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Tumor-infiltrating immune cells shape the tumor microenvironment and are closely related
to clinical outcomes. Several transcription factors (TFs) have also been reported to
regulate the antitumor activity and immune cell infiltration. This study aimed to quantify
the populations of different immune cells infiltrated in tumor samples based on the bulk
RNA sequencing data obtained from 50 cancer patients using the CIBERSORT and the
EPIC algorithm. Weighted gene coexpression network analysis (WGCNA) identified
eigengene modules strongly associated with tumorigenesis and the activation of CD4+
memory T cells, dendritic cells, and macrophages. TF genes FOXM1,MYBL2, TAL1, and
ERG are central in the subnetworks of the eigengene modules associated with immune-
related genes. The analysis of The Cancer Genome Atlas (TCGA) cancer data confirmed
these findings and further showed that the expression of these potential TF genes
regulating immune infiltration, and the immune-related genes that they regulated, was
associated with the survival of patients within multiple cancers. Exome-seq was
performed on 24 paired samples that also had RNA-seq data. The expression
quantitative trait loci (eQTL) analysis showed that mutations were significantly more
frequent in the regions flanking the TF genes compared with those of non-TF genes,
suggesting a driver role of these TF genes regulating immune infiltration. Taken together,
this study presented a practical method for identifying genes that regulate immune
infiltration. These genes could be potential biomarkers for cancer prognosis and
possible therapeutic targets.
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INTRODUCTION

Cancer immunotherapy involves the use of drugs to either relieve
the immune suppression of the tumor microenvironment or
strengthen the immune system to eliminate cancer cells; it indeed
provides enormous durable clinical benefits to patients with late-
stage cancer across many tumor types (1). Tumor-infiltrating
immune cells can shape the tumor microenvironment and are
closely linked to immunotherapy. Compositions, localizations,
and even orientations of tumor-infiltrating immune cells can
influence the efficacy of anticancer immune responses (2, 3). The
quantitation of the immune contexture is crucial to not only
the prognosis (4) but also the checkpoint-blocker-based
monotherapy or combination therapy (5). Many computation
methods have been developed to study the immune cell
composition dynamics during tumorigenesis, such as EPIC (6),
TIMER (7), and CIBERSORT (8). Based on the gene expression
profiles in the bulk tumor tissue and the specific gene expression
profiles of various immune cells, these methods allow the
quantification of immune cell composition by the conventional
gene profiling methods, including bulk RNA-seq.

Several transcription factors (TFs) have been reported to
suppress the antitumor immune response in various solid
tumors. The expression pattern of forkhead box protein P3
(FOXP3) in tumor-infiltrating lymphocytes of primary
cutaneous melanoma (PCM) suggests that FOXP3-expressing
lymphocytes may suppress the local anti-PCM immune response
in the microenvironment, thus favoring melanoma progression
(9). A recent study in human breast cancer identified FOXP1 as
an important negative regulator of antitumor immune responses
via its control of the chemokine expression (10). Signal
transducer and activator of transcription 3 (STAT3) is
constitutively activated in both tumor and immune cells,
representing a promising target for cancer therapy. STAT3
directly regulates the expression of oncogenes and triggers
tumor progression and also induces tumor-induced
immunosuppression that indirectly promotes human cancer
growth (11). TF c-Maf controls the immunosuppressive
macrophage polarization and function in cancer via the
transcriptional regulation of M2-related genes, serving as a
metabolic checkpoint, overexpressing in tumor-associated
macrophages (TAMs), and regulating TAM immunosuppressive
function. The knockout of c-Maf in myeloid cells contributes to
decreased tumor burden with improved antitumor T-cell immunity
(12). Solid tumors adapt to hypoxia by upregulating TF HIF-1a.
Meanwhile, tumor-infiltrating natural killer (NK) cells are
frequently dysfunctional in killing tumor cells (13). A recent
single-cell RNA-seq study has shown that the depletion of HIF-
1a in mouse NK cells elevates antitumor activity and inhibits tumor
growth. Another study in a mouse model and clinical samples
established that HIF-1a is a potent inhibitor of nuclear factor kappa
B (NF-kB) signaling driven by interleukin (IL)-18 and the
antitumor activity of tumor-infiltrating NK cells and, therefore,
represents a potential immunotherapy target (14).

A few TFs are capable of motivating immunity cells to
enhance their immune response, such as T-box expressed in T
cells (T-bet) and forkhead box M1 (FoxM1). T-bet has been
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shown as one of the crucial TFs responsible for controlling the
fate of both innate and adaptive immune cells, and its expression
in many immune cells on mucosal surfaces can increase
immunity (15). After treatment with Tet-derivative doxycycline
to induce FOXM1, transgenic mice exhibited hepatic infiltration
of macrophages (16). Despite the importance of TFs in regulating
immune cell infiltration and immune response, a paucity of
large-scale studies investigating the association of TFs with
immune infiltration in pan-cancers remains.

