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Abstract: Panax notoginseng flowers have the highest content of saponins compared to the other parts
of Panax notoginseng, but minor ginsenosides have higher pharmacological activity than the main
natural ginsenosides. Therefore, this study focused on the transformation of the main ginsenosides
in Panax notoginseng flowers to minor ginsenosides using the fungus of Cladosporium xylophilum
isolated from soil. The main ginsenosides Rb1, Rb2, Rb3, and Rc and the notoginsenoside Fa in Panax
notoginseng flowers were transformed into the ginsenosides F2 and Rd2, the notoginsenosides Fd
and Fe, and the ginsenoside R7; the conversion rates were 100, 100, 100, 88.5, and 100%, respectively.
The transformation products were studied by TLC, HPLC, and MS analyses, and the biotransfor-
mation pathways of the major ginsenosides were proposed. In addition, the purified enzyme of the
fungus was prepared with the molecular weight of 66.4 kDa. The transformation of the monomer
ginsenosides by the crude enzyme is consistent with that by the fungus. Additionally, three saponins
were isolated from the transformation products and identified as the ginsenoside Rd2 and the no-
toginsenosides Fe and Fd by NMR and MS analyses. This study provided a unique and powerful
microbial strain for efficiently transformating major ginsenosides in P. notoginseng flowers to minor
ginsenosides, which will help raise the functional and economic value of the P. notoginseng flower.

Keywords: Panax notoginseng flowers; Cladosporium xylophilum; transformation; minor ginsenosides;
enzyme preparation

1. Introduction

Panax notoginseng (Burk.) F.H. Chen (Araliaceae) is a traditional precious Chinese
herbal medicine, which mainly grows in the Yunnan and Guangxi provinces in southwest
China. Saponins are the main bioactive ingredients in different parts of P. notoginseng.
The part of the P. notoginseng flower (PNF) contains more than 20% of the total saponins,
which is the highest saponin content in the whole plant [1–3]. The ginsenosides Rb1, Rb2,
Rb3, and Rc and the notoginsenosides Fa and Fc are the major saponins in the PNF and
belong to the protopanaxadiol (PPD) ginsenosides, but minor ginsenosides with minimal
levels have higher pharmacological activity than the major natural ginsenosides. Studies
have shown that minor saponins containing less sugar may show higher bioavailability,
better cell permeability, and other advantages; so, minor saponins show higher pharma-
cological activity [4–6]. For example, ginsenoside Rd2 can prevent or treat thrombotic
diseases; notoginsenoside Fe can treat cardiovascular and cerebrovascular diseases and
inhibit diet-induced obesity [7,8]. The minor ginsenosides have similar structures to the
major ginsenosides and can be transformed from the major ginsenosides. Therefore, we
can prepare minor ginsenosides from major ginsenosides in PNF. At present, the main
methods of obtaining minor ginsenosides include physical transformation, chemical trans-
formation, biological transformation and cloned ginsenoside enzyme transformation [9].
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The biotransformation method uses one or more enzymes produced by microorganisms
under suitable conditions to modify the ginsenosides by hydrolysis, hydration, and de-
hydration reactions to obtain high pharmacological activity of the ginsenosides or new
saponin derivatives and can be used as an auxiliary means to study the mechanism of drug
metabolism [10], such as that of ginsenoside Rg3 with antitumor and anti-inflammatory
effects from ginsenoside Rb1 transformed by the endophytic bacterium Burkholderia sp.
GE 17-7 isolated from Panax ginseng [11,12] and ginsenosides C-K with anti-cancer and anti-
inflammatory effects from ginsenoside Rb1 transformed by Aspergillus niger XD101 isolated
from the soil of Panax notoginseng [13]. Compared with other transformation methods, the
biological transformation method has the advantages of mild reaction conditions, stable
product, easy separation, little environmental pollution, efficient transformation, and fewer
by-products [14,15]. Ginsenosidase for the biotransformation of saponins can be divided
into four types: ginsenosidase type-I can hydrolyze the PPD ginsenosides C-3 and C-20
glycoside bonds; ginsenosidase type-II can hydrolyze the PPD ginsenoside C-20 glycoside
bond; ginsenosidase type-III can hydrolyze the PPD ginsenoside C-3 glycoside bond; and
ginsenosidase type-IV can hydrolyze the PPT-type ginsenosides C-6 and C-20 glycoside
bonds [13,15,16].

