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Local mutational diversity drives intratumoral
immune heterogeneity in non-small cell lung
cancer
Qingzhu Jia1,2, Wei Wu3, Yuqi Wang4, Peter B. Alexander5, Chengdu Sun1,2, Zhihua Gong1,2, Jia-Nan Cheng1,2,6,

Huaibo Sun4, Yanfang Guan4, Xuefeng Xia4,7, Ling Yang4, Xin Yi4, Yisong Y. Wan8, Haidong Wang3, Ji He9,

P. Andrew Futreal10, Qi-Jing Li5,6 & Bo Zhu1,2

Combining whole exome sequencing, transcriptome profiling, and T cell repertoire analysis,

we investigate the spatial features of surgically-removed biopsies from multiple loci in tumor

masses of 15 patients with non-small cell lung cancer (NSCLC). This revealed that the

immune microenvironment has high spatial heterogeneity such that intratumoral regional

variation is as large as inter-personal variation. While the local total mutational burden (TMB)

is associated with local T-cell clonal expansion, local anti-tumor cytotoxicity does not directly

correlate with neoantigen abundance. Together, these findings caution against that immu-

nological signatures can be predicted solely from TMB or microenvironmental analysis from a

single locus biopsy.
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Immune checkpoint blockade such as Nivolumab has delivered
unprecedented success in treating non-small cell lung carci-
noma (NSCLC) in both first-line1,2 and second-line3–6 treat-

ments to extend overall survival. However, while prolonged and
durable responses can be achieved, only a small percentage of
patients experience such clinical benefits7. Pre-primed cytotoxic
T-lymphocyte (CTL) infiltration and pre-existing cytolytic
activity have been established as indicators of a greater likelihood
of response to immunotherapy8. Accordingly, various biomarkers
for measuring anti-tumor reactivity in fresh or archival biopsies
have demonstrated a certain degree of prognostic or predictive
value in many solid tumor types4,9,10. These biomarkers mainly
focus on characterizing unique features of pre-existing anti-tumor
reactivity in the tumor microenvironment (TME) and include
programmed death-ligand 1 (PD-L1) expression3, CD8+ T-cell
infiltration11, T-cell repertoire clonality8, and panel-based
immunological signatures12. Conceptually, “non-self” neoanti-
gens generated by mutated cancer cells could trigger their own
elimination by T cells, implying that a higher mutational burden
should result in a stronger anti-tumor immune response. The
prognostic significance of total mutational burden (TMB)13,14,
deficient mismatch repair (dMMR), and micro-satellite instability
status in predicting response to immunotherapy also supports the
applicability of this theory15.

However, emerging evidence continues to challenge this asso-
ciation between mutational load and the anti-tumor response.
Although PD-L1 is thought to be induced by interferon-γ (IFN-γ)-
mediated immune responses, TMB was not correlated with PD-
L1 expression in the CheckMate 026 NSCLC trial14. For patients
with dMMR status, only 62% experienced a clinical benefit to
anti-PD1 therapy16. Furthermore, Charoentong et al.17 demon-
strated that TMB plays a less-than-expected role in determining
TME immunogenicity. These inconsistencies suggest that more
comprehensive analyses of TME immunophenotypes are needed.

In this study, multiple systemic approaches are employed to
assess immunogenicity beyond neoantigen abundance and
mutational burden. Since spatially heterogeneous immunor-
eactivity might weaken the predictive value of current bio-
markers, we also sample multiple regions from each individual
NSCLC tumor. Moreover, a machine learning algorithm is
developed to integrate 278 variables for depicting local anti-tumor
responses. This study reveals that immunoreactivity is spatially
heterogeneous between different tumor regions. It also suggests
that the accurate identification of candidates for immunotherapy
might be improved by more comprehensively measuring local
tumor attributes, in comparison to solely focusing on TMB or
neoantigen load as is the current practice.

