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The endoplasmic reticulum (ER) and mitochondria are classically regarded as very
dynamic organelles in cell lines. Their frequent morphological changes and repositioning
underlie the transient generation of physical contact sites (so-called mitochondria-ER
contacts, or MERCs) which are believed to support metabolic processes central for
cellular signaling and function. The extent of regulation over these organelle dynamics
has likely further achieved a higher level of complexity in polarized cells like neurons
and astrocytes to match their elaborated geometries and specialized functions, thus
ensuring the maintenance of MERCs at metabolically demanding locations far from the
soma. Yet, live imaging of adult brain tissue has recently revealed that the true extent of
mitochondrial dynamics in astrocytes is significantly lower than in cell culture settings.
On one hand, this suggests that organelle dynamics in mature astroglia in vivo may
be highly regulated and perhaps triggered only by defined physiological stimuli. On the
other hand, this extent of control may greatly facilitate the stabilization of those MERCs
required to maintain regionalized metabolic domains underlying key astrocytic functions.
In this perspective, we review recent evidence suggesting that the resulting spatial
distribution of mitochondria and ER in astrocytes in vivo may create the conditions for
maintaining extensive MERCs within specialized territories – like perivascular endfeet –
and discuss the possibility that their enrichment at these distal locations may facilitate
specific forms of cellular plasticity relevant for physiology and disease.

Keywords: mitochondrial dynamics, endoplasmic reticulum, astrocytes, calcium, endfoot, Mfn2, mitochondria,
MERCs

INTRODUCTION

Substantial effort is being made in understanding the mechanisms that regulate tethering between
mitochondria and other organelles, particularly the endoplasmic reticulum (ER), given that
important functions have been ascribed to these mitochondria-ER contacts (MERCs) (Csordas
et al., 2018). In particular, evidence exists for specific portions of the mitochondrial outer
membrane being opposed by ER tubules within a distance of 15–30 nm. A growing number
of tethering and regulatory proteins has been identified or proposed for maintaining in place
these MERCs (Csordas et al., 2018). So far, these specialized domains have been implicated
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in the regulation of key cellular processes such as phospholipid
metabolism (Vance, 2015; Dimmer and Rapaport, 2017),
autophagosome formation (Hamasaki et al., 2013), and the
transfer of Ca2+ between the two organelles (Csordas and
Hajnoczky, 2009; Raffaello et al., 2016). Furthermore, MERCs
also serve as sub-cellular signaling platforms, particularly
in coordinating reactive oxygen species (ROS) signaling
nanodomains (Booth et al., 2016). Finally, studies in cell lines
have shown that the transient formation of MERCs is linked
to membrane and organelle remodeling (Friedman et al., 2011;
Lewis et al., 2016). While emerging evidence has begun disclosing
the physiological and pathological relevance of MERCs in some
peripheral tissues, our understanding of the principles regulating
their formation and maintenance in the central nervous system,
as well as their role for cellular function, is very limited. In part,
this is likely due to the marked heterogeneity of cell sub-types
characterizing brain tissue, which poses significant challenges in
properly examining with sufficient spatial resolution the extent
of MERCs and their dynamics in situ via imaging approaches.
Electron microscopy is the method of choice for studying
organelle contact sites and reconstructing organelle networks in
whole cells, however, in brain tissue this approach may still be
very time consuming on account of the geometric complexity
of most cells contained within (e.g., neurons, astrocytes, and
oligodendrocytes) and the intrinsic variability in cell sub-types
across brain regions. As a result, these studies generally lead to
the reconstruction of only few selected cells or even just part of
them. Likewise, a systematic analysis of the signaling functions
of MERCs in brain cells in situ may prove challenging to achieve.
Yet, in parallel to recent studies that have begun addressing the
extent of MERCs and potential regulatory tethering proteins in
neurons (Hirabayashi et al., 2017; Wu et al., 2017), some of the
implications of MERC dysfunction in neurodegeneration are also
emerging (Area-Gomez and Schon, 2017; De Mario et al., 2017).
Significant efforts are being also made to investigate organelle
morphology, dynamics, and MERCs on at least one other type
of brain cell, namely the astrocyte. Astrocytes exerts essential
metabolic functions in the adult brain owing to their unique
cellular architecture and positioning within the neurovascular
unit (Figure 1), and recent studies have revealed an unexpected
complexity of their mitochondrial and ER networks in vivo.
Intriguingly, alongside with their elaborated morphologies, these
two organelles were also found to be differentially distributed
across cellular territories (Mathiisen et al., 2010; Cali et al., 2019;
Göbel et al., 2020) and to give rise to a significant extent of
MERCs in remote regions of the astrocyte – like the perivascular
endfeet – where their specialized functions are most likely
sustaining important roles in physiological and disease settings.

