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Abstract

Background: Decapping of mRNA is an important step in the regulation of mRNA turnover and therefore of gene
expression, which is a key process controlling development and homeostasis of all organisms. It has been shown
that EDC3 plays a role in mRNA decapping, however its function is not well understood. Previously, we have
associated a homozygous variant in EDC3 with autosomal recessive intellectual disability. Here, we investigate
the functional role of EDC3.

Methods: We performed transcriptome analyses in patients’ samples. In addition, we established an EDC3
loss-of-function model using siRNA-based knockdown in the human neuroblastoma cell line SKNBE and
carried out RNA sequencing. Integrative bioinformatics analyses were performed to identify EDC3-dependent
candidate genes and/or pathways.

Results: Our analyses revealed that 235 genes were differentially expressed in patients versus controls. In
addition, AU-rich element (ARE)-containing mRNAs, whose degradation in humans has been suggested to
involve EDC3, had higher fold changes than non-ARE-containing genes. The analysis of RNA sequencing data
from the EDC3 in vitro loss-of-function model confirmed the higher fold changes of ARE-containing mRNAs
compared to non-ARE-containing mRNAs and further showed an upregulation of long non-coding and coding
RNAs. In total, 764 genes were differentially expressed. Integrative bioinformatics analyses of these genes
identified dysregulated candidate pathways, including pathways related to synapses/coated vesicles and DNA
replication/cell cycle.

Conclusion: Our data support the involvement of EDC3 in mRNA decay, including ARE-containing mRNAs,
and suggest that EDC3 might be preferentially involved in the degradation of long coding and non-coding
RNAs. Furthermore, our results associate ECD3 loss-of-function with synapses-related pathways. Collectively, our
data provide novel information that might help elucidate the molecular mechanisms underlying the association of
intellectual disability with the dysregulation of mRNA degradation.
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Background
Gene expression can be regulated at different points
during the processing of genetic information, including
transcription, mRNA processing, translation, and deg-
radation [1]. Previously, several RNA decay pathways
have been identified [2–4]. The two major exonucleoly-
tic mRNA decay pathways, the 5′ to 3′ and the 3′ to 5’
mRNA decay, both start with the deadenylation of the
3′ end poly(A) tail [3, 4]. In the 5′ to 3’ mRNA degrad-
ation pathway a major player is the human decapping
factor 2 (DCP2), which hydrolyses the 7-methyl-
guanosine cap at the 5′ end directly after the deadenyla-
tion of the poly(A) tail [5, 6]. The decapped mRNA is
degraded by the 5′ to 3′ exonuclease Xrn1 [4]. In recent
years, it has become clear that a number of different
decapping complexes exist in order to enable transcript
specificity [7]. How this transcript specificity is achieved
in humans and how defects in its regulatory pathways
affect human health remains mainly elusive. Multiple
co-factors have been identified that enhance the decap-
ping activity of DCP2 [8], among them the enhancer of
decapping 3 (EDC3), containing the three domains LSm,
FDF, and YjeF-N [9, 10]. In humans EDC3 has been
found to interact with the RNA binding protein Triste-
traprolin (TTP, known as well as ZFP36 [11]), which
binds to AU-rich elements (AREs) in mRNAs and
enhances the decapping and degradation of ARE-
containing mRNAs [9]. Importantly, in a previous study,
we identified a homozygous variant in EDC3 (c.161T>C;
p.Phe54Ser) in two children of a consanguineous family
affected by mild non-syndromic intellectual disability
[12], indicating that EDC3 and DCP2 contribute to
neuronal functions. Molecular modeling predicted the
identified variant to significantly disrupt the hydrophobic
LSm domain of EDC3 [12], which has been shown to be
important for the interaction between Edc3 and Dcp2 in
yeast [13–15]. Additionally, functional analyses showed
that the altered EDC3 was unable to enhance the decap-
ping activity of DCP2 at low concentrations and inhib-
ited DCP2 activity at high concentrations [12]. However,
the genome wide transcriptional effect of EDC3 impair-
ment in human cells has not yet been investigated. Tran-
scriptome analysis has previously been successfully used
to help unravel the functional consequences of identified
variants in intellectual disability [16–18]. Therefore, we
conducted RNA sequencing (RNA-seq) on lymphoblas-
toid cell lines from the two patients as well as samples
from an EDC3 loss-of-function model in the neuroblast-
oma cell line SKNBE. The analysis of our RNA-seq data
revealed RNA classes that appear to be preferentially
affected by EDC3 loss-of-function and identified dysreg-
ulated candidate pathways. Thus, our data contribute to
the understanding of the pathomechanism of intellectual
disability in our patients and in general.

