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Abstract

Background: Excessive alcohol and tobacco use are risk factors for poor health in both men 

and women, but use patterns and relationships with diseases and mortality differ between sexes. 

The impact of substance use on the epigenome, including DNA methylation profiles, may also 

differ by sex. It is also unknown whether parental substance use during childhood is associated 

with epigenetic changes that persist into adulthood. This study assessed the sex-specific effects 
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of individuals’ alcohol and tobacco use, as well as paternal alcohol and paternal/maternal tobacco 

use, on offspring’s cellular aging as measured by epigenetic age acceleration.

Methods: Four measures of epigenetic age acceleration (HorvathAA, HannumAA, PhenoAA, 

and GrimAA), the difference between chronological age and inferred age based on DNA 

methylation, were estimated from saliva samples. Linear mixed models tested associations 

between alcohol/tobacco use and epigenetic age acceleration in parents and offspring.

Results: Current tobacco smoking was associated with a 4.61-year increase in GrimAA, and 

former tobacco smoking was associated with a 3.60-year increase in HannumAA after accounting 

for multiple testing (p < 0.0125). In males only, current tobacco smoking was nominally 

associated with a 2.19-year increase in HannumAA (p < 0.05), and this effect was significantly 

different than the female-specific effect (p < 0.0125). Paternal heavy alcohol use when the 

offspring was 12 or younger was associated with a 4.43-year increase in GrimAA among offspring 

(p < 0.0125).

Conclusions: This study found evidence of sex-specific effects of alcohol and tobacco use, as 

well as paternal heavy alcohol use, on epigenetic age acceleration.

Keywords

Epigenetic age acceleration; DNA methylation; Alcohol use; Tobacco use; Parental effects; Sex-
specific effects

1. Introduction

Alcohol and tobacco use are risk factors for poor health in both men and women, but their 

use patterns and relationships with diseases and mortality differ between sexes. Men are 

more likely to binge drink (defined as a pattern of alcohol drinking that brings a person’s 

blood alcohol concentration to 0.08 g/dL or above), have higher rates of alcohol-related 

hospitalizations, and have higher rates of mortality from excessive alcohol use than women 

(Centers for Disease Control and Prevention [CDC], 2020). However, national survey data 

shows that while rates of alcohol use and binge drinking in males have remained steady, 

both have increased in females (White, 2020). Men also smoke tobacco at higher rates 

than women (Centers for Disease Control and Prevention [CDC], 2016). In 2016, 17.5% 

of men in the U.S. smoked tobacco compared to 13.5% of women (CDC, 2016). Despite 

these differences, women experience a larger burden of tobacco smoking-related disease 

and mortality (National Center for Chronic Disease Prevention and Health Promotion (US) 

Office on Smoking and Health, 2014) as well as a greater risk for alcohol-induced damage to 

the liver, heart, and brain (Agabio et al., 2016).

1.1. DNA methylation

DNA methylation is an epigenetic mechanism that cells use to control gene expression 

without making changes to the DNA sequence itself (Phillips, 2008). It involves the covalent 

addition of a methyl group to a cytosine base followed by a guanine base, known as a 

CpG site. Methylation can be influenced by behavioral factors across the life course, and 

methylation at some CpGs has been associated with alcohol (Dugué et al., 2021; Liu et al., 
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2018) and tobacco use (Dugué et al., 2020; Joehanes et al., 2016). Methylation can also be 

used as a biomarker for aging, as methylation levels of many CpG sites are associated with 

chronological age and other biological or functional metrics of aging (Hannum et al., 2013; 

Horvath, 2013; Levine et al., 2018; Lu et al., 2019; Marioni et al., 2019).

1.1.1. Epigenetic age acceleration—Several measures of epigenetic age based on 

methylation at specific CpG sites, known as epigenetic clocks, have been developed 

to estimate biological age. For these clocks, epigenetic age acceleration represents the 

relative difference between an individual’s methylation-estimated biological age and their 

chronological age, acting as a measure of the degree of cellular aging beyond what is 

expected for a given chronological age. Each clock estimates a person’s epigenetic age 

using a linear combination of specific CpG sites that have been selected because of their 

association with chronological age or other measures of aging. Epigenetic clocks differ 

from each other because they are constructed using different study populations, cell/tissue 

types, and statistical methods. Importantly, they may also be trained to capture methylation 

associated with different measures of aging (e.g., chronological age, aging biomarkers, or 

mortality biomarkers).

