxon test with μ = 1). We conclude that,

overall, the observed changes in growth characteristics have a genetic basis and are not exclu-

sively due to phenotypic responses. Therefore, we consider the recorded changes in growth

characteristics to provide a meaningful proxy for evolutionary adaptation.

Supporting information

S1 Fig. Dose-response curves of the ancestral strain PA14 exposed to all different anti-

biotics used in the study. Each panel corresponds to a single antibiotic (see Table 1 for
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abbreviations). Boxplots show bacterial growth relative (n = 6 per concentration) to an antibi-

otic-free environment across different drug concentrations. The red dotted line indicates the

75% level of inhibition (IC75) used as a standard for subsequent experiments.

(TIF)

S2 Fig. Validation of the interaction strength measure α. (A) Checkerboards of 8 selected

combinations. Each panel corresponds to an antibiotic combination, here from left to right

and top to bottom: CAR plus GEN, CAR plus CEF, STR plus PIT, TIC plus TOB, CIP plus

CAR, CIP plus CEF, CIP plus DOR, and PIT plus CAR. Growth relative to the drug-free envi-

ronment is shown over a grid of concentrations of both drugs in different shades of grey: val-

ues close to 1 indicate normal growth (black), whereas those close to 0 correspond to no

detectable growth after 12 h of incubation (white). Red, grey, and blue circles embedded within

each panel highlight the different types of interactions determined using α, showing—respec-

tively—synergism, additivity, and antagonism. We calculated the degree of synergy (S) using

the Bliss independence method either by averaging all obtained values across the grid where

the fitness effect was measurable (panel B), or by calculating S from the combination having

the same level of inhibition for each drug (panel C). A significant correlation was obtained

between the degree of synergy S obtained in panels B and C with our measurements of α (as in

S2 Fig). The data used for these panels are provided in S2 Data.

(TIF)

S3 Fig. Interaction profile of 52 antibiotic combinations. Each panel shows the growth of

the P. aeruginosa PA14 strain across 9 different drug proportions ranging from full dose of one

drug (θ = 0) to a full dose of the second one (θ = 1), each set to inhibit 75% of normal growth.

Points and error bars indicate the mean and 95% CI for bacterial growth, as inferred through

OD (n = 9) after 12 h of incubation. Colored lines represent the quadratic fit of observed data,

whereby the color itself indicates the interaction type, as deduced from the α parameter of the

model. Synergy, additivity, and antagonism are shown as red, grey, or blue lines, respectively.

The data used for these panels are provided in S3 Data. OD, optical density.

(TIF)

S4 Fig. Validation of OD as a proxy for bacterial growth in the presence of antibiotics. We

used the ancestral PA14 strain to replicate the first season of evolution for 6 selected single-

drug treatments, 4 corresponding antibiotic combinations, and a no-drug control (shown in

the different colors) in a single 96-well plate. Antibiotic concentrations were set to IC75 for the

single-drug treatments, and for the drug pairs, each antibiotic was set to IC75 and then com-

bined in a 1:1 ratio, thereby following the same set-up used for the main evolution experiment.

For each treatment, we included 8 replicates. The plate was incubated at 37 ˚C for 12 h under

continuous shaking. At the end of the incubation period, a sample from each well was taken,

plated on LB agar plates, and incubated for 16 to 20 h at 37 ˚C to count the number of viable

cells as CFUs. We found a significant correlation between the obtained CFU counts and the

endpoint OD measurements (Spearman rank test, ρs = 0.782, P< 0.001). CFU, colony-form-

ing unit; IC75, inhibiting 75% of bacterial growth; LB, Luria-Bertani; OD, optical density.

(TIF)

S5 Fig. Changes in resistance upon experimental evolution in selected populations. We

determined changes in resistance for selected populations from the separate evolution experi-

ment with different initial drug inhibitory levels (Fig 7) that included 4 different combinations:

(A) GEN plus CAR, (B) STR plus PIT, (C) CIP plus GEN, and (D) TOB plus CIP. For each of

these combinations, we tested 4 populations adapted to each of the single drugs, 4 populations

adapted to the combinations set to IC50, 4 populations adapted to those set to>IC90, and the
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ancestor PA14. All populations were from the final season with antibiotics. Antibiotic resis-

tance was assessed with dose-response curves using 2-fold dilution series of each of the antibi-

otics included in the tested combination. Results are given as changes in resistance (for the

changes in IC90, see S2 Table), calculated as the AUC for each evolved population relative to

that of the ancestral PA14. Asterisks indicate significant differences obtained from a 1-sample

Wilcoxon test (μ = 1, dotted red line). All P values were corrected for multiple comparison

using FDR. AUC, area under the curve; FDR, false discovery rate; IC50, concentration inhibit-

ing 50% of bacterial growth; IC90, concentration inhibiting 90% of bacterial growth.