In this study, we used the CIBERSORT technology on 100
paired bulk RNA-seq data from nine different patients with solid
tumors to systematically explore the tumor-associated changes in
immune cell composition. Moreover, we used weighted gene
coexpression network analysis (WGCNA) to identify novel TFs
strongly associated with tumor-associated immune cell
infiltration. We found that TFs, including FOXM1, MYBL2,
ERG, and TAL1, together with many immune-related
genes, form several TF–immune-related gene expression
networks (TF-iGENs). The analysis of The Cancer Genome
Atlas (TCGA) data showed that the expression level of these
genes involved in the same TF-iGEN were consistently
associated with tumorigenesis and the survival of patients
within multiple cancers. Public datasets from TCGA also
validated the connection between TF-iGEN networks and
immune infiltration. The expression quantitative trait locus
(eQTL) analysis of exome-seq data showed that mutations
were significantly more frequent in the regions flanking the TF
genes than those with the non-TF genes. Our research presented
a practical method for identifying TFs regulating immune
infiltration, which could be potential new prognosis indicators
and possible therapeutic targets in pan-cancers.
MATERIALS AND METHODS

Tumor and Normal Dataset
We previously performed RNA-seq sequencing on 50 patients,
including 100 RNA-seq data of the human tumor and tumor
adjacent normal tissues covering nine cancer types, including six
cervical squamous cell carcinoma (CSCC), six esophageal
squamous cell carcinoma (ESCC), six gastric adenocarcinoma
(GAC), six hepatocellular carcinoma (HCC), six lung
adenocarcinoma (LUAD), six lung squamous cell carcinoma
(LUSC), five papillary thyroid carcinoma (PTC), six small-cell
lung carcinoma (SCLC), and three gastric signet-ring cell
carcinoma (SRCC) (GEO accession: GSE87410) (Table S1).

RNA-seq Data Processing and Analysis of
Differentially Expressed Genes
For RNA-seq data, adaptors and low-quality bases were trimmed
from raw sequencing reads using the FASTX Toolkit (Version
0.0.13). Reads shorter than 16 nt were discarded. Clean reads
were aligned to the human GRCh38 genome by Tophat2 (17)
allowing four mismatches. Uniquely mapped reads were
ultimately used to calculate read number and reads per
kilobase of exon per million fragments mapped (FPKM) for
August 2021 | Volume 12 | Article 644350
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each gene. The software edgeR (18), which is specifically used
to analyze differentially expressed genes (DEGs), was applied
to screen the RNA-seq data for DEGs. The results were
analyzed based on fold change (FC ≥2 or ≤0.5) and false
discovery rate (FDR ≤0.05) to determine whether a gene was
differentially expressed.

Assessment of Tumor-Infiltrating
Immune Cells
The CIBERSORT algorithm (8) (v1.03) was used with the default
parameter for estimating immune cell fractions using FPKM
values of each expressed gene. A total of 21 human immune cell
phenotypes were analyzed in the study, including seven T cell
types [CD8 T cells, naive CD4 T cells, memory CD4 resting T
cells, memory CD4 activated T cells, T follicular helper cells, and
regulatory T cells (Tregs)]; naive and memory B cells; plasma
cells; resting and activated NK cells; monocytes; macrophages
M0, M1, and M2; resting and activated dendritic cells; resting
and activated mast cells; eosinophils; and neutrophils. An R
package, Immunedeconv (19) (v2.0.2), that provided a unified
interface to seven deconvolution methods was used for
estimating immune cell fractions, while EPIC (20) was applied
for estimating immune cell fractions.

WGCNA Analysis
We applied WGCNA to fully understand the gene expression
pattern in pan-cancers (21) to cluster genes having similar
expression pattern with default parameters. All DEGs between
the tumor and adjacent normal samples for each cancer type
were used as input data. Eigengenes for each clustering module
were used as the representative expression pattern of genes in
each module. Module–trait associations were also investigated
using WGCNA.

TF-iGENs Analysis
Eigengenemoduleswere selected tobuild aTF-iGEN.Theexpression
levels of TF genes, LM22 marker genes, and immune-related genes
(https://www.immport.org/shared/genelists) from the ImmPort
database for each module were retained. Then, the Spearman
correlation for each gene pair was calculated. Gene pairs with
Spearman correlation coefficients >0.6 (or less than −0.6) and a
corresponding p value (Benjamini–Hochberg corrected) <0.01 were
considered to be significantly correlated. Then, TF–immune-related
gene pairs or TF–LM22 gene pairs were retained when the TF–gene
pair was found in the Encode TF target database (https://maayanlab.
cloud/Harmonizome/dataset/ENCODE+Transcription+Factor+
Targets) or TRRUST database (https://www.grnpedia.org/trrust/).
The TF-iGEN was constructed using Cytoscape software.

