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Abstract

Tau PET has allowed for critical insights into in vivo patterns of tau accumulation and change 

in individuals early in the Alzheimer’s disease (AD) continuum. A key methodological step in 

tau PET analyses is the selection of a reference region, but there is not yet consensus on the 

optimal region especially for longitudinal tau PET analyses. This study examines how reference 

region selection influences results related to disease stage at baseline and over time. Longitudinal 

flortaucipir ([18F]-AV1451) PET scans were examined using several common reference regions 

(e.g., eroded subcortical white matter, inferior cerebellar gray matter) in 62 clinically unimpaired 

amyloid negative (CU A-) individuals, 73 CU amyloid positive (CU A+) individuals, and 64 

amyloid positive individuals with mild cognitive impairment (MCI A+) from the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI). Cross-sectionally, both reference regions resulted in 

robust group differences between CU A-, CU A+, and MCI A+ groups, along with significant 

associations with CSF phosphorylated tau (pTau-181). However, these results were more focally 

specific and akin to Braak Staging when using eroded white matter, whereas effects with inferior 

cerebellum were globally distributed across most cortical regions. Longitudinally, utilization of 

eroded white matter revealed significant accumulation greater than zero across more regions 

whereas change over time was diminished using inferior cerebellum. Interestingly, the inferior 

temporal target region seemed most robust to reference region selection with expected cross-

sectional and longitudinal signal across both reference regions. With few exceptions, baseline tau 

did not significantly predict longitudinal change in tau in the same region regardless of reference 
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region. In summary, reference region selection deserves further evaluation as this methodological 

step may lead to disparate findings. Inferior cerebellar gray matter may be more sensitive to 

cross-sectional flortaucipir differences, whereas eroded subcortical white matter may be more 

sensitive for longitudinal analyses examining regional patterns of change.
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1. Introduction

Beta-amyloid (Aβ) plaques and tau neurofibrillary tangles are present years before a clinical 

diagnosis of Alzheimer’s disease (AD) (Villemagne et al., 2013; Hanseeuw et al., 2019). 

Although initial longitudinal tau PET studies have shed insight on the patterns of tau change 

over time, the impact of methodological steps such as reference region selection in these 

analyses remains unclear. Cross-sectional studies commonly use inferior cerebellar gray 

matter (GM) or whole cerebellum as the reference region given minimal neurofibrillary 

tangle pathology in this region (Baker et al., 2017). In contrast, longitudinal tau PET studies 

vary in their reference region selection and often use either inferior cerebellar GM (Jack 

et al., 2018; Knopman et al., 2020; Franzmeier et al., 2020; Vogel et al., 2020; Chiotis 

et al., 2018; Sintini et al., 2020; Utianski et al., 2020; Sintini et al., 2019) or subcortical 

white matter (WM) (Hanseeuw et al., 2019; Harrison et al., 2019). This divergence between 

cross-sectional and longitudinal reference region selection parallels work investigating 

longitudinal amyloid PET with florbetapir, which has shown that a large composite region 

consisting of subcortical WM along with cerebellum may provide a more stable estimates 

of change over time (Landau et al., 2015). These methodological decisions are particularly 

important for the integration of tau PET into clinical trials, which has become commonplace 

in multiple high profile anti-amyloid trials investigating aducanamab (Sevigny et al., 2016), 

solanezumab (Siemers et al., 2016), lecanemab (Swanson et al., 2021), and donanamab 

(Mintun et al., 2021). In the context of these clinical trials, tau PET represents a key 

modality that can provide insight into disease modification answering questions such as 

whether removal of amyloid results in downstream changes to tau PET signal (Cummings 

and Fox, 2017). In these large-scale studies it is not possible to perform gold-standard 

dynamic imaging along with arterial sampling (Barret et al., 2017; Wooten et al., 2017; 

Hahn et al., 2017) to enable true quantification of the PET signal. Thus, there is an urgent 

need to evaluate processing pipelines that can be applied in the context of large multi-site 

clinical trials. It is also likely that the interpretation of tau PET signal in clinical trials of AD 

will be more complex than amyloid PET, given the focal nature of tau PET signal (Schwarz 

et al., 2016) along with greater sources of off-target binding in tau PET ligands (Leuzy et al., 

2019; Lemoine et al., 2018).