In our study, many fungi were obtained from the soil. The strains were screened
by the transforming activity of ginsenoside Rb1. We hope to find a strain with a high
conversion rate of the substrates and a high pharmacological activity of the transformed
product. We reported for the first time a strain with a high transformation activity that could
transform the major saponins in PNF, such as the ginsenosides Rb1, Rb2, Rb3, and Rc and the
notoginsenoside Fa, into the ginsenosides F2 and Rd2, the notoginsenosides Fd and Fe, and
the ginsenoside R7, respectively, with minimal by-products. The transformation products
were studied by TLC, HPLC, and MS analyses, and the biotransformation pathways of
the major ginsenosides were proposed. In addition, the purified enzyme of the fungus
was prepared with the molecular weight of 66.4 kDa. Most of the enzymes produced by
the active strains in this study were type-I ginsenosidase, which mainly hydrolyzed the
lateral glucose at the C-3 and C-20 positions. Additionally, three monomer ginsenosides
(ginsenoside Rd2 and notoginsenosides Fe and Fd) were isolated and elucidated from the
transformation products.

2. Results and Discussion
2.1. Ginsenoside-Transforming Activity Screening and Characterization of Strain S7

PPD ginsenosides are the main components of PNF; among them, ginsenoside
Rb1 is one of the major saponins in PNF and a representative of the protopanaxadiol
(PPD) ginsenosides.

We screened six strains for ginsenoside Rb1 transformation activity by the TLC meth-
ods. The results showed that the strains S7, S3, and S17 have less polar spots on the TLC,
which indicated that the three strains have the ability to transform ginsenoside Rb1 into
another saponin. Compared with strains S3 and S17, strain S7 has a higher transformation
rate; there was almost no spot of substrate on the TLC, indicating that the transformation
substrate was almost exhausted. In addition to this, the main product of ginsenoside Rb1
by the strain S3 and S17 was ginsenoside Rd, which is the main component of the flower,
not the target rare saponin, while the transformation product of strain S7 was the rare
ginsenoside, with no intermediate product. The TLC analysis of the transformation prod-
ucts by different strains showed that strain S7 exhibited a significant ability to transform
Rb1 compared to the other stains (Supplementary Materials Figure S1). So, strain S7 was
selected for the further experiments.

After strain S7 was cultured on PDA medium for 4 days, the following colony char-
acteristics were observed: the surface was olive green and villous and the colony was
flat, as shown in Figure S2A. Its morphological characteristics were observed under light
microscope as follows: the conidiophores were erect, slightly curved, nodal, septate and
slightly branched. The side formed a conidia chain which was branching and light brown.
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The conidia morphology was variable and smooth, nearly spherical, elliptic, and long
cylindrical, as shown in Figure S2B [17,18]. Based on the sequencing of the ITS rDNA
gene and a comparison in the GenBank database, it was found that strain S7 belonged to
the genus Cladosporium and exhibited significant similarity to Cladosporium xylophilum in
Figure S2C.

2.2. Qualitative and Quantitative Analysis of Major Saponins in PNF by HPLC

Using 8 mg PNF extract (marked as m, m = 8 mg), they were dissolved in 1 mL
methanol (marked as Vt, Vt = 1 mL) as the analysis sample. The injection volume was 20 µL.
The purpose of the HPLC analysis is to obtain the peak area of each saponin and calculate
the contents of each saponin of the major saponins in PNF according to the standard curve
(marked as m1).

m1 = C × Vi (Vt/Vi) (1)

C: the concentration obtained by plugging the peak area of the major saponins into the
standard curve, mg/mL; Vi: the injection volume, 20 µL.

Content (%) =
m1

m
× 100% (2)

The purpose of analyzing the major saponins in the PNF is to calculate the conversion
rate of those saponins during the biotransformation process by C. xylophilum. The quali-
tative and quantitative analyses of the major saponins in the PNF by the HPLC method
are shown in Figure 1. The results showed that the contents of the major saponins (noto-
ginsenosides Fa and Fc and ginsenosides Rb1, Rb2, Rb3, Rd, and Rc) in the PNF were 2.80,
0.29, 0.60, 0.52, 4.80, 0.15, and 2.40%, respectively.
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 121 Figure 1. HPLC analysis of major saponins in PNF. (A) Commercial standards; (B) PNF extract;
(C) control, culture liquid of strain S7 without added substrate; 1 and 2, unknown saponins.