TCGA Dataset Analysis
Expression data for 33 cancer types from TCGA were analyzed
using GEPIA2 (22), a web-based tool that compares gene
expression between tumor and normal tissues from TCGA.
Furthermore, GEPIA was used to comprehensively analyze the
association of gene expression with overall survival (OS) in
various types of cancer. GEPIA uses the Mantel–Cox test for
hypothesis test. p < 0.05 was labeled as significant.
Frontiers in Immunology | www.frontiersin.org 3
Exome Sequencing
Exome sequencing of tumor and adjacent normal tissues was
performed on 12 of the 50 patients having RNA-seq data (NCBI
BIOPROJECT: PRJNA686225). Genomic DNA was extracted by
the phenol chloroform extraction of nuclear pellets or using a
Qiagen DNeasy Blood and Tissue kit (Qiagen). Purified genomic
DNA was sheared to fragments of 100–500 base pairs, and 500
ng fragmented DNA was used for pair-end library preparation
with a Truseq DNA library preparation kit (Illumina). After end-
repair and 3′ dA overhanging, fragmented DNA was ligated to
Truseq adaptors (Illumina) and amplified for 10 cycles. Liquid-
phase sequence capture was performed using a NimbleGen
SeqCap kit (Roche). The Truseq DNA libraries were denatured
into single-stranded DNA and hybridized to SeqCap oligo pools.
The bound DNA fragments were eluted and PCR amplified for
another 10 cycles. Fragments corresponding to 200–400 bp were
purified with AMpure Xp beads and stored at −80°C until use for
sequencing. Enriched libraries were sequenced on an Illumina
Nextseq 500 system (ABLife Inc.).

Exome-seq Data Analysis
Adaptors were removed from raw reads using cutadapt (version
1.7.1) first, and then, reads were processed with the FASTX Toolkit
(version 0.0.14) for trimming low-quality bases (qualities <20) and
removing low-quality reads (<70% of read length with qualities
<20). Then, N-containing reads were trimmed from N base. High-
quality reads longer than 16 nt were aligned to the human genome
(GRCh38) using BWA-MEM v 0.7.10-r789 (23) with default
parameters. The resulting alignment was sorted by coordinates
and further converted into binary alignment map (BAM) format
using samtools v 1.6. The rmdup module of samtools was used to
remove the duplicates from the data. The Genome Analysis Tool Kit
(GATK) v3.5-0-g36282e4 (24) modules RealignerTargetCreator,
Indel Re-aligner, and Base Re-calibrator were used to preprocess
the alignments. During base quality recalibration, dbSNP variants
and 1,000 genome variants were used as known sites. Target-
capture efficiency metrics were determined using Picard
HsMetrics. The realigned and recalibrated BAM file was used as
an input to GATK HaplotypeCaller using the following parameters:
genotyping_mode DISCOVERY -stand_emit_conf 10
-stand_call_conf 30. Finally, raw variant calls were soft filtered
using GATK Variant Filtration based on the following parameters:
Low Qual (30 < Q < 50). Variants were annotated using
ANNOVAR (25).

Detection of Somatic Mutations
Somatic mutations were identified using GATK Mutect2 in
matched tumor and normal samples with default parameters.
Candidate somatic mutations were further filtered based on gene
annotations to identify those occurring in exon regions. The
mutation landscape and visualization were created using the
MafTools (v. 2.6.0) (26) in R software.

eQTL Analysis
We performed additional eQTL analysis in 22 exome samples to
validate the correlation between expression and mutation. We used
MatrixeQTL(v2.3) (27) to test cis-eQTLassociations,andparameters
August 2021 | Volume 12 | Article 644350

https://www.immport.org/shared/genelists
https://maayanlab.cloud/Harmonizome/dataset/ENCODE+Transcription+Factor+Targets
https://maayanlab.cloud/Harmonizome/dataset/ENCODE+Transcription+Factor+Targets
https://maayanlab.cloud/Harmonizome/dataset/ENCODE+Transcription+Factor+Targets
https://www.grnpedia.org/trrust/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Liu et al. Novel Immune Infiltration Associated TFs
“useModel =modelLINEAR,” “errorCovariance = numeric(),” and
“cisDist=1000000” were applied to assess the statistical significance
between gene expression and single-nucleotide polymorphism
(SNP) genotypes.

Functional Enrichment Analysis
To sort out functional categories of DEGs, Gene Ontology
(GO) terms and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways were identified using KOBAS v2.0 (28).
Hypergeometric test and Benjamini–Hochberg false discovery
rate (FDR) controlling procedure were used to define the
enrichment of each term. To explore the biological processes
and signal pathways related to immune system process pathway,
enrichment analysis of genes in each WGCNA modules was
performed by Gene Ontology and pathway analysis in
Metascape (29).