Methods
Cells and cell culture
Lymphocytes were extracted from patients’ blood and
transformed with Epstein-Barr virus to establish a lym-
phoblastoid cell line. Cells were kept as suspension in
RPMI-1640 (Biochrom), 20% fetal calf serum (FCS), 1%
Penicillin/ Streptomycin and 2 mM L-Glutamine (Gibco)
at 37 °C, 5% CO2 and 91% humidity.
The human neuroblastoma cell line SKNBE was culti-

vated in Dulbecco’s Modified Eagle’s Medium (DMEM/
HAM’s F12) complemented with 10% FCS, 1% Penicillin/
Streptomycin and 0.5 mmol/l L-Glutamine (Gibco). Cells
were cultured at 37 °C, 5% CO2 and 91% humidity.

Transfection, RNA isolation, cDNA synthesis and
quantitative real-time PCR
The neuroblastoma cell line SKNBE was transfected
with siRNAs to knock down gene expression of EDC3.
Three different Silencer Select Pre-designed siRNAs tar-
geting EDC3 (hereafter indicated as siEDC3-1, siEDC3-
2, siEDC3-3; Invitrogen) (Additional file 1: Table S1)
were utilized at a 10 nM concentration. Scrambled
siRNA and siRNA targeting GAPDH (Invitrogen) were
used as negative and positive control, respectively. Lipo-
fectamine® RNAiMAX (Invitrogen) was used as transfec-
tion agent. 24 h prior to the siRNA knockdown, 150,000
SKNBE cells per well were seated in a six well plate in
antibiotic-free proliferation medium. For cell differenti-
ation, 10 μM retinoic acid and 25 μM caffeine acid were
added to the proliferation medium during transfection,
as in Redova et al. [19]. In parallel to the differentiation,
not transfected cells were treated with normal prolifera-
tion medium (DMEM/HAM’s F12 + 10% FCS).
Total RNA was extracted 72 h after transfection using

RNeasy Mini Kit and Qiashredder Kit (Qiagen) accord-
ing to the manufacturer’s protocol. Following standard
protocols (Invitrogen), Superscript II and Random
Primers (Invitrogen) were used to transcribe RNA into
cDNA. Real Time PCR was employed to analyze the
gene expression level of EDC3 in transfected cells and
validate the transfection result. Predesigned TaqMan
probes (EDC3: Hs00257810_m1) and TaqMan Gene Ex-
pression Mastermix (Applied Biosystems) were used
according to manufacturer’s protocol and assays were
run on QuantStudio 12 K Flex real-time PCR System
(Applied Biosystems). The gene expression of EDC3 was
normalized against the average of the four endogenous
controls ß-Actin (huACTB), ß-2-microglobulin (huB2M),
acidic ribosomal protein (huPO), and transcription-factor
IID (huTBP) (Applied Biosystems). Four technical
replicates were performed for each assay.
RNA from lymphoblastoid cell line samples was ex-