2.3. HPLC Analysis the Dynamic Change of Major Saponins in PNF Transformed by
C. xylophilum

During the biotransformation process of the major saponin in the PNF by C. xylophilum,
it was regularly monitored by HPLC analysis (Figure 2). As shown in Figure 3, the
notoginsenoside Fa and the ginsenosides Rb1, Rb2, Rc, Rb3, and Rd that comprised the
major portion of the PNF were rapidly transformed into other saponins in the early stage
of the reaction (1–5 days). After 10 days of reaction, the notoginsenoside Fa and the
ginsenosides Rb1, Rb2, Rb3, and Rd were completely transformed by C. xylophilum, and
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the conversion rate reached 100%. After 15 days of reaction, only notoginsenoside Fc
and ginsenoside Rc were left in the PNF, and the final conversion rates were 53.4 and
88.5%, respectively.

Conversion rate (%) =
total saponins − remaining saponins

total saponins
× 100% (3)
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Figure 2. HPLC analysis of dynamic change of major saponins in PNF during biotransformation
process by C. xylophilum. Twelve authentic saponins (A, B). The peaks: notoginsenoside Fa (1);
ginsenoside Rb1 (2); notoginsenoside Fc (3); ginsenoside Rc (4); ginsenoside Rb2 (5); ginsenoside
Rb3 (6); ginsenoside Rd (7); Gpy17 (8); notoginsenoside Fe (9); ginsenoside Rd2 (10); notoginsenoside
Fd (11); ginsenoside F2 (12). Major saponins in PNF transformated by C. xylophilum for different days.

2.4. HPLC Analysis of the Transformation Pathways of Monomer Ginsenosides Rb1, Rb2, Rb3, Rc,
Notoginsenosides Fa and Fc by C. xylophilum

In order to further verify the transformation pathways of the main saponins in the
PNF, the ginsenosides Rb1, Rb2, Rb3, and Rc and the notoginsenosides Fa and Fc were used
as substrates for the transformation experiments, respectively.

The transformation pathway of ginsenoside Rb1 is proposed in Figure 4A. The ginseno-
side Rb1 molecule contains four β-glucopyranosyl moieties at the C-3 and C-20 position
of aglycone. Based on the results obtained by HPLC analysis (Figure S3), we can see that
there are peaks of small polar products in the product, which were identified as F2 by
comparing their retention time with the standard ginsenoside F2; so, we suggest that Rb1
was biotransformed into F2 by C. xylophilum. The biotransformation of Rb1 into F2 can
occur through pathways of two types, depending on their structures. Firstly, the enzyme
from C. xylophilum attacked the outer β-(1→2)-glucosidic linkage to the C-3 position of
aglycone to produce Gyp17 from Rb1 and was then followed by the hydrolysis of the outer
β-(1→6)-glucosidic to the C-20 position to produce F2 from Gyp17. Secondly, the enzyme
from C. xylophilum attacked the outer β-(1→6)-glucosidic linkage to the C-20 position of
aglycone to produce Rd from Rb1 and was then followed by the hydrolysis of the outer
β-(1→2)-glucosidic to the C-3 position to produce F2 from Rd.
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ginsenoside F2, Rd2, notoginsenoside Fd, Fe, and Gyp 17.

The transformation pathway of notoginsenoside Fa is proposed in Figure 4B. The
notoginsenoside Fa contains one α-(1→2)-xylopyranosyl (outer) and two β-glucopyranosyl
moieties (inner) at the C-3 position, with two β-glucopyranosyl moieties at the C-20 position
of aglycone. Based on the results obtained by the HPLC analysis (Figure S3), we can see
that there is a main peak of small polar products in the HPLC spectrum; so, we suggest that
Fa can be transformed into another ginsenoside by C. xylophilum. The product’s molecular
formula of C53H90O22 was determined by HR-ESI-MS at m/z 1077.5843 [M-H]- (calcd.
for 1077.5845). Ginsenoside R7 has the same molecular formula of C53H90O22. Due to
the existence of isomers, we analyzed the possible compounds with the same molecular
formula in Panax plants. According to the characteristics of the saponin transformation
pathway (which usually hydrolyzes one or more glycosyl fragments), we determined that
the product of substrate (ginsenoside Fa) transformed by C. xylophilum was ginsenoside R7.