The most widely studied four epigenetic clocks are HorvathAge (Horvath, 2013), 

HannumAge (Hannum et al., 2013), PhenoAge (Levine et al., 2018), and GrimAge (Lu et 

al., 2019). Despite differences among the clocks, described in more detail below, epigenetic 

age acceleration estimated by each of these four clocks is associated with multiple age-

related diseases (e.g., cardiovascular disease, diabetes, and cancer) as well as all-cause 

mortality, although the strength of these associations varies by clock (Oblak et al., 2021). 

Thus, epigenetic age acceleration is considered to be an important biomarker of aging.

1.1.2. Differences among epigenetic clocks—First-generation epigenetic clocks, 

including HorvathAge and HannumAge, were developed, or trained, by selecting CpG sites 

most strongly associated with chronological age using blood or tissue samples. HorvathAge 

is estimated with 363 CpG sites identified using multiple tissue types from adults and 

children (Horvath, 2013), while HannumAge is estimated with 71 CpG sites identified using 

blood samples from adults (Hannum et al., 2013),

Second-generation clocks, including PhenoAge and GrimAge, were trained on age-related 

traits, or phenotypes, beyond chronological age. PhenoAge is estimated with 513 CpG 

sites selected to capture both chronological age and 9 aging biomarkers including albumin, 

creatine, C-reactive protein, and white blood cell proportions (Levine et al., 2018). GrimAge 

was designed to be a risk estimator for mortality, and is estimated using a combination 

of chronological age, sex, and 1030 CpG sites selected to capture one known predictor 

of mortality (cigarette smoking pack-years) and 7 mortality-associated plasma proteins 

(adrenomedullin, beta-2 microglobulin, cystatin C, growth differentiation factor 15, leptin, 

plasminogen activation inhibitor 1, and tissue inhibitor metalloproteinase 1) (Lu et al., 

2019). Both PhenoAge and GrimAge were developed using methylation from adult blood 

samples.
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1.1.3. Associations among epigenetic age acceleration, health behaviors, 
and health outcomes—A variety of adverse exposures and health conditions including 

early life circumstances (e.g., low childhood socioeconomic status (Hughes et al., 2018)), 

biological indicators of chronic stress (e.g., allostatic load (Levine, 2020)), and comorbidity 

count (Lu et al., 2019) have been associated with various measures of epigenetic age 

acceleration. Associations with exposures and health outcomes tend to vary somewhat 

across the epigenetic clocks, which is not unexpected since the clocks likely measure only 

partially overlapping facets of cellular aging (Liu et al., 2020).

Given the important role of epigenetic age acceleration in cellular aging, it may serve 

as a key biomarker for understanding how health behaviors such as alcohol and tobacco 

use are biologically embodied, potentially leading to adverse health outcomes. Previous 

research has identified that those with alcohol dependence, alcohol use disorder, and/or 

habitual alcohol drinking show epigenetic age acceleration compared to those who do not 

(Fiorito et al., 2019; Kresovich et al., 2021; Luo et al., 2020; Rosen et al., 2018; Zhao et 

al., 2019), although effects are not consistent across all clocks and studies. Tobacco use 

has also been associated with various measures of increased epigenetic age acceleration in 

several studies (Fiorito et al., 2019; Levine et al., 2018). However, other studies have found 

a lack of association, especially with first-generation clocks (Quach et al., 2017; Zhao et al., 

2019). GrimAA, which explicitly incorporates information about smoking into its derivation 

algorithm, tends to be more strongly and consistently associated with tobacco use than other 

measures (Zhao et al., 2019).

1.2. Sex differences

It is important to examine whether the effects of alcohol and tobacco use on epigenetic 

age acceleration differ by sex, since we know that sex differences exist with respect to 

the patterning of these behaviors and their relationship with disease and mortality. For 

example, women who become addicted progress more quickly from initiation of alcohol 

use to seeking treatment than men (Becker and Koob, 2016). With respect to tobacco, 

women smoke fewer cigarettes per day than males (Peters et al., 2014), yet experience a 

higher burden of tobacco-related mortality. We are only beginning to understand whether 

these behavioral differences translate to differential effects on epigenetic aging, which 

may ultimately lead to health trajectories that differ by sex. In a study of five cohorts, 

the relationship between alcohol dependence and epigenetic aging did not differ by sex 

(Rosen et al., 2018). However, this study examined only one epigenetic age measure 