tracted and transcribed into cDNA following the same
procedure as for SKNBE.
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RNA sequencing
For RNA-seq analysis of patients’ samples, libraries were
prepared from the RNA extracted from lymphoblastoid
cell lines using Nugen Ovation Human FFPE RNA-seq
Kit according to the manufacturer’s instructions (Nugen
Technologies, San Carlos, CA) and subjected to single-
end sequencing on a SOLiD 4 platform (Life Technolo-
gies, Carlsbad, CA). LifeScope analysis suite was
employed to align reads to the hg19 reference genome.
Subread’s featureCounts v.1.4.6 [20] was used to produce
absolute read counts per gene using Ensembl’s gtf anno-
tation file (genebuild 2013-09) for hg19.
For RNA-seq analysis of SKNBE samples, barcoded

RNA sequencing libraries were prepared as previously de-
scribed [21] and sequenced on a HighSeq-2500 platform
(Illumina, San Diego, CA). After mapping of the single-
end reads [21], absolute read counts per gene were pro-
duced using Subread’s featureCounts and the Ensembl’s
gtf annotation file. Transcriptome data were validated by
quantitative PCR (Additional file 2: Figure S1).

Differential expression analysis
All analyses were performed using R version 3.3.0
[22]. Differential expression analysis was performed
with the DESeq2 package v.1.12.3 [23]. Genes were
declared differentially expressed (DEGs) if their
Benjamini-adjusted p-value was lower than 0.1. Only
expressed genes (i.e. passing the independent filtering
performed by DESeq2) were used for all following
analyses.
In order to identify genes coding for ARE-containing

RNAs, the AU-rich element-containing mRNA database
(ARED) was utilized [24] to classify genes as ARE-
containing and non-ARE-containing.
The allocation of genes to different functional classes,

such as protein coding, antisense, lincRNA, was based
on biotypes from the Ensembl’s gtf annotation file.
HGNC gene symbols, where available, were assigned to
Ensembl genes relying on biomaRt package v.2.28.0. For
each gene the length provided by featureCounts was
used, which corresponds to the length of the union of all
exons of the gene. Long non-coding genes were taken
as those classified to biotypes: lincRNA, antisense,
processed_transcript, sense_intronic, sense_overlap-
ping, 3prime_overlapping_ncrna. In order to analyze
the behavior of protein coding genes with different
lengths, genes were sorted by increasing length and
binned into deciles.
In order to evaluate the expression of SKNBE DEGs in

different tissues, normalized expression data (FPKM) of
“Illumina Body Map” were retrieved from Gene Expres-
sion Atlas [25]. These consist of expression values for
33,413 genes from 16 different tissues contained in
highly curated RNA-seq and microarray experiments

from ArrayExpress [26]. Tissue expression profiles of
DEGs with an associated HGNC symbol could be ex-
tracted from the Atlas and clustered using hierarchical
clustering (hclust function in R/Bioconductor).
For analyses on a protein level a human protein-

protein interaction network (PPI) published by Li et al.
[27] was employed. This network was based on interac-
tions contained in the BioGrid database [28]; pre-
processing done by the authors included removing
isolated nodes, self-interacting edges and human-non-
human interacting proteins. After pre-processing, the
authors clustered the network nodes into 816 modules
based on dense interactions within the modules and only
sparse interactions between them. The DEGs in SKNBE
were mapped onto this network and enriched modules
were identified by means of the hypergeometric test.
All functional annotation analyses were performed

using DAVID v. 6.7 [29, 30], employing Gene Ontol-
ogy (GO_FAT), KEGG and UniProt tissue expression
(UP_TISSUE) as annotations.