The enzyme from C. xylophilum attacked the outer β-(1→6)-glucosidic linkage to the
C-20 position of aglycone to produce R7 from Fa. In addition to the HPLC analysis, the
HR-ESI-MS analysis of the transformation product of notoginsenoside Fa was further
verification that the product was ginsenoside R7, as shown in Figure S4.

The transformation pathway of ginsenoside Rb2 is proposed in Figure 4C. The ginseno-
side Rb2 molecule contains one α-(1→6)-arabinopyranosyl (outer) and one β-glucopyranosyl
moiety (inner) at the C-20 position, with two β-glucopyranosyl moieties at the C-3 position
of aglycone. Based on the results obtained by the HPLC analysis (Figure S3), we can see that
there are peaks of small polar products in the product, which were identified as Rd2 by
comparing their retention times with standard ginsenoside Rd2; so, we suggested that Rb2
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was transformed into ginsenoside Rd2 by C. xylophilum. The enzyme from C. xylophilum at-
tacked the outer β-(1→2)-glucosidic linkage to the C-3 position of aglycone to produce Rd2
from Rb2. Similarly, the enzyme from C. xylophilum attacked the outer β-(1→2)-glucosidic
linkage to the C-3 position of aglycone to produce Fe from Rc (Figure 4D and Figure S3).
The enzyme from C. xylophilum attacked the outer β-(1→2)-glucosidic linkage to the C-3
position of aglycone to produce Fd from Rb3 (Figure 4E and Figure S3).
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The enzyme of C. xylophilum can hydrolyze lateral glucose at the C-20 and C-3 of
ginsenoside Rb1 to F2 through two pathways. In addition to this, the enzyme can hydrolyze
lateral glucose at the C-20 or C-3 of notoginsenoside Fa and the ginsenosides Rb2, Rb3,
and Rc through a single pathway, but cannot hydrolyze the arabinose, xylose, and inside
glucose. It indicated that the enzyme from this strain was highly specific, and it could
transform different saponins into specific ginsenosides.

The maximal concentration of minor ginsenosides in the transformation products of
the major saponins in the PNF by using C. xylophilum occurred on the 10th day, as is shown
in Figure 5. The contents of the minor ginsenosides F2 and Rd2 and the notoginsenosides
Fd and Fe were 0.99, 0.67, 0.24, and 0.24 mg/mL, respectively.
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2.5. Enzyme Purification and Characterization from C. xylophilum

The results of the SDS-PAGE showed that the purified enzyme was a single band, and
its molecular weight was estimated to be 66.4 kDa according to the relative migration dis-
tance of the molecular weight markers in electrophoresis (Figure S5). The molecular weight
of the protein was similar to that reported in the literature [19–21]. The β-glucosidase activ-
ity from C. xylophilum is 129 U/mL for pNP-β-D-glucopyranoside (as a dry weight base).

2.6. Characterization of the Crude Enzymes for Monomer Saponins Transformation

The results of the crude enzyme transformation were consistent with those of C. xylophilum
(Figure S6). The biotransformation of the monomer saponins by the crude enzymes was
studied in the pH range of 4 to 8 and the temperature range of 30 to 70 ◦C (Figure 6). The
optimal pH for the transformation of the ginsenosides was in the range of 5–6. These results
suggest that the biotransformation of ginsenosides by crude enzymes was more desirable
in weak acidic conditions (pH 5–6) rather than in neutral and basic conditions. The optimal
temperature was 50 ◦C for the biotransformation of the ginsenosides by crude enzymes.

2.7. Preparation and Separation of Notoginsenoside Fe, Ginsenoside Rd2, and Notoginsenoside Fd
from Main Saponins in PNF Transformed by C. xylophilum

Compounds 1–3 were identified as notoginsenoside Fe (CMc1), ginsenoside Rd2 (C-O),
and notoginsenoside Fd (CMx1) by MS and NMR analysis.