(HorvathAge).Zhao et al. (2019) found that the effects of tobacco use on GrimAA varied by 

sex, but not alcohol use. Specifically, the effect of current smoking on GrimAA was stronger 

in men compared to women. It is notable, however, that this study was conducted in a cohort 

of older African Americans with a high prevalence of hypertension and therefore may not 

be generalizable to a younger population with a low prevalence of hypertension. Given the 

limited research in this area, more studies that include younger participants from multiple 

races/ethnicities are needed to better understand the potential sex-specific effects of alcohol 

and tobacco use on cellular aging, as well as the effects of increased epigenetic age on health 

outcomes at older ages.
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1.3. Intergenerational effects

Health behaviors such as alcohol and tobacco use not only directly affect the individual 

practicing these behaviors but may also influence their offspring (Kandel et al., 2015; 

Kerr et al., 2020). Intergenerational influences may extend to DNA methylation. Several 

studies have examined the association between maternal tobacco use during pregnancy 

and epigenetic aging in infancy, early childhood, or adolescence. For example, one study 

found that infants whose mothers smoked tobacco during pregnancy had higher HorvathAA 

than those whose mothers did not smoke (Javed et al., 2016). Another study observed this 

same association in early childhood and found that the difference in HorvathAA became 

larger as the children aged into adolescence (Simpkin et al., 2016). Another study found 

that exposure to maternal tobacco use during pregnancy and parental tobacco use during 

childhood (neither parent vs. both parents) were associated with the offspring’s HorvathAA 

in childhood (de Prado-Bert et al., 2021). To our knowledge, no studies have evaluated 

maternal and paternal effects of alcohol use during childhood on offspring epigenetic 

age. Thus, additional research is needed to evaluate associations between paternal and 

maternal alcohol and tobacco use during childhood and age acceleration of their offspring in 

adulthood, or how the effects may differ by sex.

1.4. Importance of the current analysis

To test sex-specific effects of alcohol and tobacco use on four measures of epigenetic age 

acceleration, this study used data collected from parents and their adult offspring in the 

Michigan Longitudinal Study (MLS) (Zucker et al., 1996). We hypothesized that alcohol 

and tobacco use may have sex-specific effects on cellular aging that can be captured by 

epigenetic clocks. We also hypothesized that paternal and maternal alcohol or tobacco 

use during childhood may have long-term effects on cellular aging in the offspring as 

reflected by epigenetic clocks in adulthood. Understanding how these sex-specific and 

intergenerational effects are embodied may lend insight into the etiology and patterning of 

age-related chronic diseases and mortality, and may illuminate opportunities for prevention, 

early detection, or treatment.

2. Material and methods

2.1. Study sample

The Michigan Longitudinal Study (MLS) is a prospective longitudinal study of children 

raised in a family with a father who had alcohol use disorder or control families from the 

same neighborhoods (Zucker et al., 2000). Demographic information including education, 

occupation, family income, parents’ occupation, and marital history was assessed by 

questionnaire (Zucker et al., 1996). The study sample was drawn from the participant 

families enrolled in the MLS who were returning for a scheduled follow-up visit during 

the recruitment period (approved IRB protocols HUM00042342 & HUM00039806 to RA 

Zucker). Once a family member consented, phone calls were made to additional members of 

the family to obtain the participation of both parents and at least one male and one female 

child. Twenty-one families met these criteria and comprised the current study sample.
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2.2. Methylation measures

Saliva samples were collected from 92 parents and offspring between 11/10/16–01/24/18. 

Methylation from genomic DNA was measured on the Infinium MethylationEPIC BeadChip 

array. Raw fluorescence files were imported into minfi (v1.26.2) (Fortin et al., 2017), and 

initial quality control was performed using ENmix (v1.16.0) (Xu et al., 2017). Probes were 

excluded if: (1) they were on X or Y chromosomes, (2) they had detection p-value<0.05 

in >5% of samples, (3) they had a single nucleotide polymorphism (SNP) with >5% minor 

allele frequency at the interrogation or base extension site, or (4) they were cross-reactive 

with ≥ 47 base pairs of homology with an off-target site (Pidsley et al., 2016). Samples 

with >5% of probes with detection p-value < 0.05 were also excluded (n = 1). Probe 

intensities were background-corrected and dye-bias corrected using RELIC (Xu et al., 

2017). Inter-array normalization was performed and probe-type biases were corrected using 

BMIQ (Teschendorff et al., 2013).