UNEXPECTED COMPLEXITY OF
MITOCHONDRIAL AND ER NETWORKS
IN ASTROCYTES

While the ER has been under intense investigation for its
recognized role in Ca2+ handling in astrocytes (Bazargani
and Attwell, 2016), the structure and function of astrocytic

mitochondria have received much less attention. This
underestimation of astrocytic mitochondrial metabolism
has been, at least in part, a direct consequence of the generally
accepted notion that astrocytes – in contrast to neurons –
are mostly glycolytic in nature (Hertz et al., 2007; Supplie
et al., 2017), and so this bias has for long time diverted
the attention away from mitochondria, in which oxidative
phosphorylation (OXPHOS) takes place. However, the recent
employment of mitochondrial-targeted fluorescent indicators to
investigate astrocytes ex vivo and in vivo disclosed a convoluted
mitochondrial network, which is indicative of astrocytes
relying substantially on this organelle for energy metabolism.
In particular, the use of mito-YFP (and similar) reporters in
astrocytes combined with high-resolution optic and electron
microscopy recently allowed to fully appreciate the extent
of mitochondrial mass and heterogeneity of mitochondrial
morphologies displayed by astrocytes across their territories
(Motori et al., 2013; Stephen et al., 2015; Agarwal et al., 2017;
Gobel et al., 2018; Jackson and Robinson, 2018; Henneberger
et al., 2019). While the exact morphological transformation of
the mitochondrial network throughout astrocyte development
still remains to be investigated, it is now clear that mature
astrocytes possess a robust mitochondrial network, with large
bundles of mitochondria that coalesce within main branches
originating from the soma and invade the cell’s periphery
(Figure 2A; Motori et al., 2013; Cali et al., 2019). Interestingly,
the larger the distance from the soma, the smaller mitochondria
appear with respect to their size, particularly within the
numerous fine branches and branchlets that surround neuronal
synapses (Figures 2B,C). This seemingly recapitulates what has
been described in neurons, where active mechanisms sculpt
mitochondrial morphology in distal dendrites and axons to
achieve proper mitochondrial distribution at synapses (Li et al.,
2004; Lewis et al., 2018). However, in contrast to fine astrocytic
perisynaptic processes, which can at best accommodate the
smallest mitochondria (Lovatt et al., 2007; Agarwal et al., 2017),
perivascular endfeet (i.e., processes unsheathing most of the
brain microvasculature and ensuring transfer of ions, water,
and key metabolic substrates from/to the blood-brain-barrier)
make a unique exception being capable to host quite elaborated
morphologies, including long and branched mitochondria
(Figure 2C; Mathiisen et al., 2010). Specifically, ultrastructural
studies of the endfoot showed that the astrocytic terminals
wrapping around microvessels are often packed with large
mitochondria and, interestingly, ER tubules (Mathiisen et al.,
2010; Göbel et al., 2020). Intriguingly, in contrast to the ER in
perisynaptic processes which presents itself as short smooth
tubules, the endfeet are characterized by a rather peculiar
distribution of the ER. In these processes long bundles of both
smooth and rough ER surround the basal lamina facing the
endothelial side, thus generating a layer of ER membranes that
virtually shield mitochondria from directly contacting the basal
lamina (Göbel et al., 2020). While ER tubules are also found
distributed across the entirety of the endfoot, the unique layered
disposition of ER and mitochondria in the region adjacent the
endothelium suggests that this arrangement of organelles may
serve specific perivascular functions.
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FIGURE 1 | Overview of astrocyte functions in the neurovascular unit. Scheme illustrating the main metabolic functions of astrocytes at their perivascular (endfeet)
and perisynaptic processes. Glucose is mostly taken up via the endfeet, where also ions and water molecules can be actively exchanged with the blood-brain
barrier. Following glycolytic conversion to pyruvate, glucose can be utilized as energy substrate by astrocytic mitochondria or further converted into lactate to fuel
synaptic transmission. At perisynaptic processes, astrocytes contribute to replenish the glutamate pool of neurotransmitters via the glutamate-glutamine cycle.
Dashed lines between metabolites indicate a metabolic conversion. Plasma membrane transporters and ionic pumps are indicated with blue (for astrocytes) or gray
(for neurons) symbols.