Compound 1: notoginsenoside Fe (CMc1), white amorphous powder. They were deter-
mined as two β-linked sugars (D-glucopyranosy) and one α-linked sugar (L-arabinofuranosyl)
by the coupling constants of the anomeric protons [δH 4.95 (1H, d, J = 7.5 Hz, 3-O-glc-1’),
4.92 (1H, d, J = 7.5 Hz, 20-O-ara-1”’), and 5.15 (1H, d, J = 7.5 Hz, 20-O-glc-1”)] in the 1H
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NMR spectrum. Its molecular formula of C47H80O17 was determined by the HR-ESI-MS
at m/z 951.5078 [M + Cl]— (Figure S7). The compound showed identical NMR signals
(Table S1) to those described in the literature [22,23].

Compound 2: ginsenoside Rd2(C-O), white amorphous powder. They were determined
as two β-linked sugars (D-glucopyranosy) and one α-linked sugar (L-arabinopyranosyl) by
the coupling constants of the anomeric protons [δH 5.20 (1H, d, J = 7.7 Hz, 3-O-glc-1’), 4.98
(1H, d, J = 7.0 Hz, 20-O-ara-1”’), and 4.92 (1H, d, J = 7.5 Hz, 20-O-glc-1”)] in the 1H NMR
spectrum. Its molecular formula of C47H80O17 was determined by the HR-ESI-MS at m/z
951.5088 [M + Cl]− (Figure S8). The compound showed identical NMR signals (Table S1) to
those described in the literature [24,25].

Compound 3: notoginsenoside Fd (CMx1), white amorphous powder. They were deter-
mined as two β-linked sugars (D-glucopyranosy) and one α-linked sugar (L-xylopyranosyl)
by the coupling constants of the anomeric protons [δH 4.95 (1H, d, J = 7.5 Hz, 3-O-glc-1’),
4.99 (1H, d, J = 7.5 Hz, 20-O-xyl-1”’), and 5.13 (1H, d, J = 7.5 Hz, 20-O-glc-1”)] in the 1H
NMR spectrum. Its molecular formula was determined as C47H80O17 based on HR-ESI-MS
at m/z 961.5369 [M + HCOO]− (Figure S9). The compound showed identical NMR signals
(Table S1) to those described in the literature [26,27].
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3. Materials and Methods
3.1. Materials

The standard ginsenosides Rb1, Rb2, Rb3, Rc, Rd, F2, R7, and Rd2 and the notoginseno-
sides Fa, Fc, Fe, Fd, and Gyp17 (HPLC ≥ 98%) were purchased from Vicky Biotechnology
Co., Ltd. (Sichuan, China). Panax notoginseng flower was collected from Wenshan County,
Yuannan Province, China, in October 2019 and was identified by a researcher of Xiuming
Cui, Kunming University of Science and Technology (voucher No. YXY20191012). The
Welchrom C18 column (4.6 × 250 mm, 5 µm) was purchased from Yuexu Technology Co.,
Ltd. (Sichuan, China). The Agilent 1260 High Performance liquid chromatograph was
purchased from Agilent (Grand Island, NY, USA). The HSGF-254 silica gel plate was pur-
chased from Yantai Jiang you Silica gel Development Co., Ltd. (Shandong, China). The
Agilent 6530 Accurate-Mass Q-TOF LC/MS was from Agilent (Grand Island, NY, USA).
The DEAE-52 was purchased from Shanghai Yuan ye Biological Co., Ltd. (Shanghai, China).
C. xylophilum and other strains were isolated from panax notoginseng soil.

3.2. Isolation, Screening, and Species Identification of Fungi

Sixteen strains of fungi were isolated by the soil dilution plate method [28]. The
isolated and purified strains were cultured on PDA medium, cultured at 26 ◦C for 3-4 days.
The purified strain was stored in a refrigerator at 4 ◦C for subsequent studies. The strains
with high ginsenoside transformation activity were screened through the transformation
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activity of ginsenoside Rb1. The amplification and sequencing of the ITS rDNA gene was
completed by the Kunming Branch of Tsingke Biotechnology Co., Ltd (Branch of Tsingke
Biotechnology Co., Ltd., Kunming, China). The isolated strain S7 was identified through
morphological observation, biochemical characteristics, and phylogenetic analysis.

3.3. Preparation of Saponins in PNF

In this experiment, the PNF were extracted by the ethanol reflux extraction method.
Sixty percent ethanol was used as the extraction solution; the liquid–solid ratio was 1:14;
and the water bath at 60 ◦C was refluxed for 1.5 h, twice. The final extract yield was 40%.
The extract was treated with D101 macroporous adsorption resin.