Statistical Analysis
All data presented were reproduced in at least three independent
experiments. Statistical analysis was performed using the R
software (https://www.r-project.org/) unless otherwise stated.
Significance of differences was evaluated with either the
Student’s t-test when only two groups were compared or the
hypergeometric test for functional term enrichment analysis. No
statistical methods were used to predetermine sample size (*p ≤
0.05, **p ≤ 0.01, and ***p ≤ 0.001).
RESULTS

Weighted Gene Coexpression Analysis
Obtained Tumor-Enriched Modules
Associated With the Estimated Proportion
of Immune Cell Type Traits
Tumor-infiltrating immune cells can shape the tumor
microenvironment and are closely linked to immunotherapy.
Using the CIBERSORT algorithm, we estimated the fraction of
21 subpopulations of immune cell types in 50 patients with
CSCC, ESCC, GAC, HCC, LUAD, LUSC, PTC, SCLC, and SRCC
(Table S2). Consistent with previous reports, the proportions of
immune cells varied between different tumor types and their
adjacent normal tissues (Figure S1A). Interestingly, the
proportions of regulatory T cells (Tregs), M0 macrophages, T
follicular helper cells, M1 macrophages, memory CD4 activated
T cells, and dendritic cells in pan-cancer tissues were
significantly (p < 0.05) higher than those in adjacent normal
tissues, indicating their infiltration during tumorigenesis. On the
contrary, the proportions of memory CD4 resting T cells and
CD8 T cells were significantly (p < 0.05) lower (Figure 1A). The
fluctuations in immune infiltration in tumor and adjacent
normal samples across different cancer types were also
exhibited using box plots (Figure S1B). We also applied EPIC,
another tool, to estimate the proportions of different cell types
from bulk gene expression data. We found that CD4+ T cells
showed a lower proportion in tumors than in normal tissues,
Frontiers in Immunology | www.frontiersin.org 4
while cancer-associated fibroblasts showed a higher proportion
in tumors than in normal tissues (Figures S1C–E).

Then, WGCNA was used to identify gene coexpression
modules correlated with tumor and immune cell-type
proportion. We identified 55 coexpressed gene modules using
all DEGs between tumor and adjacent normal tissues of all nine
cancer types (Figure 1B). The modules were named by different
colors. Among them, 3/55, including MEblue, MEdarkred, and
MEmediumpurple3 module, significantly negatively correlated
(p < 0.001), and 2/55, including MEyellow and MEwhite module,
significantly positively correlated (p < 0.001) with the tumor
group (Figures 1B, S2A, and Table S3).

We examined the correlation between the expression of
module eigengenes from MEyellow, MEwhite, MEblue,
MEmediumpurple3, and MEdarkred, and the fraction of 21
immune cell populations to explore the association of immune
cell composition dynamics with gene coexpression networks
(Figure S2B and Table S4). The expression of these modules
correlated with the infiltration of specific immune cell types
(Figures 1C–F), indicating that we could use the gene expression
from these modules to predict the fluctuation of the immune cell
population in the tumor microenvironment. The significant
correlation coefficients suggested the increased expression of
the MEyellow module accompanied by the relatively high
percentage of nonpolarized macrophages, M0 (Figure 1C);
MEwhite module was most positively associated with memory
CD4 activated T cells (Figure 1D). Similarly, improved
infiltration of activated dendritic cells could be linked to the
upregulated expression of MEblue module (Figure 1E).
Nonetheless, the expression of ME mediumpurple3 and
MEdarked modules showed a low association with infiltrating
immune cells (Figures 1F and S2C). We also observed that
MEsalmon4 eigengene expression was positively associated with
the populations of Tregs, follicular helper T cells, and CD8 T
cells (Figure S2D), and these eigengenes were strikingly
overexpressed in HCC tumor tissues (Figure S2E). These
results indicated that some gene coexpression networks
strongly correlated with the proportion of specific immune cell
types, contributing to the development of the specific immune
cell population in the tumor microenvironment.

Construction of TF-iGENs in MEyellow and
MEblue Modules
TFs can control the expression of critical genes and thus play a
prominent role in controlling the infiltration and functionality of
immune cells (30, 31). We decided to identify the key TF
regulators in MEyellow and MEblue modules that were more
globally associated with tumor-infiltrating immune cell
dynamics (see below). For tumor-associated genes in the
MEyellow module, the KEGG analysis showed that their most
enriched pathways were related to cell growth, including cell
cycle, chromosome segregation, DNA replication, and DNA
repair (Figure S3A and Table S5).

Next, Metascape analysis was performed to cluster the tumor-
associated genes in the MEyellow module; the parent GO term of
the immune system process pathway was enriched, and its child
August 2021 | Volume 12 | Article 644350
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A

B

C D

E F

FIGURE 1 | WGCNA determination of the correlation between the expression of module eigengenes whose expression was tumor deregulated and the change in
the proportion of tumor-associated immune cells. (A) Boxplot showing the fraction of each immune cell type in tumor or normal samples; the significant difference in
the immune cell fractions between these two groups was calculated using the Student’s t-test. *pvalue ≤ 0.05; **pvalue ≤ 0.01; ***pvalue ≤ 0.001 (B) Signed
association of the module eigengene expression with tumor. Positive values indicate modules with increased expression in tumor samples. Negative values indicate
modules with decreased expression in tumor samples. Dashed lines signify tumor-associated modules. (C–F) Correlation between immune cell population and the
expression of module eigengenes from (C) MEyellow, (D) MEwhite, (E) MEblue, and (F) MEmediumpurple3. Dashed lines signify tumor-associated modules.
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GO terms were extracted and presented (Figure 2A andTable S6).
These child GO pathways were mainly enriched in the
differentiation and activation of immune cells, including T and B
cells. These results were consistent with the positive correlation
between MEyellow gene expression and follicular helper T cells
and memory CD4 activated T cells, and with the negative
correlation of MEyellow gene expression with CD4 memory
resting T cells.