Module detection using weighted gene co-expression
network analysis
Weighted gene co-expression network analysis (WGCNA)
of SKNBE DEGs was performed using the R/Bioconductor
package WGCNA version 1.51 [31]. First, a signed co-
expression similarity matrix was constructed, which
describes pairwise similarities of gene expression profiles
relying on Pearson’s correlation. Next, the weighted adja-
cency matrix was built by raising the similarity matrix
values to a soft-thresholding power, which in this study
was taken equal to β = 30.
The weighted co-expression network was employed to

identify modules, i.e. clusters of highly interconnected genes
and thus with highly correlated expression profiles across
samples. Module detection in the package relies on the cal-
culation of a topological overlap measure (TOM) dissimilar-
ity matrix, which serves as input for average linkage
hierarchical clustering. Branches from the resulting tree
were divided into modules using the DynamicTreeCut
Algorithm with the option deepSplit = 0. The choice of the
value that specifies the sensitivity of splitting clusters was
guided by visual inspection of the TOM plot, a color-coded
depiction of the dissimilarity matrix values. In our study the
value was taken equal to 0 in order to obtain a small
amount of modules, each containing genes with highly simi-
lar expression profiles. As measurement of how well a gene
belongs to its module, a module membership (MM) score
was calculated: this is defined as the correlation between a
gene and the module’s eigengene, which can be thought of
as the representative meta-gene for its module. Color-coded
representations of expression profiles in each module were
obtained with the R/Bioconductor package LSD v. 3.0
(https://CRAN.R-project.org/package=LSD).
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Results
Transcriptome analysis of patients with EDC3 variant
To explore the effects of the identified EDC3 variant
(c.161T>C; p.Phe54Ser) on gene expression, we per-
formed RNA-seq of RNA extracted from lymphoblas-
toid cell lines of the two patients with the EDC3
variant and two controls (Additional file 3: Table S2).
Out of the 22,123 expressed genes, 235 were identified
as differentially expressed (DEGs) (Benjamini adjusted
p-value < 0.1; Additional file 4: Table S3). Functional
enrichment analysis of DEGs performed with DAVID
[29, 30] showed that the top enriched pathways are re-
lated to plasma membrane (Additional file 5: Table S4).

EDC3 variant is associated with differential expression of
ARE-containing mRNAs
As EDC3 has been found to interact with TTP and TTP
enhances the decapping of ARE-containing mRNAs [9],
we hypothesized that, if EDC3 function is impaired, ex-
pression of ARE-containing mRNAs is increased. Thus,
we utilized the information contained in the ARE-
database [24] to specifically assess the expression of
ARE-containing RNAs in the transcriptome data
obtained from patients’ and controls’ lymphoblastoid cell
lines. Our results showed that the mean fold change of
genes coding for ARE-containing RNAs was significantly
higher than that of genes coding for non-ARE-
containing RNAs (p = 5.93*10− 4; one-sided Student’s t-
test; Fig. 1a). These data strengthen the hypothesis that
the EDC3 variant (c.161T>C; p.Phe54Ser) impairs
mRNA decapping and might be causative of the patients’
phenotype.

EDC3 knockdown in SKNBE affects the expression of ARE-
containing RNAs
Mechanisms exist to confer transcript specificity in
mRNA degradation [7]. Thus, the analysis of lympho-
blastoid cell lines might not provide an explanation of
the observed intellectual disability of the two patients
with the EDC3 variant (c.161T>C; p.Phe54Ser). As
RNA-seq analysis on neuronal patients’ cells cannot be
performed, we established an EDC3 loss-of-function
model in the neuroblastoma cell line SKNBE. To this aim,
we knocked down EDC3 using three different siRNAs
(hereafter named siEDC3-1, siEDC3-2, siEDC3-3) during
neuronal differentiation and performed three biological
replicate experiments (indicated as T1-T3). The knock-
down was successful and the expression of EDC3 was
reduced to less than 25% in most experiments (Fig. 1b).
This knockdown did not affect the gross morphological
differentiation of SKNBE cells after 72 h and after 5 days
(Additional file 6: Figure S2).
RNA sequencing was performed for five knockdown

and three control samples (Additional file 7: Table S5).
The knockdown samples comprise the three siEDC3-2
samples from the three biological replicates T1-T3 and
one sample each for siEDC3-1 and siEDC3-3 (respect-
ively from T2 and T1, in which these siRNAs achieved
the best knockdown). A principal component analysis
plot of the 16,321 expressed genes shows that the
expression profiles for the three controls cluster together
and analogously those of the three replicates of siEDC3-2
knockdown; in addition, expression profiles associated
with all knockdowns are clearly separated from controls
(Additional file 8: Figure S3).