(TIF)

S6 Fig. Growth rate of the 50:50 treatment of all combinations over 10 seasons of experi-

mental evolution. Each panel corresponds to an antibiotic combination, as indicated by the

abbreviations in the top of each panel. Grey lines and circles show the growth rate r of each

replicate within the 50:50 proportion. Orange circles and lines highlight the mean of all surviv-

ing populations per combination (note the number of replicate populations varies between

combinations because of extinction; GEN plus CAR has no surviving population, and there-

fore it is not shown). The data used for these panels are provided in S4 Data.

(TIF)

S7 Fig. Growth rates of the monotherapies over 10 seasons of experimental evolution. Each

panel corresponds to a single-drug treatment. Grey lines and circles show the growth rate r of

each replicate within a single-drug treatment (note that replicates among antibiotics differ;

shown in brackets). Dark cyan circles and lines highlight the mean of all surviving populations

per antibiotic. The data used for these panels are provided in S4 Data.

(TIF)

S8 Fig. ACE networks for each drug interaction type. ACE networks were calculated for

only synergistic (top panels), antagonistic (middle panels), and additive combinations (bottom

panels). As in the main text, they were built on 2 parameters: (A, C, E) rates of adaptation and

(B, D, F) extinction rates. Rates of adaptation and extinction numbers were calculated from

the data provided in S4 Data. Abbreviations indicate antibiotics. A, azlocillin; ACE, antibiotic

combination efficacy; C, ciprofloxacin; D, doripenem; F, cefsulodin; G, gentamicin; I, imipe-

nem; K, carbenicillin; P, piperacillin + tazobactam; Q, ticarcillin; S, streptomycin; T, tobramy-

cin; Z, ceftazidime.

(TIF)

S9 Fig. ACE networks for the different collateral effects. ACE networks were calculated for

only collaterally sensitive drug pairs (top panels) or collaterally resistant combinations (bottom

panels). As in the main text, they were built on 2 parameters: (A, C) rates of adaptation and (B,

D) extinction rates. Rates of adaptation and extinction numbers were calculated from the data

provided in S4 Data. Abbreviations indicate antibiotics. A, azlocillin; ACE, antibiotic combina-

tion efficacy; C, ciprofloxacin; D, doripenem; F, cefsulodin; G, gentamicin; I, imipenem; K,

carbenicillin; P, piperacillin + tazobactam; Q, ticarcillin; S, streptomycin; T, tobramycin; Z,

ceftazidime.

(TIF)

S10 Fig. Rates of adaptation in single-drug treatments. Rates of adaptation are shown for

the treatments with only 1 antibiotic. Colors indicate the different antibiotic classes: fluoro-

quinolones (red), carbapenems (green), cephalosporins (gold), penicillins (orange), and ami-

noglycosides (light blue). The number of populations in each treatment varies depending on

the number of times a given drug is part of the tested combinations and the number of extinct
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populations (shown in brackets for each drug). The data used for these panels are provided in

S4 Data.

(TIF)

S11 Fig. Changes in growth rate of 4 selected combinations with fixed initial inhibitory lev-

els. Each column corresponds to a specific antibiotic combination, and the rows represent the

different initial inhibitory levels considered: from top to bottom are shown the no-drug con-

trols (black), the monotherapies (turquoise and purple; the numbers given in brackets after the

antibiotic abbreviation indicates which monotherapy is shown first or second), and 8 different

starting levels of inhibition of the combinations (from approximately IC50 in yellow to>IC95

in dark red). Grey points and lines indicate the replicate population, while the colored points

and lines show the mean per treatment and combination. Rates of adaptation, extinction num-

bers, and inhibitory levels were calculated from the data provided in S5 Data. IC50, concentra-

tion inhibiting 50% of bacterial growth; IC90, concentration inhibiting 90% of bacterial

growth.

(TIF)

S1 Table. The α test of 52 drug combinations used against P. aeruginosa.

(DOCX)

S2 Table. Rates of adaptation of all combinations relative to the weaker and stronger com-

ponents in a drug pair.

(DOCX)

S3 Table. Effect test of the initial inhibitory level, interaction type, and combination on

rates of adaptation.

(DOCX)

S4 Table. Effect test of the initial inhibitory level, interaction type, and combination on the

number of extinctions.

(DOCX)

S1 Data. Key to datasets (Readme file).

(RTF)

S2 Data. OD measurements after 12 h of growth in different proportions of a given drug

pair for all 52 antibiotic combinations. These data were used to infer the drug interaction

type using the α estimator.

(TXT)

S3 Data. OD measurements after 12 h of growth in drug checkerboards evaluating the

interaction of 8 selected antibiotic combinations. These data were used to calculate the

degree of synergy S, to correlate it to the values obtained for the same drug pairs using the α
estimator.

(TXT)

S4 Data. OD measurements taken every 15 min for 38 antibiotic pairs during a total of 120

h. These data were then used to infer adaptation rates in surviving replicate populations and

the number of extinction events occurring per combination and treatment.

(TXT)

S5 Data. OD measurements taken every 15 min for 4 selected antibiotic pairs with varying

levels of inhibition during a total of 120 h. These data were then used to infer adaptation

rates in surviving replicate populations and the number of extinction events occurring per
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combination and treatment.

(TXT)
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