The aforementioned results encouraged us to analyze TF and
the immune-related genes in the MEyellow module. To this end,
a TF-iGEN was constructed based on both the correlation of
gene expression between TFs and immune-related genes and also
the binding potential of TFs on the correlated immune-related
genes. Specifically, we first screened TFs, immune-related genes,
and LM22 marker genes from the MEyellow module. Then, we
calculated the Spearman correlation for each gene pair. Gene
pairs with Spearman correlation coefficients >0.6 (or less than
−0.6) and a corresponding p value (Benjamini–Hochberg
corrected) <0.01 were considered significantly correlated. Then,
TF–immune gene pair or TF–LM22 gene pair was filtered when
the TF–gene pair was found in the Encode TF target database or
TRRUST database (Table S7). The TF-iGEN was visualized in
Cytoscape. Finally, we found that two hub TF genes, FOXM1 and
MYBL2, were significantly associated with immune-related genes
including BIRC5, CACYBP, CDK4, and HDGF (Figure 2B).
TP53, another TF gene, was slightly associated with other
immune-related genes (Figure 2B). We further demonstrated
that the genes involved in TF-iGENs showed significantly higher
expression levels in the tumor than in the adjacent normal
tissues (Figure 2C).

A similar approach was then applied to analyze genes in the
MEblue module; the most enriched KEGG pathways were
different from the MEyellow module, mainly involving blood
vessel development, extracellular structure organization, and cell
adhesion (Figure S3B and Table S8). Child GO terms of the
immune system process were mainly enriched in the activation
of immune cells, such as myeloid leukocytes, neutrophils,
macrophages, microglial cells, and T cells (Figure 2D and
Table S9). We constructed TF-iGENs for the MEblue module
(Figure 2E). Two hub TFs, TAL1 and ERG, were identified,
which were significantly associated with immune-related genes,
including SLC11A1, EDN1, ICAM2, ICAM1, RARA, IFNGR1,
and ARRB1. Another TF gene, RARA, which was also involved in
immune response pathways, was slightly associated with other
immune-related genes. Different from that from the MEyellow
module, the gene expression profile of TF-iGENs from the
MEblue module showed a higher expression level in the
adjacent normal samples than in the tumor (Figure 2F). These
results indicated that the TF-iGENs derived from the two
modules might carry different functionality.

Validation of the TF-iGEN in
TCGA Datasets
We downloaded and profiled the expression of these candidate
genes in 33 TCGA cancer datasets to further study the clinical
relevance of the TF-iGEN in tumors (Figures 3A–D). FOXM1
Frontiers in Immunology | www.frontiersin.org 6
and MYBL2 were significantly higher in tumors than in adjacent
normal tissues in 70% (23/33) of cancers (Figures 3A, B). In
contrast, TAL1 was significantly underexpressed in 52% (17/33)
of tumors compared with normal tissues (Figure 3C), and ERG
was significantly underexpressed in 33% (11/33) of tumors
(Figure 3D). Another TF in the TF-iGEN from the MEyellow
module, TP53, showed higher expression in pan-cancer
compared with normal tissues (12/33) (Figure S4A). The
differential expression of these six TFs was either never shown
to be opposite or only shown to be opposite in one or a few
cancer types (Figures 3A–D and S4A, B), suggesting a general
role for these immune-related genes and TFs in many cancers.
On the contrary, RARA was highly expressed in 6/33 cancers and
lowly expressed in 5/33, demonstrating the controversial
expression pattern (Figure S4B).

Since the expression of these networks closely correlated with
the fluctuation in the immune cell population, we speculated that
TF-iGENs had some prognostic value for patients with cancer.
GEPIA2 analysis was further used to perform survival analyses
for genes in the TF-iGENs. For each group, we conducted a
heatmap to exhibit the survival analysis results across multiple
cancer types (Figures 3E, F). In the heatmap, the red blocks
denoted significantly high risk, and the blue ones denoted
significantly low risk associated with higher gene expression.
For the TF-iGENs from the MEyellow module, the high
expression meant high risk. Especially in cancers such as ACC,
KIRP, LGG, LIHC, LUAD, MESO, SARC, and SKCM, at least
five genes in TF-iGENs showed consistent effects on the
prognosis (Figure 3E). On the contrary, for the TF-iGENs
from the MEblue module, high expression was more indicative
of low risk (Figure 3F), suggesting that the survival time
negatively correlated with the expression of these genes. These
results demonstrated that some of the genes from TF-iGENs
could serve as important indicators for the prognostic analysis of
patients with cancers.