Results
Mutational burdens correlate with local T-cell expansion. To
comprehensively assess the correlation between non-synonymous
somatic mutations and immune responses, we recruited 15 newly
diagnosed NSCLC patients who had surgery with curative intent
(Supplementary Data). Multiple biopsy samples were collected
from each primary tumor mass according to a previously estab-
lished method18. For each sample, we performed multiple geno-
mic and immunogenomic assays including whole-exome
sequencing (WES), transcriptome profiling (RNA-sequencing
(RNA-seq)), and T-cell repertoire sequencing. The cellular purity
of tumor cells in each biopsy was calculated based on WES data
(Supplementary Data). In total, whole-exome and T-cell reper-
toires from 57 loci of 15 patients, and transcriptome profiling
from 44 loci of 12 patients, were analyzed in an integrated
bioinformatics pipeline (Fig. 1a and Supplementary Fig. 1).
Tumor samples and peripheral blood mononuclear cell controls
were sequenced at median 115-fold coverage across exome

capture loci. In total, 2462 non-synonymous somatic mutations
were identified (Supplementary Data). Numbers of genomic
mutations varied substantially in different loci among patients,
ranging from 2 to more than 380 per sample.

Non-synonymous somatic mutation in the coding region of a
gene (Fig. 1b and Supplementary Fig. 2, upper panel) can
generate presentable neoantigens (Fig. 1c and Supplementary
Fig. 2, middle panel), which can be recognized by T cells with
structurally divergent and antigen-specific T-cell receptors
(TCRs). Upon antigen-stimulated activation, T cells expand
within the tumor to create an effector pool to execute their
cytolytic function and control tumor growth. Our previous
studies suggested that intratumoral T-cell repertoires are enriched
with tumor antigen-specific and clonally expanded T cells19. We
therefore performed TCR repertoire sequencing of spatially
distinct tumor samples and analyzed high-frequency T-cell clones
along with predicted neoantigens. While a few non-synonymous
mutations and neoantigens were shared among different tumor
loci from the same patient, neoantigen heterogeneity was also
detected for each patient (Fig. 1b, c). Accordingly, measured by
the similarity of CDR3B sequences (the major structural domains
for antigen recognition20,21), high-frequency19 TCRs were also
distinct among individual patients. Within each patient, identical
dominant CDR3B clonotypes were identified across different loci.
However, because unique mutations in different loci lead to
neoantigen heterogeneity, a range of T-cell reactivity was also
reflected by unique high-frequency T-cell clones in different
tumor locations (Fig. 1d and Supplementary Fig. 2 lower panel,
Supplementary Data for high-frequency CDR3 clones and for all
identified clones).

It has been suggested that higher TMB favors neoantigen-
specific T-cell infiltration and oligoclonal expansion22. Based on
CDR3 TCR sequences, we calculated the Shannon entropy index
(Fig. 1e, R= 0.3448, **p= 0.00861, Pearson's correlation) and
Simpson diversity index (Fig. 1f, R= 0.3425, **p= 0.00911,
Pearson's correlation) for each sampled tumor site and identified
a statistically significant but moderate positive correlation
between local T-cell repertoire clonality and TMB (Supplemen-
tary Data) or neoantigen frequency (Supplementary Figs. 3a, b
and Supplementary Data). This suggests that, within the TME,
higher TMB may drive more diversified T-cell clonotypes into
proliferation.