Epigenetic clocks (HannumAge, HorvathAge, PhenoAge, and GrimAge) were calculated 

using the DNA methylation age online calculator (https://dnamage.genetics.ucla.edu/new) 

and were strongly correlated with chronological age (r ranged from 0.93 to 0.97, see Fig. 1). 

As has been observed in other studies (Cardenas et al., 2022; Horvath, 2013; Horvath and 

Raj, 2018), epigenetic age estimates from different epigenetic clocks for the same individual 

can be highly variable, and the mean epigenetic age for a sample may be shifted from 

the corresponding mean chronological age. Many factors can lead to different estimates 

including the statistical methods, study population, and cell/tissue types used to train each of 

the epigenetic clocks, as well as sample processing and storage, DNA quality, normalization, 

and batch adjustment in the study sample. However, epigenetic age acceleration, which was 

calculated by regressing epigenetic age against chronological age and taking the residual, 

would still be valid since it preserves the rank of individuals within the study sample. 

Measures of epigenetic age acceleration (HannumAA, HorvathAA, PhenoAA, GrimAA) 

were calculated within parents and offspring separately. Cell proportions, estimated using 

a reference-free method (Houseman et al., 2016), were included in all models to adjust for 

potential confounding effects.

2.3. Demographics and substance use

2.3.1. Demographic variables—We collected self-reported sex and race/ethnicity, age 

at the most recent psychosocial assessment (when current tobacco and alcohol use were 

assessed), and age when methylation samples were collected.

2.3.2. Alcohol use—Current alcohol use was assessed at the most recent psychosocial 

assessment, which preceded methylation measurement by an average of 0.6 years. A few 

participants had psychosocial assessments after the methylation measure. Given the short 

period of time between the two assessments (7 within a month and 4 within 6 months), it 

is likely that those psychosocial assessments were a good proxy of the assessment when 

the methylation measure occurred. Two measures of participants’ current alcohol use were 

calculated. Cumulative alcohol use, defined as the number of alcoholic drinks per month, 

was calculated from participants’ self-reports of the number of alcoholic drinks they had 

per day multiplied by the number of days spent drinking alcohol per month (averaged over 
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the past 6 months). Binge drinking (yes/no) was defined as going on a binge of constant 

drinking for two or more days during the last three years.

2.3.3. Tobacco smoking—To assess tobacco use at each MLS psychosocial 

examination, participants were asked, “Have you smoked cigarettes during the past 12 

months?”. Those who answered “never” or “once or twice” were considered tobacco non-

smokers. Those participants who answered “occasionally but not regularly”, “regularly 

during this year”, or “regularly now” were considered current tobacco smokers at that 

examination. Participants were coded as never, former, or current tobacco smokers based 

on responses across all psychosocial data collection timepoints over the course of the MLS 

study, with current tobacco smoking assessed at the most recent psychosocial examination 

(concurrent with current alcohol use assessment).

2.3.4. Early life alcohol exposure—To assess alcohol exposure when the offspring 

were children, a variable based on paternal and maternal self-reports of alcohol use was 

created. This was a binary variable (yes/no) of whether the offspring had a parent who 

was a heavy alcohol user when the offspring was 12 years old or younger. Using the 

cumulative alcohol use variable, we calculated the average drinks per month for each parent 

across the psychosocial assessments from timepoints when the offspring was 12 years old 

or younger. CDC guidelines were used to define the cutoff for heavy alcohol use.3 Mothers 

who consumed 30 or more alcoholic drinks per month and fathers who consumed 60 or 

more alcoholic drinks per month on average were classified in the heavy alcohol use group. 

Due to the small number of mothers who were defined as heavy drinkers (n = 5), we were 

only able to analyze paternal heavy alcohol use in this study.

2.3.5. Early life tobacco exposure—To assess tobacco exposure when the offspring 

were children, a variable based on paternal and maternal self-reports of tobacco use was 

created using the definition of current tobacco smoking defined in 2.3.3 Whether the 

offspring had a parent who was considered a current smoker at any psychosocial assessment 

from timepoints when the offspring was 12 years old or younger was created (yes/no).

2.4. Statistical analysis

After removing participants without dates for psychosocial data collection or DNA 

methylation measurement, 87 participants were available for analysis. We used linear mixed 

effects models to assess the association between cumulative alcohol use, binge drinking, or 

tobacco use (modeled using dummy variables for former and current smoking with never 

smoking treated as the reference group) with epigenetic age acceleration across all samples. 