a b c

Fig. 1 EDC3 loss-of-function is associated with differential expression of ARE-containing RNAs. a Differential expression of genes coding for ARE-
containing RNAs in patients’ lymphoblastoid cell line samples. Out of the 22,123 expressed genes, 15,144 were listed in the database and 2956 of
them were classified as ARE-containing. Bars indicate the standard deviation of the log2(fold change). b Expression of EDC3 measured by real-time PCR after
transfecting SKNBE cells with three different siRNAs targeting EDC3 (siEDC3-1, siEDC3-2, siEDC3-3) as well as a negative control (siNC). In siNC samples, EDC3
expression is set to 1. Gene expression levels are calculated from CT values of each sample, normalized against the mean CT value of the endogenous
controls ACTB, B2M, PO, and TBP. T1-T3 refer to three biological replicate experiments. Samples chosen for RNA-seq are marked with a red asterisk. Bars
indicate the standard deviation calculated on four technical replicates performed for each assay. c Differential expression of genes coding for ARE-containing
RNAs in SKNBE cell line samples. Out of the 16,321 expressed genes, 12,749 were listed in the ARE-database and 2579 of them were classified as ARE-
containing. Bars indicate the standard deviation of the log2(fold change)
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As in patients’ lymphoblastoid cell lines with the
EDC3 variant, also the neuronal cell line SKNBE upon
EDC3 knockdown showed in the transcriptome analysis
that ARE-containing genes have a higher mean fold
change than non-ARE-containing genes (p = 5.02*10− 6;
one-sided Student’s t-test) (Fig. 1c). This concurrence is
further evidence of the pathogenicity of the reported
variant in our two patients in the sense of a loss-of-
function variant [12].

EDC3 knockdown in SKNBE is associated with
upregulation of long-noncoding and long coding RNAs
Long non-coding RNAs (lncRNAs) have been found to
show lower expression but higher tissue specificity than pro-
tein coding RNAs, with a high number of brain-specific
lncRNAs [32–34]. There are five categories of genes encod-
ing long non-coding RNAs and containing more than 50
expressed genes in our SKNBE samples: long intergenic
non-coding RNA (lincRNA), antisense, processed_transcript,
sense_intronic, sense_overlapping (Additional file 9: Table
S6). Four of these biotypes, i.e. lincRNA, antisense, sense_in-
tronic and sense_overlapping, are significantly upregulated
with p-value < 0.001 (p-values are respectively 3.95*10− 8,
5.69*10− 4, 5.94*10− 2, 4.13*10− 8, 4.94*10− 5; one-sided Stu-
dent’s t-test; Fig. 2a). In addition, we analyzed coding genes
regarding a potential correlation between fold change and
length. Analysis of the fold changes of coding genes binned
into length deciles showed that gene length and fold change
are positively correlated (R2 = 0.91, p-value = 1.78*10− 5; Fig.
2b). Collectively, these data suggest that EDC3 knockdown
preferentially affects the expression of long RNAs.