Mutational burden is loosely related to cytolytic activity. It is
known that changes in a local TCR repertoire correlate with
intratumoral CD8+ T-cell activation23. To determine whether T-
cell neoantigen-stimulated oligoclonal expansion also leads to
augmented CTL function, we first examined the local production
of effector molecules released by cytolytic granules, such as T-cell
granzyme-A (GZMA) and IFN-γ. Unlike T-cell activation as
measured by clonotype dynamics, both GZMA (Fig. 1g; R=
0.0954, p= 0.5378, Pearson's correlation) and IFN-γ (Fig. 1h;
R = 0.1688, p= 0.2733, Pearson's correlation) production
showed weak association with the local TMB. A similar uncou-
pling between TMB and T-cell activation was reported in
immunotherapy-naive melanoma24 and pancreatic cancer25
cohorts. Previous studies have used the geometric mean of GZMA
and perforin 1 (PRF1) as a surrogate measure of CTL activity26.
However, the correlation between this parameter and TMB was
also weak and statistically insignificant (Fig. 1i; R= 0.1199, p=
0.4381, Pearson's correlation). Furthermore, instead of TMB,
when the loads of neoantigen predicted at the cutoff of human
leukocyte antigen (HLA)-binding affinity at 50 nM were used, we
also failed to find any significant correlation with local cytotoxi-
city (Supplementary Figs. 3c-e).

Recently, McGranahan et al.22 reported that high clonal
mutational burden and low subclonal mutational heterogeneity
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Fig. 1 Total mutational burden correlates with T-cell clonality. a Schematic of sampling strategy and experimental workflow. Tissues from multiple loci
within the whole tumor were resected and subjected to high-throughput sequencing. Non-synonymous mutations, HLA typing, predicted neoantigens,
transcriptomic profiling, and T-cell repertoire were analyzed to characterize TME heterogeneity. b–d Heat maps depicting the inter-population and
intratumoral distribution of non-synonymous mutations, predicted neoantigens (with binding strength <500 nM), and dominant T-cell clones (frequencies
≥0.5%) in all sequenced subjects; presence (blue) or absence (white) is indicated for every tumor focus. Samples were grouped according to individual
patients. e, f Scatterplot showing correlation between total mutation load and expanded properties of the T-cell repertoire. T-cell clonality (e) and Simpson
diversity index (f) were used to depict the T-cell repertoire composition. Enrichment of highly expanded clones results in higher values for clonality and
Simpson diversity. R coefficient of Pearson's correlation. Shaded area, 95% confident interval for the correlation. g–i Correlation between mutation load (in
log2 scale) with expression of interferon-gamma, granzyme-A, and cytolytic activity (measured as the geometric mean of granzyme-A with perforin 1) in
log2 of transcript per kilobase million (TPM)
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correlate with superior prognosis in an immunotherapy-naive
NSCLC cohort. This feature can also be used to identify patients
who are likely to benefit from checkpoint blockade therapies22.
To exclude possible subclonal mutations as a confounding factor
in our analysis, we dissected clonal mutational burdens using two
independent methods22,27. Subsequent subtraction of subclonal
mutations failed to improve the correlation between TMB and
local immune cytotoxicity: clonal mutational burdens remained
poorly associated with inflamed immune signatures (Supplemen-
tary Fig. 4). Finally, we used a more sophisticated eight gene panel
designed in the POPLAR trial4 as a biomarker to reflect effector
T-cell infiltration (CD8A, CXCL9, and CXCL10) and IFN-γ-
associated cytotoxicity (IFNG, GZMA, GZMB, EOMES, and
TBX21). While the expression of this gene set strongly correlated
with the responsiveness of NSCLC patients to anti-PD-L1
treatment4, in our cohort, no significant association was observed
between this POPLAR biomarker panel and the local TMB
(Supplementary Fig. 5).