Given that tau PET data is being increasingly integrated, but there is a lack of knowledge 

regarding the impact of fundamental processing decisions regarding simplified analyses, 

we sought to directly compare the pattern of results related to disease stage across 

common reference regions. Post-mortem studies have highlighted initial tau deposition 
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within entorhinal cortex (EC) and medial temporal lobe, followed by spread into neocortex 

beginning in the inferior temporal (IT) cortex (Braak and Braak, 1991) that is linked 

with abnormal amyloid levels (Nelson et al., 2012). Cross-sectional tau PET studies 

examining in vivo tau deposition in clinically unimpaired (CU) individuals, those with mild 

cognitive impairment (MCI), and those with AD have largely confirmed these postmortem 

observations and have provided additional insights regarding patterns in cortex. In addition 

to IT, lateral inferior parietal (IP) and rostral middle frontal gyrus (rMFG) have been noted 

in CU amyloid positive (A+) individuals that transition to MCI (Betthauser et al., 2020) and 

in comparisons between clinically impaired versus CU individuals using tau PET (Lowe et 

al., 2018). These studies suggest that tau burden specifically in EC, IT, IP, and rMFG may 

be important indicators of disease stage, and indeed longitudinal tau PET changes are higher 

in these regions among CU A+ and clinically impaired A+ (Harrison et al., 2019; Cho et al., 

2019). Thus, we focus on these four a priori regions along with the precentral gyrus, a region 

that is relatively spared from tau deposition in post-mortem studies (Braak and Braak, 1991; 

Braak and Del Tredici, 2018; Alafuzoff et al., 2008).

Although amyloid status has been shown to be a predictor of future tau accumulation (Jack 

et al., 2018), it is unclear whether baseline tau magnitude provides additional information 

regarding longitudinal change in tau. The few studies that have examined the relation 

between baseline tau and longitudinal change in tau have yielded inconsistent results. Some 

studies have shown a positive relation in baseline and future tau accumulation in IT amongst 

CU (Hanseeuw et al., 2019; Knopman et al., 2020) and in a composite cortical region across 

the AD continuum (Pontecorvo et al., 2019), whereas others have shown that baseline tau 

is a non-significant predictor of longitudinal change in a temporal region across the AD 

continuum (Jack et al., 2020). Thus, baseline predictors of future tau PET accumulation 

deserve more attention, and it is unclear whether these associations are influenced by 

reference region and/or disease stage.

Accordingly, this study focuses on how reference region selection specifically influences 

early tau PET signal during the CU and MCI stages with an emphasis on participants who 

would be recruited for clinical trials. Our study has four aims: 1) identify group differences 

(CU A-, CU A+, MCI A+) in cross-sectional and longitudinal change in tau PET in five 

a priori regions; 2) examine whether current tau burden in these regions predicts annual 

change in these same regions; 3) conduct exploratory analyses across a large set of regions 

to determine the regional specificity of our findings; and 4) determine how reference region 

selection impacts these results.

2. Methods

2.1. Participants

Data used for this study were obtained from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database (https://ida.loni.usc.edu). The ADNI was launched in 2003 as 

a public-private partnership with the primary goal of testing whether serial neuroimaging 

and biological markers, and clinical and neuropsychological assessment can be combined 

to measure the progression of MCI and early AD. All ADNI participants provided written 

informed consent in compliance with local IRBs. For up-to-date information, see www.adni-

Young et al. Page 3

Neuroimage. Author manuscript; available in PMC 2022 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://ida.loni.usc.edu/
http://www.adni-info.org/


info.org. For this study, only ADNI participants with ≥ 2 tau PET scans; an amyloid PET 

within two years of the first tau PET; and a diagnosis of CU or MCI likely due to AD at the 

time of the first tau PET (mean (SD) = 15 (50) days); and amyloid positivity for those with 

MCI were included (Fig. 1, Table 1). The time delay between the first and most recent tau 

PET scans were similar between all groups (Levene’s test: F(2,196) = 0.867, p = 0.422).