Besides expression analysis, two datasets from TCGA,
LUAD, and LUSC were also used to validate the connection
between TF-iGEN networks and immune infiltration. In our
previous studies, compared with the elevated expression of genes
from theMEyellowmodule, the fraction of some kinds of cells, such
as CD4 memory activated T cells and M1 macrophages, increased
in cancer tissues, while other cells such as CD4 memory resting T
cells followed a different trend (Figure S1B). In LUAD and LUSC
datasets, we observed a similar alteration of these immune cells from
normal to cancer tissues (Figures 4A and S5A). Furthermore,
Pearson’s correlation analysis was performed to test whether the
expression of genes in TF-iGEN networks strongly correlated with
the infiltration of immune cells. The expression levels of genes from
the MEyellow module exhibited a positive correlation with CD4
memory activated T cells, Tregs, M1 macrophage M1, and so forth,
and a negative correlation with monocytes, CD4 memory resting T
cells, and so forth (Figures 4B and S5B). The expression of genes
from the MEblue module also strongly correlated with specific
immune cell fractions (Figures 4C and S5C). Together with our
previous findings (Figures 1C, E), these results confirmed the
potential usage of gene expression of TF-iGEN networks to
August 2021 | Volume 12 | Article 644350
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FIGURE 2 | Construction of the TF–immune-related gene expression network in MEyellow and MEblue modules. (A) Metascape analysis was performed to cluster
the tumor-associated genes in the MEyellow module. The parent GO term of the immune system process pathway was enriched, and its child GO terms were
extracted and presented. (A) TF–immune-related gene expression network of the tumor-associated DEGs clustered in the MEyellow module. The expression levels
of TF genes, LM22 marker genes, and immune-related genes were filtered. Then, we calculated the Spearman correlation for each gene pair. Gene pairs with
Spearman correlation coefficients >0.6 (or less than −0.6) and a corresponding pvalue (Benjamini–Hochberg corrected) <0.01 were considered significantly
correlated. Then, the TF–immune gene pair or TF–LM22 gene pair was filtered when the TF–gene pair was found in the Encode TF target database or the TRRUST
database. The TF–immune-related gene expression network was built with Cytoscape in which the triangle represented TF, the green represented immune genes,
and the red represented LM22 marker genes. Specifically, the connection of TF–immune-related genes with database support were illustrated with blue lines. Orange
triangles indicated TF genes, green circles indicated immune-related genes, and pink circles indicated LM22 genes. Node size indicated the number of correlated
genes in the gene network. (A) Expression profile of genes involved in TF–immune-related genes in (B). (D–F) Same as 0 (A–C), except that tumor-associated DEGs
from the MEblue module were used.
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FIGURE 3 | Analysis of the expression and its correlation with the survival rate of TF and immune-related genes identified in Figure 2. (A–D) Four TF expression
profiles of 33 cancer datasets downloaded from the TCGA database. (A) FOXM1 and (B) MYBL2 were from the MEyellow module. (C) TAL1 and (D) ERG were from
the MEblue module. Cancer names in red indicate that gene expression was significantly upregulated in tumors, and cancer names in green indicate that gene
expression was significantly downregulated in tumors. (E) Association of the expression level of TF-iGENs in the MEyellow module with the patient survival rates in
various types of cancer. (F) Association of the expression level of TF-iGENs in the MEblue module with the patient survival rates in various types of cancer.
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predict immune infiltration. Furthermore, the expression pattern of
all genes in two modules was validated using two datasets
from TCGA (Figures S6A, B), and the results were similar to
our findings.
TF Genes in TF-iGENs Showed More
Frequent cis-eQTL Compared With the
Non-TF Genes
As mentioned earlier, TF-iGENs strongly correlated with
immune infiltration in the tumor microenvironment.
Therefore, investigating the dynamic change in gene expression
of TF-iGENs helped explain the altered immune cell population
during tumorigenesis. TF-binding sites are frequently
somatically mutated in cancer, leading to oncogenic activation
(32, 33). To further explore whether the expression alteration of
TF-iGENs was associated with somatic mutations, we performed
exome sequencing on the paired samples from 24 of the 50
patients; RNA-seq data from all the 50 patients were available
and analyzed in this study earlier (Table S10). Data were
analyzed with R, and the results were visualized with
Frontiers in Immunology | www.frontiersin.org 9
“maftools” package. The distribution of somatic mutations in
different genomic regions is shown (Figure 5A). We further
classified these mutations according to different categories. As
shown in Figure 5B, missense mutation was the most common
type of variant classification. The bar plot showed the top 10
mutant genes by mutation number (Figure 5C), including
ZNF717 (83%), PABPC3 (75%), AHNAK2 (83%), FLG (92%),
MUC17 (75%), TTN (83%), PRAMEF15 (75%), USP17L11
(83%), NBPF15 (92%), and LRRIQ3 (75%). The waterfall
chart was used to demonstrate the frequency mutation profile
of the top 20 mutant genes (Figure S6A). The functional
enrichment analysis on genes with mutations in more than
5/12 patients revealed that the genes were mainly involved in
cell differentiation, proliferation, and apoptotic process
(Figures S6B, C).