We modeled epigenetic age acceleration as the outcome and the corresponding alcohol or 

tobacco exposure as the predictor variable adjusting for a generation indicator (parent or 

offspring), sex, race/ethnicity, age at methylation measurement, white blood cell proportions, 

and the time difference between last psychosocial assessment and methylation measurement. 

Family ID was modeled as a random effect to account for familial relationships. We 

3CDC Guidelines define heavy alcohol use as two or more alcoholic drinks per day for men and one or more alcoholic drink per day 
for women.
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next performed sex-stratified analyses to assess the corresponding association in men and 

women separately. Then, to examine whether the observed sex-specific effects (nominal or 

significant after Bonferroni correction) differed from each other statistically, we added a 

sex-by-alcohol use or sex-by-tobacco smoking term to the model and tested whether the 

interaction term was significant in the full sample.

In the offspring only, we examined associations between paternal heavy alcohol use and 

offspring epigenetic age using linear mixed models, adjusting for the same covariates as 

above. We then added the offspring’s own alcohol use to the model. We tested maternal 

and paternal tobacco use analogously, with and without adjustment for the offspring’s own 

tobacco use. We did not evaluate maternal alcohol use during the offspring’s childhood due 

to a small number of observations for this exposure.

Since four epigenetic age acceleration estimates were tested against each exposure, we 

applied a Bonferroni-corrected alpha level to declare significance (p < 0.0125). However, 

since the four age acceleration measures are all biomarkers of aging and are moderately 

correlated, Bonferroni correction is likely too conservative in this case. For this reason, 

we present both sets of results, noting that nominally significant results (p < 0.05) should 

be interpreted cautiously. All analyses were conducted in R version 4.1.2. Linear mixed 

modeling was conducted using the lmerTest package.

3. Results

The overall sample of 87 participants (62% male; 66.6% white) had a mean age of 34.5 

years at methylation measurement and 33.9 years at their last psychosocial assessment (see 

Table 1). The offspring (n = 45) had a mean age of 20.3 years at methylation measurement 

and 20.0 years at their last psychosocial assessment. The parents (n = 42) had a mean age of 

49.7 years at methylation and 48.9 years at their last psychosocial assessment. The average 

number of alcoholic drinks consumed per month was 18.8, 10.7% reported binge drinking, 

and 68.4% reported having never used tobacco. A total of 26.8% and 12.5% of the offspring 

experienced exposure to paternal or maternal heavy alcohol use when they were 12 years or 

younger, respectively. In addition, 42.9% and 54.4% of the offspring had been exposed to 

paternal or maternal tobacco smoking, respectively.

No significant association between cumulative alcohol use and epigenetic age acceleration 

was observed in the overall sample (Table 2). In the sex-stratified analysis, we observed 

a nominal association between alcohol use and age acceleration as measured by GrimAA 

(p = 0.047) in females, but not in males. The female-specific effect differed from the 

male-specific effect as indicated by a sex-by-alcohol use interaction (p = 0.019), but was not 

significant after Bonferroni correction.

For former tobacco smokers, epigenetic age acceleration measured by HannumAA was 

3.60 years (p = 0.002) higher than for tobacco non-smokers (see Table 3). Males who 

reported current or former tobacco use had a 3.71 and 2.19-year increase, respectively, in 

HannumAA compared to those who did not smoke tobacco (p = 0.025 and p = 0.043); 

these associations were not significant after Bonferroni correction, nor were they significant 
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in females. The male-specific effect was significantly different from the female-specific 

effect for current smokers (p = 0.003) but not former smokers. PhenoAA was 4.74 and 

4.38 years higher in both former smokers (p = 0.029) and current smokers (p = 0.015) 

in the full sample, respectively, but was not significant after multiple testing correction. 

Current smoking was also nominally associated with PhenoAA (p = 0.029) in males only 

in the sex-stratified analysis, though interaction analysis showed that the effect was not 

different than in females. In the full sample, individuals who reported current tobacco use 

had 4.61-year higher GrimAA (p = 2.7 × 10−6) compared to individuals who never smoked, 

but no effect was observed for former smokers. In the sex-stratified analysis, Grim AA was 

3.85 years (p = 2.83 × 10−4) and 7.37 years (p = 0.003) higher in female and male current 

smokers, respectively, and the sex-specific effect sizes were not significantly different from 

each other.