3.4. Biotransformation of Saponins in PNF by C. xylophilum

The biotransformation procedure was performed using PDB medium with 0.4 mg/mL
saponins in PNF in a shaking incubator (160 rpm) at 26 ◦C for 15 days. Samples were
withdrawn at regular intervals during fermentation (1, 5, 7, 10, 13, 15 d).

3.5. Biotransformation of Monomer Ginsenosides Rb1, Rb2, Rb3, Rc and Notoginsenosides Fa and
Fc by C. xylophilum

The biotransformation procedure was performed using PDB medium with 0.05 mg/mL
of the ginsenosides Rb1, Rb2, Rb3, and Rc and the notoginsenosides Fa and Fc in a shaking
incubator (160 rpm) at 26 ◦C for 10 days.

3.6. Preparation and Purification of Crude Enzyme from C. xylophilum
3.6.1. Preparation of Crude Enzyme

The culture medium was filtered with four layers of gauze to remove mycelia, and
the supernatant was collected; When ammonium sulfate was added into the supernatant
and the saturation reached 75%, the supernatant was precipitated for 1 h, then centrifuged
(4000 r/min) for 20 min; the supernatant was discarded and the precipitation dissolved in
HAc-NaAc (pH 5.0) buffer. The solution was centrifuged again (4000 r/min) for 20 min to
remove the insoluble hybrid proteins. The crude enzyme solution was freeze-dried after
dialysis for 24 h in HAc-NaAc buffer (pH 5.0).

3.6.2. Purification of Crude Enzyme

The crude enzyme was purified by anion exchange column DEAE cellulose DE-52
(φ1.5 cm × 15 cm). The enzymatic activity of hydrolyzed ginsenoside Rb1 was detected,
and the part of the hydrolyzed ginsenoside Rb1 was collected and then lyophilized. The pu-
rified protein was determined by Polyacrylamide gel electrophoresis (SDS-PAGE, Beyotime
biotechnology, Shanghai, China).

3.7. Activity Analysis of Crude Enzyme from C. xylophilum
3.7.1. β-glucosidase Activity Determination

Using pNP-β-D-glucopyranoside (pNPG) as a substrate, the activity of β-glucosidase
was detected by colorimetry. The activity unit of β-glucosidase was defined as the amount
of enzyme required for the hydrolysis of 1 mL enzyme solution for 1 min to produce 1 µmol
p-nitrophenol (pNP).

3.7.2. Biotransformation of Monomer Saponins by Crude Enzymes

The biotransformation procedure was performed as follows: dissolve the monomer
saponins (ginsenosides Rb1, Rb2, Rb3, and Rc and notoginsenosides Fa and Fc) in 1 mL of
pH HAc-NaAc buffer (pH 5.0) and mix with the same volume of crude enzyme; incubate
at 50 ◦C for 2 days (the final substrate concentrations of the monomer ginsenosides were
0.05 mg/mL). In addition, the biotransformation of the monomer saponins by crude
enzymes was studied in the pH range of 4 to 8 and the temperature range of 30 to 70 ◦C.
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3.8. Preparation of Notoginsenoside Fe, Ginsenoside Rd2, and Notoginsenoside Fd from Main
Saponins in PNF Transformed by C. xylophilum

The biotransformation procedure was performed using PDB medium with 0.4 mg/mL
of saponins in PNF in a shaking incubator (160 rpm) at 26 ◦C for 15 days. The main saponins
in PNF were transformed into minor ginsenosides by C. xylophilum. The cultivation of liquid
was extracted with n-butanol 3 times, and the extract was concentrated under reduced
pressure to obtain 21 g residue. The extract was eluted by D101 macroporous resin column
chromatography with a gradient elution of an ethanol-water solvent system to obtain
four fractions Fr. A~D. Fr. B was separated by repeated silica gel column chromatography
(CH2Cl2-MeOH, 10:1~6:1) to obtain compound 1 (13.3 mg). Fr. C was separated by repeated
silica gel column chromatography (CH2Cl2-MeOH, 10:1~5:1) to obtain compound 2 (35 mg)
and compound 3 (17 mg).