Spatially heterogeneous tumor immune microenvironments.
To further improve accuracy in assessing the tumor immune
microenvironment, we developed a machine learning approach to
integrate multidimensional immune-related variables for data
mining. Using a random forests algorithm, we classified the
immune microenvironment of tumor loci with 278 input vari-
ables, which include neoantigen loads, T-cell repertoire clonality,
expression of 31 well-categorized genes that are critical for
immune regulation and antigen presentation (such as ICOS,
IDO1, PDCD1, TIGIT, and LAG3), 217 enrichment scores out-
lining 217 signal transduction pathways regulating various
immune functions, and the abundance of 28 subpopulations of
infiltrating immune cells (such as activated CD8+ T cells,
myeloid-derived suppressor cells (MDSCs), and regulatory T cells
(Tregs)) (Supplementary Data)17,28. Except neoantigen and TCR
clonality assessments, all other 276 parameters were derived from
data generated by RNA-seq of bulk tissues from each individual
tumor loci (transcripts per million (TPM) in Supplementary
Data). Specifically, quantitative measurements of signaling path-
way activation and immune cell infiltration were generated by
single-sample Gene Set Enrichment Analysis (ssGSEA)29,30,
which has been applied in a number of studies to infer from RNA
profiling data the relative level of immune cell infiltration17,31–33.
Using this method, we transformed the transcriptomic expression
data into a normalized score to represent the activation status of
specific pathways or the relative abundance of specific immune
cell types (Supplementary Data). We then reduced this 278-
dimension matrix to a two-dimensional plot, in which the
proximity of two dots represents the immune microenvironment
similarity of two sampled NSCLC tissues. Eventually, using
density contours generated from Gaussian maximum fitting, we
were able to visualize the immune phenotype of the spatial TME
as a confined location in the contour plot which was termed the
“immune map”. On this immune map, 44 samples from 12
patients were categorized as immunologically “hot” versus “cold”
loci, thereby separating these tumor tissues based on their cyto-
lytic activity levels26 (Fig. 2a).

To validate its analytic power, we tested whether the location of
certain TME on the immune map could properly predict the local
expression of the eight biomarkers established in the POPLAR
trial4. Indeed, all eight genes associated with CD8+ T-cell
infiltration and cytotoxicity were expressed at significantly higher
levels in the hot area compared to the cold area (Fig. 2b, c).
Recently, Trajanoski and colleagues17 developed a score system to
predict tumor responsiveness to CTLA-4 (cytotoxic T-
lymphocyte-associated protein 4) and PD1 blockade. In their
analysis, 26 scoring variables, including 4 effector cell types,
2 suppressor cell types, 10 immune checkpoint molecules, and 10

genes involved in antigen presentation, were integrated for
immune TME evaluation. When these 26 parameters were
examined using our immune map algorithm, while activated
CD4+ T-cell abundance was not statistically distinct in these two
areas, the remaining 25 parameters representing immunogenicity
were substantially inflamed in the hot area (Supplementary
Fig. 6). Taken together, we reasoned that our immune map
algorithm is a suitable platform to categorize the immune TME
based on its local anti-tumor cytotoxicity.

Using this immune map, we assessed whether TMB can impact
local immunogenicity. Importantly, we found that the tumor
immunogenicity cannot be directly predicted by either local
mutation burden or neoantigen loads: tumor loci with high TMB
can be found in the cold area and loci with low TMB can be
categorized as immunologically hot tissues (Fig. 2d). Further-
more, immune mapping also enabled the identification of
intratumoral immunological heterogeneity for each individual
(Fig. 2e, detailed labeling in Supplementary Fig. 7). Of the 44
tumor loci with complete immunogenomics analysis, 28 loci were
allocated into the immunologically hot area and 16 loci were
designated as immunologically cold (Fig. 2f, upper panel).
Notably, half of the NSCLC patients (6 of 12) harbor both
immunological hot and cold areas synchronously in a single
tumor (Fig. 2f, lower panel). When we assessed PD-L1 expression,
which is known to be upregulated upon IFN stimulation34 and
serves as a biomarker for patient stratification for anti-PD1
immunotherapy3, we found that both messenger RNA (mRNA)
and protein levels of PD-L1 were heterogeneous among different
tumor loci and did not correlate with local TMB (Fig. 2g and
Supplementary Fig. 8). Furthermore, for these patients, intratu-
moral immune heterogeneity was also reflected in the differential
expression of a range of immunoregulatory and effector
molecules (Fig. 2h). Based on these results, we conclude that, in
NSCLC tumors, anti-tumor cytotoxicity can be localized into
different regions such that local mutational burden and
neoantigen variety cannot effectively predict the overall state of
immune activation.