2.2. PET imaging

A detailed description of flortaucipir (FTP) standardized uptake value ratio (SUVRs) 

processing can be found in the ADNI UC Berkeley AV1451 Methods document available 

on LONI. Regional tau PET measured with FTP for all Freesurfer-defined regions were 

downloaded from LONI and SUVRs were calculated based on four possible reference 

regions – (1) eroded subcortical WM, (2) inferior cerebellar GM, (3) a composite consisting 

of a volume-weighted average of eroded subcortical WM, brainstem, and whole cerebellum, 

similar to what has been used for examination of amyloid PET over time (Landau et al., 

2015; Lowe et al., 2018), and (4) whole cerebellum. All analyses were repeated with partial 

volume corrected data (Supplementary Figs. 1–5; Supplementary Tables 3–7). Using an 

amyloid PET closest in time to the first tau PET, individuals with SUVRs (whole cerebellum 

reference) ≥ 1.08 for [18] F-florbetaben (n = 49) or 1.11 for [18] F-florbetapir (n = 150) 

were considered A+ as suggested by ADNI. Additional details regarding derivation of these 

cutoffs are available in the Florbetaben and Florbetapir Processing Methods documents 

available on LONI.

2.3. CSF phosphorylated Tau

CSF phosphorylated Tau (pTau-181) processed via the fully automated Elecsys system was 

examined, converting the 2019 batch to 2016/2017 levels using the regression equation 

provided by ADNI. pTau-181 levels are expressed in pg/ml. Of the participants included for 

this study, CSF pTau-181 drawn within one year of the baseline tau PET scan was available 

for 120/199 participants (32 CU A- (51.6%), 48 CU A+ (65.7%), and 40 MCI A+ (62.5%) 

participants).

2.4. Statistical analyze

Data were analyzed using R version 4.0.4. FTP SUVRs were z-score normalized using the 

mean (SD) from the CU A- group (Supplementary Table 8) to enable comparisons across 

reference regions. Given the high correlations between FTP SUVRs based on eroded WM 

and composite, and between inferior cerebellum and whole cerebellum reference regions 

(see Results), as well as the common use of eroded WM and inferior cerebellum in the 

literature, subsequent analyses focused on eroded WM and inferior cerebellum reference 

regions. All models were separately applied for eroded WM and inferior cerebellum 

reference regions. First, linear regression models examined the effect of group (i.e., CU 

A-, CU A+, MCI A+) on baseline regional normalized FTP SUVRs (Z(FTP SUVR)), 

controlling for mean-centered age (74 years). All pairwise contrasts were examined. Second, 

we used linear regression models using Z(FTP SUVR) across the five a priori regions to 

predict CSF pTau-181 across the three groups, and to determine if the relation between 

CSF pTau-181 and regional Z(FTP SUVR) varied by group (SUVR x Group); baseline 
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Z(FTP SUVR) x Group interactions were subsequently removed from the models as these 

interactions were non-significant across all a priori regions for both reference regions.

Third, to examine change in Z(FTP SUVRs) over time, we conducted linear mixed models 

with fixed effects of Group x Time and Age x Time, and a random intercept; time is the 

only time-varying term and interactions were not removed if they were non-significant to 

allow for direct comparisons across all models. Fourth, linear mixed models were applied for 

each of the five a priori regions (e.g., EC Z(FTP SUVR)ij ∼ β1 + β2Baseline Z(FTP SUVR) 

in ECi + β3Groupi + β4Agei + β5Timeij + [β6Baseline Z(FTP SUVR) in ECi * Timeij] + 

[β7Baseline Z(FTP SUVR) in ECi * Groupi] + [β8Groupi * Timeij] + [β9Agei * Timeij] + 