Differentially expressed genes in EDC3 knockdown cells
are involved in synapses and cell cycle-related processes
In order to obtain insights into the functional conse-
quences of EDC3 impairment and its potential effect on

intellectual disability, we performed integrative bioinfor-
matics analyses on the SKNBE transcriptome data. Out
of the 16,321 expressed genes, 764 genes are differen-
tially expressed in EDC3 knockdown samples com-
pared to controls (Benjamini adjusted p-value < 0.1)
(Additional file 10: Table S7). In order to assess
whether the DEGs are preferentially expressed in
neuronal cells, we utilized available expression data in
the Expression Atlas [25]. Clustering of the expression
of 744 DEGs listed in the Expression Atlas revealed a clus-
ter of 117 genes, which are highly expressed in brain but
rarely in other tissues (Fig. 3; Additional file 11: Table S8).
Pathway analysis of these 117 genes with DAVID revealed
top enriched pathways related to synapses and coated ves-
icles (Additional file 12: Table S9).
Functional enrichment analysis of all 764 DEGs per-

formed with DAVID [29, 30] showed that the top
enriched pathways are related to DNA replication and
cell cycle (Additional file 13: Table S10). In order to in-
vestigate known protein-protein interactions between
proteins encoded by the DEGs, we relied on a human
protein-protein interaction network published by Li et
al. [27] based on the extensive human protein interac-
tome from BioGrid [28]. The authors had identified 817
clusters of densely connected proteins, with sparse inter-
actions with proteins in other clusters. Out of the 817
clusters, 7 clusters (defined in the original publication as
clusters 22, 32, 63, 217, 309, 339, and 383) were enriched
in our DEGs (p-value < 0.05; hypergeometric test), with
three of them (22, 32, and 63) containing at least 15
genes (Fig. 4). Functional annotation analysis with DA-
VID showed that cluster 22 was enriched for GO
terms related to DNA replication and cell cycle, clus-
ter 32 for terms related to ion channel activity, and
cluster 63 for cell cycle and chromosome-related
terms (Additional file 14: Table S11).

a b

Fig. 2 Differential expression of long non-coding and coding RNAs. a Mean log2(fold change) of long non-coding genes in different categories;
bars indicate the standard deviation of log2(fold change); **: p-value < 0.001 (one-sided Student’s t-test). b Mean log2(fold change) of protein-coding
genes divided into length deciles
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Fig. 3 Tissue expression analysis of DEGs. Clustering of tissue expression profiles of DEGs retrieved by Expression Atlas. Tightly clustered genes,
which are predominantly expressed in brain, are highlighted by the green rectangular box

Fig. 4 Clusters of protein-protein interaction network enriched in DEGs. Three clusters of the protein-protein interaction network published by Li
et al. [27], defined in the original publication as clusters 22, 32, and 63, which are enriched in DEGs (red)

Scheller et al. BMC Medical Genomics  (2018) 11:41 Page 6 of 11



Co-expression network analysis identifies a gene module
enriched in synapses-related genes
In order to identify modules of co-expressed genes, we
performed a weighted gene co-expression network ana-
lysis (WGCNA) [31, 35]. On the basis of the co-
expression network learned on the 764 DEGs, it was
possible to identify six modules of correlated genes,
hereafter referred to as blue, turquoise, brown, yellow,
red, and green module. All the modules are character-
ized by a high module membership score (0.91 on aver-
age). The high intra-module correlation appears evident
also by visual inspection of the topological overlap
matrix (TOM) plot, a color-coded depiction of the
TOM-based dissimilarity values (Fig. 5a), and inspec-
tion of plots of the expression profiles in each cluster
(Fig. 5b). For further investigations, we concentrated
on the modules with the highest number of genes, i.e.
blue, turquoise, and brown. Functional annotation ana-
lysis of these three modules revealed that the blue module
was enriched in terms related to DNA replication and cell
cycle, the turquoise module in terms related to synapses
and coated vesicles, and the brown module in extracellular
matrix (Additional file 15: Table S12). Furthermore, 56%
of the 117 genes highly expressed in brain were assigned
to the turquoise module (Additional file 11: Table S8;
p-value = 6.33*10-6, hypergeometric test). Taken together,
co-expression network analysis confirms the global

association of DEGs with synapses-related processes and
furthermore identifies a module of highly correlated
synapses-specific genes.