Mutational heterogeneity is related to immune heterogeneity.
The uncoupling of local tumor antigenicity (TMB) and cyto-
toxicity suggests that T-cell activities are subjected to additional
immunosuppressive regulation. In the TME, immunosuppression
can be generated through at least two possible mechanisms: (1)
tumor-infiltrated T cells can be suppressed by feedback-induced
checkpoint molecule expression (Fig. 2h) and immunoregulatory
cell recruitment; and (2) different mutations may play distinct
roles in modifying the immune response26.

To investigate the regulation of suppressive immune cell
populations, we composed a heatmap to visualize the relative
abundance of 28 infiltrating immune cell populations (Fig. 3a).
We observed two major features. (1) immune cell infiltration was
also spatial and isolated, resulting in heterogeneous immune cell
compositions between different loci within an individual tumor.
This feature was validated by flow cytometry using fresh isolated
biopsies sampled from multiple loci (Fig. 3b). (2) Immunologi-
cally hot tumor regions overall had a higher abundance of
immune cell infiltration, including cells executing anti-tumor
reactivity (e.g., activated CD8+ T cells, type 1 T helper cells, and
activated dendritic cells) and cells delivering pro-tumor suppres-
sion (e.g., MDSCs, regulatory T cells, immature dendritic cells,
and neutrophils). Pearson's correlation analysis showed that the
abundances of these two categories of cells was positively
associated within a local environment (Fig. 3c). This observation
suggests the presence of a feedback mechanism such that the
recruitment or differentiation of cells specialized for immune
suppression may be facilitated by anti-tumor inflammation.
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Since anti-tumor inflammation is largely determined by tumor
antigen-specific T cells, and infiltrating T-cell clonality is
associated with neoantigen load, we analyzed whether the
heterogeneity of immune cell infiltration was related to the
heterogeneity of TMB. Two different measurements, “coefficient
of variance” and “intratumoral heterogeneity” (ITH)22, were

employed to quantify mutational heterogeneity. An average
correlation coefficient value for every pair of immune cell
frequencies was used to quantify the divergence of immune cell
infiltration. Coefficient of variance preferentially weighs the total
number of mutations. Although falling short of statistical
significance, genomic heterogeneity was associated with inter-
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locus divergence of immune cell infiltration (Fig. 3d, left panel;
R= 0.5433, p= 0.06793, Pearson's correlation). ITH levels, which
weigh more on unique mutations among different sampling foci,
were positively associated with the inter-locus divergence
of immune cell infiltration (Fig. 3d, right panel; R= 0.6435,
*p= 0.0239, Pearson's correlation).

To explore whether TME immune heterogeneity is impacted
by the nature of mutations, we traced the subclonal architectures
of non-synonymous somatic mutations for all 15 patients
(Supplementary Fig. 9). Specifically, for patients with intratu-
moral immune heterogeneity, 5 out of 6 (83%, except patient 024)
displayed a dichotomy of mutations that separates cold versus hot
regions into divergent evolutionary directions: other than
homogenous (progenitor) mutations at every locus, hot and cold
tumor regions did not share any common mutations (Fig. 3e).
This suggests that the functional nature of a mutation-carrying
protein may also play a role in determining the immunogenicity
of neoantigens. Taken together, we propose that tumor-intrinsic
immunomodulation, which can be provoked by certain muta-
tions, combined with spatial infiltrating complexity of immune
cells, which may be elicited through a feedback mechanism after
T-cell activation, determines the ultimate immunophenotype of a
given tumor locus.