Table 4 shows the association between paternal heavy alcohol use during childhood and 

adult epigenetic age acceleration among offspring after adjustment for sex, race/ethnicity, 

age at methylation measurement, and white blood cell proportions, with family modeled 

as a random effect. Paternal heavy alcohol use was associated with a 4.43-year increase in 

GrimAA (p = 0.010) after multiple testing correction, and it remained nominally associated 

(p = 0.046) after further adjustment for offspring’s own alcohol and tobacco use, and the 

time difference between the last psychosocial assessment and methylation measurement. 

There were no associations between paternal or maternal tobacco use during childhood and 

adult age acceleration among offspring.

4. Discussion

This study of families at risk for alcoholism found that a higher number of alcoholic 

drinks per month, current and former tobacco use, and paternal heavy alcohol use when 

the offspring was 12 years or younger were all nominally associated with increased 

epigenetic age acceleration as measured by at least one epigenetic clock, and that there 

were sex differences in some of the associations. Additionally, this is one of the first 

studies to investigate the role of paternal and maternal health behaviors on epigenetic 

aging of their offspring beyond early childhood. Specifically, paternal heavy alcohol use 

was associated with increased GrimAA in offspring, although the effect attenuated after 

adjusting for the offspring’s own alcohol or tobacco use. Former smoking was robustly 

associated with HannumAA, but current smoking increased HannumAA only in males. 

Current smoking, however, was robustly associated with GrimAA in both sexes. Thus, 

epigenetic age acceleration plays an important role in cellular aging and is influenced by 

many factors including one’s own and familial alcohol and tobacco use, which exhibit 

sex-specific patterns.

4.1. Associations between alcohol and tobacco use, and epigenetic age acceleration

Cumulative alcohol use was nominally associated with GrimAA, but not other epigenetic 

age acceleration measures, and only among females. While some studies have observed 

relationships between HorvathAA, HannumAA and/or PhenoAA and alcohol use (Fiorito 

et al., 2019; Luo et al., 2020; Quach et al., 2017; Rosen et al., 2018), others have not 
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(Kresovich et al., 2021; Zhao et al., 2019). Consistent with results from two other studies 

that examined all four age acceleration measures, GrimAA was the only measure even 

nominally associated with alcohol use in our study (Kresovich et al., 2021; Zhao et al., 

2019). Notably, we observed a nominal association only in women, and both of the studies 

that observed a strong association between alcohol use and GrimAA were also conducted in 

samples consisting solely (Kresovich et al., 2021), or mostly, of women (Zhao et al., 2019). 

GrimAA is the strongest predictor of mortality out of the clocks examined here, and so it is 

perhaps unsurprising that it is most strongly associated with lifestyle factors strongly linked 

to mortality. However, we note that the association observed here was not significant after 

multiple testing correction, so additional large-scale representative studies of sex-specific 

effects are needed to verify this finding.

Further, in our study, current tobacco use was significantly associated with GrimAA and 

nominally associated with PhenoAA. This is expected, given that these epigenetic clocks 

are trained on measures of mortality or functional health metrics that are strongly associated 

with mortality (Levine et al., 2018; Lu et al., 2019). GrimAge also directly incorporates 

smoking pack-years into its derivation algorithm (Lu et al., 2019). Our study also found 

that current smoking was nominally associated with increased HannumAA in males but 

not females, and that former smoking was associated with HannumAA in the full sample. 

However, these results should be interpreted with caution as the sample sizes for current and 

former smokers were small, especially in sex-stratified analyses. A similar effect for current 

smoking was found with GrimAA, but not HannumAA, in Zhao et al. (2019), where the 

effect of current tobacco use on GrimAA was stronger in men than women in older African 

Americans.

4.2. Associations between paternal alcohol and paternal/maternal tobacco use, and 
epigenetic age acceleration in offspring

Previous research on the paternal and maternal effects of alcohol and tobacco use on 

offspring epigenetics has largely focused on alcohol or tobacco use during pregnancy 

and corresponding offspring age acceleration during gestation or shortly after birth. Our 

study found that paternal heavy alcohol use during early childhood is associated with 

increased adulthood epigenetic age acceleration among offspring, as assessed by GrimAA, 

suggesting that paternal alcohol use may influence the offspring epigenome beyond infancy 

and childhood. Importantly, alcohol use does not have a direct biological influence on 

age acceleration in the offspring, and thus the association we observed is likely to have 

happened indirectly through psychosocial stress and/or an adverse family environment. 