LOCALIZED ENRICHMENT OF MERCs
AND ITS CONSEQUENCE IN
ASTROCYTES

One of the best-studied aspects of astrocyte physiology is the
remarkable extent and diversity of cytosolic Ca2+ transients
displayed by the processes of these cells (Shigetomi et al.,
2016). Thus, it is not surprising that these cells are differentially
enriched in size and density of mitochondria as well as ER
membranes across their territories, as both these two organelles
play important roles in Ca2+ buffering and regulation. However,

it is noteworthy that out of the vast number of mitochondria
contained in all distal astrocytic processes, those confined within
the ∼3 (in average) perivascular endfeet per astrocyte contain
almost twice the extent of MERCs as compared to those in
perisynaptic processes (Göbel et al., 2020). In part, this is
facilitated by the natural enrichment in mitochondria and ER
membranes within the endfoot. However, this asymmetry in
the distribution of MERCs suggests that the perivascular region
may be characterized by particularly elevated rates of lipid
homeostasis, Ca2+ signaling and membrane dynamics, which
so far represent the main functions ascribed to these contact
sites (Csordas et al., 2018). Similar to other differentiated cell
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FIGURE 2 | Asymmetric distribution of MERCs in astrocytic processes. (A) Example of a cortical astrocyte co-transduced with ER-GFP and mito-RFP viruses,
showing the distribution of both organelles in vivo across astrocytic territories, particularly perivascular endfeet and fine branchlets. Immunostaining against the
endothelial marker CD31, labeling the vasculature, is shown. (B) Scheme of an astrocyte showing the location of somas, main branches, perisynaptic, and
perivascular processes (the latter ones visible as tube-like structures). (C) Electron microscopic pictures of distinct portions of the astrocyte (dashed areas
correspond to astrocytic processes). While in main branches and endfeet large mitochondria are often visible, in processes surrounding synapses mitochondria
display a smaller size. In each panel, mitochondria and ER are highlighted in different colors (yellow, mitochondria; red, ER). Lower panels depict zooms of the boxed
areas, pointing to putative MERCs. EC, endothelial cell.

types, it is still unclear which exact proteins regulate the extent
of MERCs in astrocytes out of the many possible proposed
candidates (Csordas et al., 2018). While it is tempting to assume
that many of the proposed natural tethers may share similar
functions also in astrocytes, cell-type specificity within brain
tissue may bring about additional layers of complexity, with
certain tethers having for example a more prominent role in
neurons than in astrocytes (Hirabayashi et al., 2017; Fecher
et al., 2019). Furthermore, the intrinsic structural heterogeneity
of MERCs among distinct astrocytic territories likely reflects a
sub-specialization in ER-mitochondria tether proteins. If this
is the case, one may expect an asymmetric enrichment in

certain tether proteins among astrocytic territories, mirroring
intracellular differences in organelle morphology and possibly
function. Despite lack of clear evidence in astrocytes for the
regulatory role of many previously proposed MERC-associated
proteins (Csordas et al., 2018), recent work has begun to
shed some light on the relevance of local MERC enrichment
in astrocyte processes. For example, conditional deletion of
the GTPase Mitofusin 2 (Mfn2), which resides at the ER-
mitochondria interface (Hung et al., 2017) and has been proposed
to regulate contact sites in cell lines (de Brito and Scorrano,
2008; Filadi et al., 2015; Naon et al., 2016), was indeed sufficient
to alter the extent of MERCs in vivo and as a result interfere