Discussion
In a previous study, we identified a homozygous variant
in EDC3 in two siblings with mild non-syndromic intel-
lectual disability [12]. Molecular modelling suggested it
to be a loss-of-function variant. Furthermore, whereas
wild type EDC3 enhanced DCP2 decapping activity by
two-fold in decapping in vitro assays, EDC3 with the
identified variant failed to show any enhancement. In
our transcriptome analysis from lymphoblastoid cell line
samples of patients’ cells carrying the EDC3 variant as
well as from an in vitro EDC3 loss-of-function neuronal
model based on siRNA knockdown we identified several
hundred DEGs. The effect of EDC3 impairment at tran-
scriptional level had not previously been studied and the
large-scale transcriptional dysregulation we observed
strengthens the role of EDC3 in mRNA decapping and
degradation. Additionally, mRNAs containing AU-rich
elements showed higher fold changes than mRNAs with-
out AREs. EDC3 had been previously found to interact
with TTP, an activator of the decay of ARE-containing
RNAs [9]. The accumulation of ARE-containing mRNAs
further supports the role of EDC3 in mRNA decapping
and might contribute to the intellectual disability

a b

Fig. 5 Modules identified by weighted co-expression network analysis on DEGs. a Topological overlap matrix (TOM) plot. Hierarchical clustering
was applied to the TOM-based dissimilarity matrix to identify modules, i.e. groups of highly interconnected genes. The heatmap is a color-coded
representation of the topological overlap between pairs of nodes. Each row/column corresponds to a gene and progressively darker red corresponds to
higher topological overlap. The dendrogram and a color-coded module membership representation are shown to the left and above the heatmap. b Plots
of expression profiles of genes in each of the six modules. Single gene profiles are shown in light grey, the black line corresponds to the median of module
genes, the red area represents the interquartile range (25-75% of expression values) and the light blue area represents expression values of 90% of the data
(5 - 95%). avMM: average module membership for genes in the module; N: number of genes in the module
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phenotype observed in our patients. Indeed, mRNA dec-
apping has already been associated with ID, as variants
in the scavenger decapping enzyme (DCPS), which is
responsible for decapping in the 3′ to 5’ mRNA decay
pathway, were identified in several unrelated patients
who have intellectual disability [12, 36].
Transcriptome analyses in SKNBE neuroblastoma cells

showed an upregulation of long non-coding and long cod-
ing RNAs. This indicates that EDC3 might be preferen-
tially involved in decapping long RNAs. LncRNAs are
involved in gene expression regulation and a large number
of developmental processes, including neuronal develop-
ment, and have been implicated in neuronal plasticity [33,
37–39]. A recent study has revealed a high co-expression
between lncRNAs and known ID genes using genome-
wide weighted gene co-expression network analysis [40].
Furthermore, dysregulated lncRNAs have been connected
to a variety of neurodegenerative conditions such as Hun-
tington’s disease, Alzheimer’s disease, autism spectrum
disorders, and Angelman syndrome [41, 42]. The upregu-
lation of lncRNAs in EDC3 knockdown SKNBE cells
might hint towards a potential causative correlation with
the intellectual disability presented by our patients. How-
ever, the finding on lncRNAs should be interpreted with
caution. Indeed, only a few have so far been functionally
characterized [43] and more research about lncRNAs,
their expression in different cell lines, and their role in
neurological disease is needed. In addition to lncRNAs,
long coding RNAs were also upregulated in EDC3 knock-
down cells. In a study on MECP2, a gene leading to Rett
syndrome (RTT) when disrupted, it was found that long
genes were upregulated in Mecp2 mouse mutant brain
and human RTT brain [44]. A set of 466 long genes con-
sistently dysregulated across multiple microarray datasets
when MeCP2 function was perturbed contained many
genes involved in neuronal modulation processes, axonal
guidance, synaptic formation, or other neuronal functions
[44]. The same study explored also a connection between
the upregulation of long genes and fragile X syndrome,
typically caused by inactivation of the fragile X mental re-
tardation protein (FMRP). FMRP is involved in translation
regulation, especially in inhibition of mRNA translation
[45]. Gabel et al. showed that mRNAs targeted by FRMP
were significantly longer than the genome average [44].
On the basis of our results and the above discussed previ-
ous findings, we hypothesize that the identified upregula-
tion of long transcripts might contribute to the phenotype
of intellectual disability in our patients. However, due to
the current limited knowledge on the function of long
RNAs, the mechanism underlying this contribution
remains elusive.
Integrative analyses of SKNBE transcriptome data per-