[β10Groupi * Baseline Z(FTP SUVR) in ECi * Timeij] + b1i where i = participant and j = 

time from first tau scan) to determine whether baseline tau predicted annual change in tau 

within the same region, and whether the relation between baseline tau and annual change 

in tau differed by group; non-significant interactions again were not removed to allow for 

direct comparison across models. For this analysis, the dependent variable was change from 

baseline Z(FTP SUVR) in each region and baseline values (set to zero) were excluded from 

the outcome but included as an independent predictor. The time term reflects time from first 

tau PET. Contrasts were examined to determine group differences in longitudinal tau change 

(e.g., does the rate of change differ across CU A- and CU A+?), and to determine whether 

rates of change were significantly different than zero within each group (e.g., is the rate of 

change significantly greater than zero for CU A-?).

Fifth, expanding beyond our a priori regions, FTP SUVRs in 35 Freesurfer regions were 

z-score normalized using the mean and SD from the CU A- group to enable comparisons 

of effects sizes across the two different reference regions. Similar to the approach taken for 

the 5 a priori regions, linear regression models were used to examine the effects of age and 

group (i.e., CU A-, CU A+, MCI A+) on baseline Z(FTP SUVR) for each Freesurfer region. 

Finally, to understand how reference region influences change in tau, linear mixed models 

with fixed effect interactions of Group x Time and Age x Time, and a random intercept 

effect were examined; non-significant interactions were not removed from the models to 

allow for direct comparison across target and reference regions.

3. Results

Although we initially examined regional FTP SUVRs based on four possible reference 

regions (i.e., (1) eroded subcortical WM, (2) inferior cerebellar GM, (3) a composite region 

created using a weighted average of whole cerebellum, brainstem, and eroded subcortical 

WM, and (4) whole cerebellum), eroded WM and composite reference regions yielded 

nearly identical FTP SUVRs (range of R2 values = 0.874–0.982), as did inferior cerebellum 

and whole cerebellum reference regions (range of R2 values = 0.969–0.990) (Supplementary 

Fig. 6). Given this redundancy and the fact that eroded WM and inferior cerebellum are 

more commonly used reference regions in the literature (Hanseeuw et al., 2019; Jack et 

al., 2018; Knopman et al., 2020; Franzmeier et al., 2020; Vogel et al., 2020; Chiotis et al., 

2018; Sintini et al., 2020; Utianski et al., 2020; Sintini et al., 2019; Harrison et al., 2019), 

subsequent analyses focused on inferior cerebellum and eroded WM, which showed varying 

coefficients of determination (range of R2 values = 0.078–0.800).
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Linear regression models controlling for age demonstrated that CU A+ and MCI A+ showed 

significant baseline elevations in EC, IT, IP, and rMFG regardless of reference region 

in comparison to CU A- (Fig. 2). With the inferior cerebellum reference region, MCI 

A+ also showed significant baseline elevations in precentral gyrus. Correlations between 

regional cross-sectional FTP SUVR and CSF pTau-181 were consistent between reference 

regions. More specifically, CSF pTau-181 was significantly related to baseline regional FTP 

SUVR levels in EC, IT, IP, and rMFG with either reference region (Table 2, Fig. 3). CSF 

pTau-181 was additionally related to precentral FTP SUVR using the inferior cerebellum 

reference region only. The relation between pTau-181 and regional FTP SUVR did not 

differ across groups in any region using either reference region (all Baseline FTP SUVR 

x group interactions p-values > 0.380) and the Baseline x Group interaction terms were 

thus removed. Overall, a consistent pattern of group differences was present for baseline 

tau between reference regions with a more extensive pattern of group differences with the 

inferior cerebellum reference region.

To examine longitudinal tau change, linear mixed models with fixed effects of Group x Time 

and Age x Time, as well as a random intercept were used (Supplementary Table 1). When 

comparing longitudinal change in Z(FTP SUVR) across groups using a Group x Time term 

in the linear mixed models, there were significant group differences between MCI A+ and 

CU A+ in comparison to CU A- for IT and IP with the eroded WM reference region (Fig. 