Discussion
Here we used a combinational omics strategy to comprehensively
evaluate the TME immunophenotype of NSCLC. Critically, we
sampled multiple loci within a single tumor to reveal the spatial
heterogeneity of the TME. While the intratumoral heterogeneity
of somatic mutations has been well studied35–38, the intratumoral
heterogeneity of anti-tumor reactivity is currently under-
appreciated. From a clinical perspective, just as genomic intra-
tumoral heterogeneity poses a challenge to traditional targeted
therapies, spatial distribution of the immune microenvironment
also provides a challenge for targeted anti-cancer immunother-
apy. For example, through a few successful clinical trials, a batch
of biomarkers has been developed to sub-group and stratify
patients9,10,39. However, most current biomarkers are supported
by data collected from a single locus biopsy and based on the
assumption that the TME is homogeneous. The current study
strongly suggests that the predictive power of single locus biopsy
is limited and a more comprehensive analysis of tumor immune
niches by multiple sampling may be necessary. Moreover, we also
found that immune suppressive machineries, such as PD-L1, are
diversely expressed throughout the tumor. This suggests that
monotherapies that target a single immunosuppression
mechanism are unlikely to have the intended overall response for
NSCLC patients. This idea is supported by a recent NSCLC
patient analysis of the Rizvi cohort13, in which superior outcomes

to anti-PD1 therapy were associated with more homogenous
genomic architectures22.

During our comprehensive immunophenotypic analysis, we
noticed two unexpected features. First, we found that immune
cells with suppressive functions against anti-tumor cytotoxicity,
such as Tregs, MDSCs, and tumor-associated macrophages, are
highly enriched in immunologically hot areas. This phenomenon
has been reported to occur in many autoimmune diseases and
likely reflects the negative feedback mechanism embedded in the
systemic nature of immune regulation40. Nevertheless, our study
suggests that the abundance and composition of immune sup-
pressor cells do not predict the overall suitability of an individual
tumor for immunotherapy. Second, we were surprised to observe
that, while the TMB and neoantigen loads are moderately asso-
ciated with local T-cell expansion, they do not associate with local
anti-tumor cytotoxicity. These findings are consistent with a
recent report that there is no significant correlation between TMB
and cytotoxicity in untreated patients24. Thus, our results indicate
that proliferation and cytotoxicity are two independent para-
meters for measuring anti-tumor immune activation. T cells can
be recruited and activated by local neoantigens to expand, but
there still are local suppressive mechanisms to protect tumor cells
from killing such as PD-1/PD-L1 axis. Taken together, the dis-
association between TMB and cytotoxicity in untreated cohort
does not challenge the proof of evidence that TMB could serve as
a biomarker and predict clinic outcome from anti-PD-1/PD-L1
treatment in a number of clinic trials13,14,41.

Our results further reveal that, as related to the immunor-
egulatory ramifications of somatic mutation in NSCLC, the nat-
ure of mutations could play a much more significant role than the
sheer number of mutations. In two recent studies, “antigen fit-
ness” was introduced to describe the similarity of neoantigens to
other known microbial antigens and their likelihood to be
recognized by TCRs. This new parameter is significantly superior
to TMB in predicting not only the prognosis of pancreatic cancer
patients undergoing standard treatments25, but also the sensitivity
of melanoma and lung cancer patients to anti-CTLA442,43 and
anti-PD113 checkpoint blockade therapies44. These studies sug-
gest that neoantigens are not all equal in eliciting TCR recogni-
tion. This concept provides a plausible mechanism underlying the
limited predictive value of TMB: a large pool of neoantigens could
all be weak; conversely, strong antigenicity might be generated by
a small pool of high-quality neoantigens.

In addition, the uncoupling of TMB and local cytotoxicity may
directly reflect the complex co-selection process between tumor
and immune cells. During the prolonged interplay between can-
cer and the immune system, while mutations elicit adaptive
immunity against a tumor, some specific mutations may be cri-
tical to reprogram the TME and facilitate their escape from
immunosurveillance. This mechanism of immune editing was