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 October 2020 | Volume 8 | Article 592651

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-592651 October 17, 2020 Time: 20:34 # 5

Bergami and Motori Mitochondrial Contact Sites in Astrocytes

with the Ca2+ uptake capacity of astrocytic mitochondria (Göbel
et al., 2020). In turn, the impaired mitochondrial Ca2+ buffering
had direct consequences for local cytosolic transients, however,
this effect appeared to be most prominent within the endfeet.
Importantly, these functional alterations at the mitochondrial
level were almost completely restored following expression of
an artificial ER-mitochondria tether (Csordas et al., 2006; Göbel
et al., 2020). This example demonstrates the functional relevance
of an asymmetric distribution of MERCs in astrocytes, and
provides a first evidence that a regionalized signaling in glial
cells can be facilitated by local enrichments in mitochondrial and
ER organelles. Yet, to which extent astrocytic MERCs can be
considered as dynamic domains, especially in an in vivo situation,
remains unclear. In cells in vitro, including astrocytes, these
two organelles display a very active behavior, with mitochondria
undergoing frequent fusion and fission events and ER tubules
forming both stable and transient contacts at locations of
future mitochondrial division (Friedman et al., 2011; Motori
et al., 2013; Lewis et al., 2016). However, despite evidence for
mitochondrial trafficking and fusion/fission dynamics in both
acute and organotypic brain slice preparations (Motori et al.,
2013; Jackson and Robinson, 2015; Stephen et al., 2015), distinct
astrocytic territories appear to be independently regulated, with
perivascular endfeet displaying much less dynamics as compared
for instance to other branches and terminals (Göbel et al.,
2020). However, it is unclear to what extent mitochondrial
dynamics reflect actual changes in MERCs in astrocytes in situ.
Given the spatial heterogeneity of some of the physiological
functions to which MERCs may contribute (e.g., local Ca2+

dynamics) (Shigetomi et al., 2013; Agarwal et al., 2017; Bindocci
et al., 2017), it is tempting to speculate that certain regions of
the astrocyte might be subjected to a higher level of MERC
regulation compared to other territories. For instance, bursts of
dynamic changes in mitochondrial morphology and MERCs at
perisynaptic processes may take place only in response to specific
stimuli, as in the case of neurotransmitter spillover (Jackson
et al., 2014; Stephen et al., 2015) or following induction of
synaptic plasticity (i.e., potentiation) (Henneberger et al., 2019).
Likely, the optimization of existing genetically encoded molecular
sensors (Csordas et al., 2010) and the further development
of in situ super-resolution approaches (Jakobs et al., 2020)
may ultimately provide better access to live-cell organelle
contact dynamics with minimal interference and possibly link
these to specific astrocytic cellular functions (Iliff et al., 2012;
Mishra et al., 2016).

RELEVANCE OF MERCs FOR
ASTROCYTIC REACTIVITY STATES

In response to brain injury and inflammation, astrocytes are
well known for their capability to acquire a so-called “reactivity
state,” which is known to influence the progression of the
initial insult (Khakh and Sofroniew, 2015). Indeed, reactive
astrocytes – classically recognizable for their hypertrophic
aspect and increased expression of markers such as glial
fibrillary acidic protein (GFAP) (an intermediate filament