2; Supplementary Fig. 7). With the inferior cerebellum reference region, group differences 

in change in Z(FTP SUVR) were observed in IT only. Significant accumulation greater than 

zero was present for multiple regions using eroded WM, but only for IT and IP using inferior 

cerebellum. Overall, this pattern suggests that the eroded WM reference region may be 

more sensitive to detecting change over time. Further, IT effects were consistently observed 

across both reference regions for within group changes as well as between group differences 

indicating that this region may be more robust against methodological decisions such as 

reference region selection.

We then examined longitudinal change in tau within each group. These results showed that 

use of the eroded WM reference region revealed significant longitudinal increases in Z(FTP 

SUVR) for most regions across all three groups. Conversely, change in Z(FTP SUVR) was 

significantly different than zero only amongst CU A+ and MCI A+ in IT and IP when using 

the inferior cerebellum reference region (Table 3). More specifically, with the eroded WM 

reference region, CU groups showed significant increases in EC Z(FTP SUVR) whereas 

MCI A+ did not; all three groups showed significant increases in Z(FTP SUVR) in IT 

though the effect was smallest amongst CU A-; both A+ groups showed significant increases 

in Z(FTP SUVR) in IP whereas CU A- did not; and only MCI A+ showed significant Z(FTP 

SUVR) increases in rMFG and precentral gyrus. Change in precentral gyrus remained 

significant even after removal of the one extreme outlier (B (SE) = 0.105 (0.041), p = 0.011). 

Overall, this pattern of longitudinal change using the eroded WM reference region follows 

a hypothesized sequence of changes, with early changes in EC among CU individuals, and 

cortical changes in CU A+ and MCI A+ (Nelson et al., 2012; Betthauser et al., 2020; Braak 

and Braak, 1991a).
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Next, we examined whether baseline regional Z(FTP SUVR) levels were associated with 

longitudinal Z(FTP SUVR) change within the same region with linear mixed models 

(Supplementary Table 2). In general, baseline Z(FTP SUVR) did not significantly predict 

change in Z(FTP SUVR) for any group in any region (Table 4, Fig. 4). The two exceptions 

were for EC for CU A+ with the eroded WM reference region, and baseline predicting 

change in rMFG for MCI A+ with the inferior cerebellum reference region. When 

examining whether the relation between baseline and annual change in Z(FTP SUVR) 

differed by group (e.g., Baseline SUVR * CU A+ * Time), CU A+ had a significantly 

more positive relation when compared to CU A- in EC, IT, and IP; and MCI A+ had a 

significantly more positive relation when compared to CU A- in IT with the eroded WM 

reference region; however, these interactions were likely influenced by negative associations 

within CU A- (higher baseline with lower change) and should be interpreted with caution.

Given some inconsistencies regarding the spatial pattern of differences between reference 

regions, we explored the overall pattern of age and group effects using equivalent linear 

mixed models across 35 Freesurfer regions that are widely used in the literature (Jack et 

al., 2018) (Fig. 5). This analysis revealed two main baseline differences across reference 

regions. First, younger age was associated with elevated Z(FTP SUVR) across multiple 

target regions using the inferior cerebellum reference region. This negative age effect was 

consistently dampened using the eroded WM reference region. Second, MCI A+ showed 

significantly elevated Z(FTP SUVR) in all 35 regions relative to CU A- using the inferior 

cerebellum reference region compared to a more focal pattern of elevations with the eroded 

WM reference region. When examining longitudinal tau change across the 35 Freesurfer 

regions (Fig. 6), several regions showed significant change over time within CU A+ and 

MCI A+, with a tendency for eroded WM to show greater within group accumulation 

compared to inferior cerebellum.