Next, we investigated the genetic basis of gene expression
variation in TF-iGENs. Matrix eQTL was used for identifying
eQTL based on the significance criterion. We classified eQTL
with peaks within 1 MB of the transcript position and p < 0.01 as
cis-eQTLs (Table S11). The number of significant cis-eQTLs of
each gene from TF-iGENs is illustrated in Figure 5D. The
A

B C

FIGURE 4 | Validation of the TF-iGEN in TCGA datasets. (A) Boxplot showing the fraction of each immune cell type in tumor or normal samples using the LUAD
dataset. (B, C) Correlation between immune cell population and the expression of genes from the TF–immune-related gene network in the (B) yellow module and the
(C) blue module.
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number of cis-eQTLs helped evaluate the mutation effects on
gene expression, including TF genes. Mutations were found to be
more frequent in the regions flanking the TF genes than those
with the non-TF genes (Figure 5D). A Manhattan plot of the cis-
eQTL analysis of FOXM1 was further conducted (Figure 5E).
Significant variants rs61907966, rs992899, rs11062797, and
rs11062796 were identified. The enrichment of somatic
mutations in tumor-deregulated TF genes than non-TF–
immune-related genes supported the hypothesis that somatic
mutation in key immune gene-related TFs might drive the
tumor-specific immune cell infiltration.
DISCUSSION

In this study, we identified four key TFs significantly associated
with tumor-infiltrating immune cells by analyzing 100 paired
RNA-seq data obtained from 50 patients across nine cancer
types. First, we estimated the fraction of 21 subpopulations of
immune cells in each RNA-seq data using CIBERSORT and
Frontiers in Immunology | www.frontiersin.org 10
EPIC. Our results showed that the proportions of different types
of T cells and macrophages were similarly altered in pan-cancer
samples. The WGCNA analysis allowed us to further identify
tumor-deregulated gene modules strongly associated with the
tumor-induced change in the proportion of TIICs. On further
constructing the TF-iGEN in two such modules, FOXM1,
MYBL2, TAL1, and ERG were identified as key TFs regulating
the expression of genes specifically involved in the immune cell
differentiation or activation. Previous studies reported that
FOXM1, ERG, and MYBL2 played a role in tumor immune
infiltration (16, 34, 35). The possible involvement of TAL1 in
regulating tumor immune infiltration was first reported in the
present study. We further verified the pan-cancer-regulated
expression of these TF-iGENs in TCGA datasets derived from
33 cancer types. Additionally, the tumor-deregulated expression
of these genes was strongly associated with the survival rate of
pan-cancer patients. The eQTL analysis with exome-seq showed
that mutations were significantly more frequent in the regions
flanking the TF genes than those with the non-TF genes. These
findings suggested that the TF-iGEN identified in this study
A

D E

B C

FIGURE 5 | Analysis of the tumor somatic mutations in the TF–immune-related gene expression network. (A) Boxplot showing the relative abundance of SNVs
found at different genomic locations. (B) Variant classification in the 24 samples. (C) Bar plot showing the top 10 mutant genes by the mutation number. (D) Barplot
showing the number of significant cis-eQTLs of each gene from the TF–immune-related gene expression network of MEyellow and MEblue and was used to evaluate
the mutation effects on TFs expression. (E) Manhattan plot of the cis-eQTL analysis of FOXM1.
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might play some roles in regulating immune infiltration and
affecting immune therapy and could serve as prognostic
biomarkers of pan-cancers (30–32, 36, 37).

A previous study showed that CD4 memory activated T cells
resembled the CD62 ligand low (CD62L-low) memory subset,
showing rapid activation kinetics and high proliferative capacity
(38). The tissue-resident dendritic cells that can capture antigen in
peripheral tissuesmigrate into the lymphnodeandpresent peptides
to the already activated CD4+ T cells (39), which motivates CD4
memory T cells to function in the microenvironment. In addition,
manyCD45RA-Foxp3non-suppressiveTreg cells in human cancer
coulddifferentiate intomemory effectorCD4+Tcells (40).Thiswas
consistent with our observation that the proportion of CD4
memory activated T cells in pan-cancer tissues was significantly
higher than that in adjacent normal tissues, while the proportion of
CD4 memory resting T cells was the opposite. Moreover, we
demonstrated that both M0 and M1 macrophages were more
enriched in tumor samples. Macrophages can switch from an
unpolarized (M0) to a polarized (M1) phenotype in response to
various stimuli such as tumors (41, 42), and M1 macrophages can
exert proinflammatory functions. In contrast, M2 macrophages
exert anti-inflammatory functions and facilitate tissue repair (43,
44). Therefore, it is reasonable that tumor inducesM0 andM1, but
not M2. In our study, M2 macrophages were higher in the non-
cancer tissues.