Further research is needed to better understand the mechanisms of this effect.

We found no association between maternal or paternal tobacco use during early childhood 

and offspring epigenetic age acceleration in adulthood. Findings in previous studies have 

been mixed, and most have focused on offspring epigenetic age at birth or in early 

childhood, making direct comparisons with our study difficult. Maternal tobacco use was 

positively associated with offspring HorvathAA at birth as well as changes in offspring 

HorvathAA from birth to childhood in both the Accessible Resource for Integrated 

Epigenomic Studies (ARIES) sample and the Human Early-Life Exposome project (de 
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Prado-Bert et al., 2021; Simpkin et al., 2016). However, this result was not replicated in 

some other studies, perhaps due to differences in sample inclusion and exclusion criteria 

(Simpkin et al., 2016). One study examining paternal tobacco use found no relationship 

with epigenetic age at birth (Khouja et al., 2018), although paternal tobacco use has been 

associated with methylation changes at specific CpG sites (Wu et al., 2019). More research 

is needed on the impact of paternal smoking exposures on adult methylation patterning as 

nearly all existing studies are in infants or children.

4.3. Differences in associations among clocks

Epigenetic clocks are designed to capture biological aging, but the associations in our study 

differed among clocks. Other studies have shown that these clocks are only weakly to 

moderately correlated with one another, suggesting that they may be capturing different 

facets of biological aging (Liu et al., 2020). This is perhaps not surprising due to 

the nature of their construction, with first-generation clocks (HorvathAge, HannumAge) 

focused on selecting CpG sites associated with chronological age and second-generation 

clocks (PhenoAge, GrimAge) focused on CpG sites related to morbidity and mortality. 

Associations with health risk factors and outcomes also vary across clocks (Bell et al., 

2019). For example, second-generation clocks are more strongly associated with physical 

and cognitive functioning (Levine, 2020). A recent study using multi-omic data showed that 

the transcriptional (gene expression) profiles for HorvathAge, HannumAge, and PhenoAge 

shared common biological pathways including metabolism, immunity, and autophagy (Liu et 

al., 2020). However, the PhenoAge clock was more strongly related to cellular senescence 

and mitochondrial dysfunction than the other clocks evaluated. These differences in the 

biological aging processes captured by the clocks may partially explain the differences in 

their associations with health behaviors such as alcohol and tobacco use. Future studies that 

further disentangle the underlying molecular features captured by different clocks could help 

shed light on the interpretation of the results of this study.

4.4. Strengths and limitations

This study has several limitations. First, the small sample size prevented us from assessing 

the effects of maternal alcohol use or incorporating information about the severity of 

paternal or offspring alcohol use disorder into analyses. Second, we did not include 

information on socioeconomic status (SES), sociocultural stressors, or other behaviors that 

may differ by gender. SES was not included becausethere was little variability in indicators 

of SES among participants in this study. Third, methylation profiles vary by cell/tissue type. 

We examined saliva samples here, which may not be the most informative cell type for the 

aging process.

Despite these limitations, our study has several important strengths. Carefully collected 

longitudinal data across multiple generations in MLS families provides us a unique 

opportunity to assess the association between paternal alcohol use and paternal/maternal 

tobacco use during childhood and epigenetic age acceleration in adulthood. Another strength 

of this study is the examination of sex-specific effects of alcohol and tobacco use on 

epigenetic age acceleration in younger, healthy participants.
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5. Conclusion and future directions

This is the first study to use longitudinal family data to examine associations between 

paternal alcohol use and paternal/maternal tobacco use during childhood and epigenetic 

age acceleration in adult offspring. While many studies focus on prenatal or neonatal 

paternal and maternal lifestyles and epigenetic aging, this study examines fills an important 

developmental gap in the effects of paternal and maternal lifestyle factors during early 

childhood and epigenetic age acceleration in adulthood among offspring. We have shown 

that paternal heavy alcohol use during childhood is associated with epigenetic age 

acceleration as assessed by GrimAA in adult offspring. Heavy alcohol use does not have a 

direct biological influence on the epigenome in the offspring, so future studies are warranted 

to understand whether this association was mediated through specific psychosocial stressors. 