marker) – have been identified in most neurological diseases
(Sofroniew, 2014). Several studies, however, pointed out that
this seemingly unique cellular state is rather characterized
by a spectrum of heterogeneous changes, including profound
alterations in gene and protein expression, thus suggesting
the existence of multiple reactive states depending on type,
severity, location and context of the triggering insult (Sofroniew,
2014; Liddelow and Barres, 2017). Further evidence now
disclosed that reactive astrocytes may undergo significant
metabolic rewiring when facing challenging conditions, as in
the case of antiviral signaling response or in mouse models
of Huntington disease (Chao et al., 2019; Polyzos et al.,
2019). Yet, whether this rewiring under these conditions
also involves changes in the metabolic functions of MERCs
remains to be investigated. Metabolic flexibility in brain
cells in vivo has been known for quite some time to be
a fundamental feature of glial cells (Hertz et al., 2007;
Weber and Barros, 2015), and while only recent work has
begun to reveal neuron-specific forms of metabolic rewiring
(Motori et al., 2020), the fact that astrocytes can efficiently
reprogram their energy metabolism may explain their almost
unique resilience to brain damage. In this respect, it is
becoming clear that while reactive astrocytes can increase
their glycolytic and glycogenolytic rates (Brown et al., 1995;
Almeida et al., 2004; Motori et al., 2013), mitochondrial
metabolism also plays a fundamental role in sustaining astrocyte
functions following brain insult (Ignatenko et al., 2018; Fiebig
et al., 2019). This reactivity state is indeed accompanied
by a time-dependent transformation of the mitochondrial
network in astrocytes directly exposed to acute injury and
inflammation, which encompasses a general fragmentation
shortly after injury followed by network re-tubulation during
the next few weeks (Motori et al., 2013). Furthermore,
simultaneous investigation of ER and mitochondrial network
dynamics in injury-induced reactive astrocytes disclosed the
marked accumulation of both these organelles in perivascular
endfeet during an early phase after the initial insult, thus
facilitating the formation of MERCs in these perivascular
processes (Göbel et al., 2020). Preventing or enhancing this
accumulation had effects not only on the magnitude and
duration of local cytosolic Ca2+ transients of the astrocyte,
but also influenced the extent of neo-angiogenesis in a model
of penetrating brain injury (Göbel et al., 2020). While the
precise mechanisms underlying this non-cell-autonomous effect
on endothelial cells can only be speculated, these findings
suggest that a dynamic reorganization of MERCs at precise
locations of the astrocyte may serve to generate local metabolic
domains important for tissue healing. Further studies are thus
needed to investigate whether similar changes may also take
place at perisynaptic processes. Likewise, additional work is
necessary to establish the role of other tethers as well as
putative regulatory MERC proteins other than Mfn2, and
ascertain whether they might influence MERCs in astrocytes
as well as astrocyte function. Still, these findings obviously
raise the intriguing possibility that regulating the extent
of MERCs in astrocytes (or other brain cells) may play
a role in expressing distinct reactivity states, with direct

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 October 2020 | Volume 8 | Article 592651

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-592651 October 17, 2020 Time: 20:34 # 6

Bergami and Motori Mitochondrial Contact Sites in Astrocytes

consequences for neuronal viability (Anderson et al., 2016;
Liddelow et al., 2017).

CONCLUSION

Recent progress in microscopy and genetic techniques began
unveiling an important role played by mitochondria and
ER networks in regulating astrocytic functions, yet our
understanding of organelle physiology and “contact-ology” in
astrocytes is still rudimentary. For instance, we do not fully
understand how much dynamic or static these contact sites are
between ER and mitochondria. We also likely underestimate
the extent to which MERCs differentially contribute to specific
metabolic or signaling functions in distinct territories of the
astrocyte. Likewise, very little is known about the role of
astrocytic mitochondrial contacts with other organelles, for
instance during postnatal astrocytic development, or following
the acquisition of reactive states. In light of the recent suggestion
that mitochondria may be transferred from/to astrocytes and
other brain cells in settings of disease (Davis et al., 2014;
Joshi et al., 2019), and that this transfer may even possibly
compensate for certain metabolic deficits (Hayakawa et al.,
2016), understanding the mechanisms regulating mitochondrial
function at sites of contact with other organelles may lay the
ground for targeted therapeutic approaches to improve brain
repair during acute trauma and chronic neurodegeneration.
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