4. Discussion

Our results demonstrated that in regions known to show tau elevations in AD, there are 

robust baseline differences between CU A-, CU A+, and MCI A+ regardless of reference 

region. Change over time in IT and IP were also observed regardless of reference region, 

but changes in EC amongst CU groups and in rMFG amongst MCI A+ were observed only 

with the eroded WM reference region, suggesting a sequential involvement of these regions. 

With few exceptions, baseline regional tau was not predictive of longitudinal change within 

the same region. Exploratory examination across numerous regions revealed a few findings 

related to reference region choice. For cross-sectional data, use of the inferior cerebellum 

reference region resulted in stronger negative associations with age and a more distributed 

pattern of baseline elevations in MCI A+. For longitudinal change, the eroded WM reference 

region more consistently detected change over time that was significantly different than zero. 

Overall, these results highlight that baseline and longitudinal accumulation differ across 

disease stages defined by clinical diagnosis and amyloid status, and that reference region 

selection influences some of these results. With cross-sectional data, inferior cerebellum 

may be a more sensitive reference region given that it best distinguishes CU A-, CU 

A+, and MCI A+ groups. With longitudinal data, eroded WM may be a more sensitive 
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reference region given that this region shows within group change greater than zero in 

regions consistent with Braak staging.

In accordance with cross-sectional studies that have consistently demonstrated elevated tau 

among MCI versus CU individuals (Lowe et al., 2018), our results also show greater tau 

deposition in EC, IT, IP, and rMFG in CU A+ and MCI A+ compared to CU A-. Notably, 

tau PET elevation in CU A+ and MCI A+, and significant group differences were robust 

and generally did not depend on reference region. However, analyses using the inferior 

cerebellum reference region also indicated significantly elevated tau deposition among CU 

A+ in rMFG as well as among MCI A+ in a distributed set of target regions including 

precentral gyrus. Validation of cross-sectional tau PET against CSF pTau-181 yielded 

similar results with associations between pTau-181 and EC, IT, IP, and rMFG SUVRs 

with either reference region amongst all participants, and an additional relation between 

pTau-181 and precentral gyrus SUVRs with the inferior cerebellum reference region. Our 

moderate correlations between pTau-181 and FTP SUVRs are consistent with those reported 

by Washington University in St. Louis using FTP (Boerwinkle et al., 2021) and BioFinder 

using [18F]RO-948 (Leuzy et al., 2020). These findings highlight that both reference regions 

can identify baseline group differences and show expected associations with a different tau 

biomarker; however, the inferior cerebellum reference region results in additional group 

distinctions that are less regionally specific.

Our exploratory approach examining regions across the brain also revealed a consistent 

negative association between age and tau elevations with the inferior cerebellum but not 

eroded WM reference region. One possibility is that increased tau signal at younger ages 

reflects more aggressive tau pathology (Schöll et al., 2017; Cho et al., 2017; Pontecorvo 

et al., 2017). It is also possible that younger A+ impaired individuals are more likely 

to have a “pure” underlying tau pathology (Schöll et al., 2017; Cho et al., 2017), in 

comparison to older individuals who may have a multifactorial etiology (e.g., vascular, 

alpha synuclein, TDP43) and therefore require less tau accumulation for a given level of 

impairment. However, dependence on reference region to reveal this negative age association 

could also imply that an age-related source of off-target binding influences this pattern. 

For instance, older individuals may be more likely to have age-related mineralization in the 

cerebellum, which is consistent with known off-target binding of AV1451 in basal ganglia 

thought to reflect mineralization (Lowe et al., 2016; Harder et al., 2008). Importantly, 

age-related increases in off-target binding would systematically drive down SUVRs in target 

regions, giving the appearance of less tau at older ages when in fact reference region signal 

is elevated. Future studies are needed to understand potential changes related to off-target 

binding in the cerebellum and WM to guide interpretation of tau PET signal in target regions 

and negative age associations.