Several TFs have been reported to regulate immune cell
infiltration in cancer, such as FOXP1, FOXP3, and c-Maf (10,
12, 45). However, studies investigating TFs associated with
immune cell infiltration in pan-cancers are lacking globally.
Inkeles et al. previously integrated WGCNA gene modules
with cell-type-specific gene signatures to investigate the genes
and pathways associated with immune cell types that contributed
to host defense and tissue injury at the site of infection in the
different subtypes of leprosy (46). Inspired by this work, we used
CIBERSORT and WGCNA to explore the correlation between
the tumor-deregulated gene expression and tumor-infiltrating
immune cell dynamics and further filtered out the TF-iGENs.
Four key TFs (FOXM1, MYBL2, TAL1, and ERG) were identified
as reliable key regulators in the network.

Previous studies revealed that forkhead box M1 (FoxM1) was
overexpressed in HCC, and the induction of FOXM1 led to the
hepatic infiltration of macrophages in mice (16). FOXM1 also
weakened the promotion of T cell proliferation and depleted IL‐12
p70 in tumor‐bearingmice (47).Consistently,we found that FOXM1
wasoverexpressed in the tumor tissuesofmanydifferent cancer types,
and the expression dynamics of the eigengene module containing
FOXM1was positively associatedwith the increase in the proportion
of follicular helper T cells and M0 macrophages. Moreover, the
positive correlationbetweenFOXM1overexpressionand the survival
rate of multiple cancers was demonstrated. These findings suggested
a more general role of FOXM1 in regulating immune infiltration,
confirming the efficacy of our methods. The interactions between
other TFs and immune infiltration were not studied much and
comprehensively. MYBL2 was known to overexpress and associate
with poor patient outcomes in many cancer entities (48); its
expression positively correlated with CD4+ T cell infiltration but
Frontiers in Immunology | www.frontiersin.org 11
negatively correlated with B cell infiltration (35). In prostatic cancer,
the expression of ERG was positively associated with CD204+ and
CD3+ cell infiltration (34). The connection between TAL1 and the
regulation of immune infiltration has not been reported due to
insufficient data and hence deserves further investigation. Since the
expression of these TFs strongly correlated with the infiltration of
specific immune cell types, we believed that their important roles in
regulating immune infiltration in the tumormicroenvironmentwere
revealed in our study.

The immune-related genes in the TF-iGEN are strongly
associated with immune defense. Intercellular adhesion
molecule 2 increases the antitumor immunity by accelerating
the infiltration of immature myeloid dendritic cells in the tumor
epithelium, followed by cellular immune responses, and
promoting the susceptibility of the tumor cells to cytotoxic T-
cell-mediated cytolysis in intraductal papillary mucinous
adenoma (49). The solute carrier family 11a member 1
modulates macrophage activation by regulating immune-
inflammation genes in macrophages (50); these include tumor
necrosis factor-a (TNF-a), interferon gamma (IFN-g), and IL-1
(51), and major histocompatibility complex (MHC) class II
expression (52). The inhibitor of cyclin-dependent kinases 4
(CDK4), which has already been approved by the Food and Drug
Administration (FDA) for the treatment of breast cancer (53,
54), markedly repressed the proliferation of Tregs (55). This
finding was consistent with our research that the expression of
CDK4 was positively associated with the population of Tregs.
Therefore, the pan-cancer-associated TF-iGEN is functionally
related to immune infiltration, which likely represents a
mechanism underlying the altered immune cell contexture in
the tumor microenvironment. Moreover, the expressions of
many TFs and immune-related genes in the networks increase
or decrease significantly during cancerization, suggesting that
individually or combined, they can serve as indicators to predict
the prognosis situation. It was remarkable that most of the
genes in our TF-iGENs showed a significant prognostic value
in brain lower-grade glioma, adrenocortical carcinoma, liver
hepatocellular carcinoma, sarcoma, and kidney renal clear cell
carcinoma, which demonstrated the clinical relevance of
our results.

Mutations in both coding or non-coding areas (56) could
affect transcriptional regulatory mechanisms. Many TFs have
been found to have a high mutation frequency and are related to
the occurrence and development of tumors. ATBF1 encodes a
transcription factor that could inhibit cell proliferation. ATBF1
messenger RNA (mRNA) is abundant in normal prostates but
more scarce in approximately half of prostate cancers tested.
Frequent somatic mutations of the transcription factor ATBF1 in
human prostate cancer were found, many of which impair
ATBF1 function (57). RUNX1, another transcription factor
mutated in breast cancer, was found as a key regulator of the
ER+ luminal lineage whose disruption may contribute to the
development of ER+ luminal breast cancer when under the
background of either TP53 or RB1 loss (58). Mutations of TP53
(59) significantly correlated with the programmed death 1,
programmed death-ligand 1, and programmed death-ligand 2
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axis (60–62), which had a significant influence on immune
infiltration. The eQTL analysis in the genes of our TF-iGEN
showed that mutations were significantly more frequent in the
regions flanking the TF genes than those with the non-TF genes,
supporting a potential mechanism that somatic mutation in key
immune gene-related TFs might drive the altered expression of
immune infiltration during cancerization and consequently altered
immune infiltration. This hypothesis requires further investigation.
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