formed by different methodologies, including functional
annotation analysis of DEGs and weighted co-expression

network analysis, highlighted the potential involvement
of two groups of pathways: synapses/coated vesicles on
the one hand and DNA replication/cell cycle on the
other. Synapses play a key role in the neuronal system
and associations were found between intellectual disabil-
ity and dysregulated genes known to be associated with
synapses and synaptic vesicles traveling [46, 47]. Two
well-known syndromes associated with intellectual dis-
ability, the Fragile X syndrome and Rett syndrome, affect
synaptic function [48–53]. A study on the transcriptional
regulator NONO, whose variants were identified in three
patients with syndromic intellectual disability, found that
one third of differentially expressed genes in transcrip-
tome data from hippocampi of wild-type mice and mice
with disrupted Nono were synaptosomal and connected
for example to the regulation of dendritic spine morph-
ology [54]. Furthermore, some non-syndromic intellec-
tual disability cases are associated with impaired
synaptic function. Recently, mutations of the gene TRIO,
which is involved in neurite outgrowth and synaptic
transmission, have been identified in four patients with
mild to borderline intellectual disability and behavioral
abnormalities [55]. The gene IL1RAPL1 has been shown
to be located in excitatory synapses, to play a role in
synaptic differentiation, and be associated with cases of
non-syndromic intellectual disability [56]. A recent study
identified new variants, which seemingly decreased the
synaptogenic activity of IL1RAPL1 [56]. Further genes of
the Rho GTPase family, like OPHN1, ARHGEF6 and
PAK3, have been implicated in non-syndromic intellec-
tual disability and play a role in spine morphology and
synaptic plasticity [57]. These examples strengthen the
importance of synapses in the pathomechanism of intel-
lectual disability. Taken together, the enrichment of
DEGs in synapses-related pathways suggests a possible
pathogenic mechanism of the identified variant in our
patients. Whereas DNA replication and cell cycle are
crucial for cell homeostasis and survival, their connec-
tion to the pathomechanism of neurodegenerative dis-
eases is vague. It has been argued that cell cycle proteins
are involved in DNA repair and neuronal plasticity in
postmitotic neurons and show an abnormal expression
in Alzheimer disease cells [58, 59]. Regarding our tran-
scriptome data, it remains unclear whether the alter-
ations in the expression of genes related to DNA
replication and cell cycle contribute to the phenotype of
intellectual disability in our patients. More research is
necessary to investigate the role of DNA replication and
cell cycle on neurodevelopment and adult neurons and
possible connections to neurodegenerative diseases.

Conclusions
Our analyses of transcriptional profiles from patients’
lymphoblastoid cell lines vs. those of healthy persons as
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well as from the neuroblastoma cell line SKNBE after
EDC3 knockdown vs. control strengthen the hypothesis
of an involvement of EDC3 in mRNA degradation path-
ways and add further evidence supporting the pathogen-
icity of a previously identified EDC3 variant in patients
with mild non-syndromic intellectual disability. In
addition, our results indicate an involvement of EDC3 in
pathways related to synapses/coated vesicles and DNA
replication/cell cycle and further suggest that long RNAs
might be preferentially targeted by EDC3-mediated
mRNA degradation. More research is needed to validate
these findings on EDC3 function as well as increase our
understanding of mRNA degradation pathways and their
potential role in intellectual disability.
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