Compared to cross-sectional data, annual tau change was more regionally specific and in 

some regions, dependent on whether an eroded WM or inferior cerebellum reference region 

was used. Generally, significant change greater than zero was detected within groups for the 

eroded WM reference region. More specifically, CU groups, but not MCI, showed similar 

tau increases greater than zero in EC, and CU A+ and MCI A+ showed clear increases 

in IT and IP. This is consistent with patterns of tau uptake in CU A+ that transition to 
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MCI (Betthauser et al., 2020). Both IT and IP rates of change showed a stage-dependent 

pattern such that rates were highest in MCI A+ and CU A+. Finally, significant increases 

in rMFG tau, a frontal region typically impacted in later disease stages (Braak and Braak, 

1991; Braak and Braak, 1995; Braak et al., 2006), were observed only in MCI A+ though 

rates were comparable between groups. Unexpectedly, MCI A+, as a group, also showed 

significant tau increases in precentral gyrus, a region that does not show tau deposition until 

very late in disease (Braak and Braak, 1991; Braak and Del Tredici, 2018; Alafuzoff et 

al., 2008; Braak and Del Trecidi, 2015), with non-significant differences between groups. 

However, the vast majority of participants within the MCI A+ group did not show strong 

increases in precentral gyrus tau (Figs. 2,4, Supplementary Fig. 7) and future studies with 

post-mortem validation are needed to determine whether this increased signal is reflective of 

methodologically related confounding factors, particularly given the lower range of values 

in this region, or regional variability in true tau pathology. In summary, the eroded WM 

reference region revealed a more focal pattern of longitudinal tau change consistent with our 

understanding of regional patterns of tau accumulation and spread.

Critically, IT and IP showed significant accumulation over time with both reference regions 

in CU A+ and MCI A+ groups, suggesting that signal within a subset of target regions 

may less prone to methodological decisions and more reliable than others. This observation 

argues against the use of a global composite target region, which is an especially important 

consideration for clinical trials that are using tau PET as biomarker endpoints. Although tau 

PET data has been integrated into many clinical trials, to our knowledge, only one study 

to date has published tau PET data in the context of an anti-amyloid treatment (Mintun et 

al., 2021). This recent phase 2 trial of donanemab did not show reductions in global tau but 

did show regional effects in lateral temporal and frontal lobes (Mintun et al., 2021). This 

further highlights the value of focal target regions for detecting longitudinal change. The 

donanemab findings in lateral temporal regions converges with our findings in IT tau, and 

although we did not find consistent accumulation across frontal regions, this discrepancy 

could be related to differences in cohort characteristics (e.g., our study is focused on CU and 

MCI, whereas the donanemab trial was focused on early symptomatic AD (Mintun et al., 

2021)). It is likely that the specific set of regions showing the highest target signal varies 

according to disease stage, and indeed, our exploratory analyses further revealed frontal and 

occipital changes in MCI A+ only with the eroded WM reference region. In contrast, the 

inferior cerebellum reference region yielded change estimates around zero in 28/35 brain 

regions in MCI A+, a stage in which tau change is expected to play a significant role (Jack 

et al., 2010). Taken together, consideration of target regions as well as reference region 

selection may be especially important to consider for detecting change amongst those with 

early cognitive impairment.

Few studies with conflicting results have examined whether baseline tau load is an important 

predictor of subsequent accumulation (Hanseeuw et al., 2019; Knopman et al., 2020; 

Pontecorvo et al., 2019; Jack et al., 2020). Our findings here indicate that baseline tau 

generally does not significantly predict change in future tau within the same region after 

accounting for disease stage. It is noteworthy however that CU A+ showed consistent 

positive associations between baseline and change in tau in all target regions with either 

reference region, whereas associations within the higher range of tau values among the 
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MCI A+ group were largely uncoupled. It is possible that with a larger sample size and 

longer follow-up time, a clearer association between baseline and change in tau amongst 

CU A+ will be identified. Furthermore, qualitative examination of these relations revealed 

that individuals with the highest baseline values (MCI A+) do not show the greatest 

accumulation within that region. This could reflect an uncoupling between magnitude and 

rate indicating saturation of PET signal and/or lack of further tangle deposition in regions 

with significant tangle pathology. Overall, our results suggest that longitudinal change in 

regional tau is related to disease stage and amyloid status (Hanseeuw et al., 2019; Knopman 

et al., 2020; Vogel et al., 2020; Pontecorvo et al., 2019; Guo et al., 2020; Chen et al., 2020) 

and that higher baseline levels of tau do not directly translate to greater change slopes in 

those same regions.