3.9. General Analytical Methods
3.9.1. Thin Layer Chromatography (TLC) Analysis

The thin layer chromatography (TLC) was performed using HSGF254 silica gel plates
(Yantai Jiang you Silica gel Development Co., Ltd, Beijing, China) with CHCl3-CH3OH-H2O
(6.3:6:0.2, v/v/v) as the developing solvent. The spots on the TLC plates were identified
through comparisons with standard ginsenoside after visualization was made by spraying
10% (v/v) H2SO4 (in ethanol), followed by heating at 110 ◦C for 2 min.

3.9.2. High-Performance Liquid Chromatography (HPLC) Analysis

HPLC analysis was performed using Welchrom C18 columns (4.6 × 250 mm, ID 5 µm;
(Yuexu Technology Co., Ltd, Shanghai, China) connected to an Agilent 1260 HPLC system
(NY, USA). The mobile phase consisted of water (A) and acetonitrile (B). The gradient
elution was programmed as follows: 0–30 min, 20% (B); 30–60 min, 20–45% (B); 60–78 min,
45–75% (B); and 78–85 min, 75–100% (B).The flow rate was 1.0 mL/min, and the samples
were detected by absorption at 203 nm. The injection volume was 20 µL. The column
temperature was 30 ◦C.

4. Conclusions

This was the first report of the unique saponin conversion activities of C. xylophilum.
Our study suggests that this fungus can convert the main saponins in the PNF to minor
ginsenosides. When the monomer saponin is used as the transformation substrate, the
transformation rate is high, and the transformation product is specific. Therefore, the fungus
can specifically transform the main saponins in the PNF to produce minor ginsenosides,
with a single transformation product and few by-products.

When the biotransformation of saponins in PNF (mainly including: ginsenosides Rb1,
Rb2, Rb3, and Rc and notoginsenosides Fa and Fc) by C. xylophilum, the content of Fc was
significantly reduced. However, when there was the biotransformation of the monomer
notoginsenoside Fc by C. xylophilum, the Fc was not transformed. It was speculated that
a promotion effect was produced between the saponins during the transformation of
the main saponins in PNF by C. xylophilum. When Gpy17 was produced in the product,
the transformation effect of notoginsenoside Fc was more obvious (Figure S10). This
conjecture mainly refers to the research in this literature [29], and the combination of
different substrates can be used for selective biotransformation.

We found that C. xylophilum isolated from P. notoginseng soil was highly effective and
selective in the biotransformation of the main saponin (the notoginsenosides Fa and Fc and
the ginsenosides Rb1, Rb2, Rc, and Rb3) in the PNF into minor saponins. The conversion rate
was 100%, except for ginsenoside Rc at 88.5% and notoginsenoside Fc at 55.3%. The results
of the present study suggest that C. xylophilum can be used to produce valuable minor
ginsenosides from the main saponin in the PNF, with high biotransformation efficiency.
These findings will lay a solid foundation for the construction of genetically engineered
strains and eventually the large-scale preparation of minor saponins.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27196615/s1, Table S1: 13C NMR data of compounds 1–3
(notoginsenosides Fd, Fe and ginsenoside Rd2) in C5D5N, Figure S1: TLC analysis of the transfor-
mation of ginsenoside Rb1 by different strains, Figure S2: morphology and ITS gene identification
of strain S7, Figure S3: HPLC analysis of the transformation products of monomer ginsenosides
Rb1, Rb2, Rb3, Rc, notoginsenosides Fa and Fc by C. xylophilum, Figure S4: MS analysis of trans-
formation products of notoginsenoside Fa by C. xylophilum, Figure S5: SDS-PAGE analysis of the
purified β-glucosidase from C. xylophilum after protein staining with Coomassie Brilliant Blue so-
lution, Figure S6: biotransformation of ginsenosides Rb1, Rb2, Rb3, Rc, notoginsenosides Fa and
Fc by crude enzymes, Figure S7: 1H NMR, 13C NMR (C5D5N), and MS spectra of compound 1,
Figure S8: 1H NMR, 13C NMR (C5D5N), and MS spectra of compound 2, Figure S9: 1H NMR, 13C
NMR (C5D5N), and MS spectra of compound 3, Figure S10: HPLC analysis of the transformation
products of mixture of same mass of ginsenoside by C. xylophilum.
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