Our findings regarding sex-specific effects of alcohol and tobacco use on epigenetic aging 

suggest the need for further assessment of the ways in which epigenetic age acceleration 

differs by sex and its patterning on morbidity and mortality. However, we note that the 

sample size of this study is limited, particularly for stratified analyses, and independent 

replication is necessary to confirm our findings. Thus, conclusions from this study should 

be interpreted cautiously. Importantly, future studies that incorporate health outcomes are 

needed to understand whether the observed associations between alcohol use, tobacco 

smoking, and epigenetic age acceleration underly the sex-specific relationships between 

those behaviors and adverse health outcomes. Future studies could also examine threeway 

interactions among sex, alcohol use, and tobacco use on epigenetic age acceleration. 

An increased understanding of how these sex-specific and intergenerational effects are 

embodied may further our knowledge of the etiology and patterning of age-related chronic 

diseases and mortality, which may ultimately lead to better prevention, more targeted 

detection of the early stages of diseases, and novel treatments.
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Abbreviation List

CDC Centers for Disease Control and Prevention

DNAm DNA methylation

DNAmAge DNA methylation age

DNAmAA DNA methylation age acceleration (epigenetic age 

acceleration)
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GrimAA GrimAge acceleration (epigenetic age acceleration 

estimated using the GrimAge method)

GrimAge Epigenetic age estimated according to methods described 

in Lu et al. (2019)

HorvathAA HorvathAge acceleration (epigenetic age acceleration 

estimated using the HorvathAge method)

HorvathAge Epigenetic age estimated according to methods described 

in Horvath et al. (2013)

HannumAA HannumAge acceleration (epigenetic age acceleration 

estimated using the HannumAge method)

HannumAge Epigenetic age estimated according to methods described 

in Hannum et al. (2013)

MLS Michigan Longitudinal Study

PhenoAA PhenoAge acceleration (epigenetic age acceleration 

estimated using the PhenoAge method)

PhenoAge Epigenetic age estimated according to methods described 

in Levine et al. (2018)
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Fig. 1. 
Scatterplot of chronological age and epigenetic clocks (overall sample, N = 87), the 

Michigan Longitudinal Study (MLS).
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Table 2

Association between cumulative alcohol use and epigenetic age acceleration in the Michigan Longitudinal 

Study (MLS).

All
a
 (N = 80) Female

b
 (N = 32) Male

b
 (N = 48)

Beta p Beta p Beta p

HorvathAA 0.01 0.711 0.02 0.546 0.005 0.771

HannumAA 0.01 0.654 2.92 × 10−4 0.991 0.02 0.095

PhenoAA 0.04 0.067 0.06 0.172 0.05 0.127

GrimAA 0.01 0.420 0.05 0.047 −0.01 0.643

a
Model: DNAmAA = Cumulative alcohol use + sex + age at methylation measurement + race/ethnicity + white blood cell proportions + time 

difference between last psychosocial assessment and methylation measurement + generation indicator (parent/offspring) + family ID (random 
effect).

b
Model: DNAmAA = Cumulative alcohol use + age at methylation measurement + race/ethnicity + white blood cell proportions + time difference 

between last psychosocial assessment and methylation measurement + generation indicator (parent/offspring) + family ID (random effect)

p < 0.05 is in bold

Beta indicates the change in mean age acceleration (years) for each additional alcoholic drink per month after covariate adjustment.
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Table 4

Association between paternal heavy alcohol use and epigenetic age acceleration among offspring in the 

Michigan Longitudinal Study (MLS).

Reduced Model
a
 (N = 41) Full Model

b
 (N = 33)

Beta p Beta p

HorvathAA −2.25 0.085 −2.59 0.086

HannumAA −1.67 0.196 −0.64 0.737

PhenoAA 0.37 0.887 −0.78 0.802

GrimAA 4.43 0.010* 3.75 0.046

a
Reduced Model: Age acceleration = Paternal heavy alcohol use + sex + offspring’s age at methylation measurement + race/ethnicity + white blood 

cell proportions + family ID (random effect).

b
Full Model: Age acceleration = Paternal heavy alcohol use + sex + offspring’s age at methylation measurement + race/ethnicity + offspring 

alcohol drinking status + offspring tobacco use + time difference between age at methylation and age at psychosocial assessment + white blood cell 
proportions + family ID (random effect). p < 0.05 is in bold.

Beta indicates the difference in mean age acceleration (years) for offspring whose fathers were heavy alcohol users vs. those whose fathers were not 
heavy alcohol users after covariate adjustment.

*
Indicates the associations that remained significant after correction for multiple testing (p < 0.0125).
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