There are several limitations that are important to consider. The majority of participants 

only had two timepoints and follow-up was limited to 1.6 years (mean). Longer follow-up 

and additional timepoints may reveal important nonlinear associations with tau change, 

especially among CU. Second, given our focused a priori hypotheses, our statistical models 

did not correction for multiple comparisons. Third, factors such as age or disease associated 

perfusion can differentially affect SUVR quantification between reference regions, which 

could account for the differences observed here. Fourth, the SUVR data that is provided 

by ADNI did not use longitudinal processing or within-person templates for segmentation. 

These processing decisions may influence interpretations of regional SUVRs, particularly 

for subjects with significant atrophy or structural abnormalities. We also cannot compare our 

results to gold-standard dynamic data with arterial sampling, which have not explored white 

matter as a potential reference region and have rather used cerebellum given the low bias and 

high consistency of binding in this region (Barret et al., 2017; Wooten et al., 2017; Hahn et 

al., 2017). However, the data presented here are similar to what is feasible in a clinical trial 

setting.

5. Conclusions

Our study showed an uncoupling between regional baseline tau and changes in tau, and 

indicated that reference region selection can influence the effect of age on baseline tau, 

regional specificity of baseline group differences, and the ability to detect significant change 

over time. Inferior cerebellar gray matter may be a preferable reference region for cross-

sectional flortaucipir focused on group differences, whereas eroded subcortical white matter 

may be a preferable reference region for longitudinal flortaucipir analyze examining regional 

patterns of change.
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Fig. 1. 
ADNI data selection. CU A- = clinically unimpaired amyloid negative, CU A+ = clinically 

unimpaired amyloid positive, MCI A+ = mild cognitive impairment amyloid positive.
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Fig. 2. 
Group differences in baseline flortaucipir (FTP) SUVR and longitudinal change in FTP 

SUVR based on (A) eroded subcortical white matter (WM) and (B) inferior cerebellar 

gray matter (GM) reference regions. Age is controlled for in each model. For longitudinal 

change, annual change in FTP SUVR was manually calculated from a linear mixed model 

with a random intercept for each Subject and a random slope representing Time for display 

purposes only; reported statistics are from linear mixed models described in the Methods. 

* p < 0.05, * * p < 0.01, * * * p < 0.001 for between group contrasts. #p < 0.05 for 

longitudinal change greater than zero within each group.
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Fig. 3. 
Relation between z-score normalized baseline flortaucipir SUVR (Z(FTP SUVR)) and CSF 

phosphorylated tau (pTau-181).
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Fig. 4. 
Baseline z-score normalized flortaucipir SUVR (Z(FTP SUVR)) versus longitudinal change 

in Z(FTP SUVR), residualized by age.
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Fig. 5. 
Summary of multiple regression effects of age and group on baseline z-score normalized 

flortaucipir SUVRs depending on reference region. Error bars depict a 95% confidence 

interval surrounding the beta estimate.
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Fig. 6. 
Summary of linear mixed model effects of age and group status on longitudinal z-score 

normalized flortaucipir SUVRs (Z(FTP SUVR)) depending on reference region. The age 

column reflects the age x time term (i.e., effect of baseline age on change in Z(FTP SUVR) 

over time). The CU A-, CU A+, and MCI A+ columns reflect the estimated change in Z(FTP 

SUVR) for each group (i.e., is change in Z(FTP SUVR) different than zero within each 

group). The CU A+ vs. CU A- and MCI A+ vs. CU A- columns reflect whether change in 

Z(FTP SUVR) over time differed across groups. Error bars depict a 95% confidence interval.
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