Fig. 2Machine learning classifies TME into hot and cold immunophenotypes. a Visualization based on two-dimensional coordinates from multidimensional
scaling (MDS) of proximity matrix from the input variables in NSCLC. Color indicates cytolytic activity (product of PRF1 and GZMA) for each sampling site.
To categorize the samples by an unsupervised method, the Gaussian expectation maximization algorithm was employed to perform categorization under
Gaussian mixture models. The contour shows the estimated probability density for the two categories. Left, cold area; right, hot area. b, c Expression
profiling of prognostic genes in the POPLAR study for hot and cold areas. Expression values are transformed TPM format and in log2 scale. Horizontal bar
in boxplot, median value. Statistics based on two-tailed Mann–Whitney U-test. d Total mutational burden in the categorization. e Samples from each
individual are labeled by color. Contours guiding immunologic categorization are shown as in a. f Upper panel, pie chart showing the proportion of hot vs
cold area samples in all sequenced tissues. Lower panel, proportion of patients harboring multiple distinct immunological statuses simultaneously.
Homogeneous, patients with one kind of immunological status; Heterogeneous, patients with both immunological statuses. g Correlation among
immunological status, TMB, and PD-L1 expression. Upper panel, the proportion of immunological statuses found in each individual. Middle and lower
panels, TMB and PD-L1 expression for each sample. For each individual, the samples in the middle and lower panels were labeled in the same colors.
h Heatmap showing the expression of feasible immunotherapy-predictive immune genes for 44 NSCLC samples. Expression values for each gene are
normalized into z-scores
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demonstrated for somatic mutations associated with antigen
presentation and tumor-intrinsic resistance to apoptosis26.
Therefore, it is conceivable that many mutations may have a
direct impact on the TME and thereby regulate the anti-tumor
response. Tumor cells with mutations favoring anti-tumor

cytotoxicity constitute an immunologically hot area. However,
these tumor cells will be under strong selective pressure, leading
to the accumulation of cells with mutations that may be able to
switch the TME to immunological coldness. Therefore, intratu-
moral genetic heterogeneity not only results in phenotypic
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diversity and a divergent response to tumor-targeting drugs45–47,
but also the spatial heterogeneity of immune responses.

In summary, this study cautions against the use of overly
simplified immune-monitoring strategies to guide immune
therapies. It suggests that multi-parameter and multi-locus ana-
lysis will aid efforts to assess the territorial and heterogeneous
features of immune niches within tumors, resulting in the
development of more precise and personalized immune therapies
to treat cancers.

Methods
Sample collection. Multi-locus tumor biopsies and clinical data were obtained for
15 patients with NSCLC (4 with squamous cell carcinoma, 10 with non-squamous
cell carcinoma, and 1 with not otherwise specified (NOS)); peripheral blood
samples were included as germline controls for all cases with whole-exome
sequencing. All multi-locus biopsies were obtained as far as possible within the
tumor mass during surgery48. Resected tumor masses were reviewed by two
independent pathologists in Southwest hospital. Detailed clinical characteristics of
patients are provided in Supplementary Data. All patient material and clinical
information was obtained after informed consent had been received and was
approved by the institutional review board of the Southwest Hospital of Third
Military Medicine University. DNA and RNA extractions were performed49. RNA
quality was assessed on a 2100 Bio Analyzer (Agilent Technologies, Santa Clara,
CA). Only high-quality DNA and RNA samples were utilized for further
sequencing.

Gene expression profiling. The mRNA libraries were prepared using the NEB-
Next® Ultra™ RNA Library Prep Kit for Illumina® according to the manufacturer’s
protocol, RNA-seq libraries were paired-end sequenced on an Illumina HiSeq
XTEN sequencer (Illumina, San Diego, CA, USA). After removing sequencing
reads containing adaptor sequences and low-quality reads, which have too many
Ns (>10%) and low-quality bases (>50% bases with quality <5), high-quality
paired-end reads were aligned to the human genome (hg19) using HISAT250

(v2.0.4). Transcript assembly was performed using StringTie51 (v1.2.3).

Whole-exome sequencing. For each tumor locus and matched germline sample,
exome capture was performed using 1–2 µg DNA with the Nimblegen Human All
Exome V3 kit, according to the manufacturer’s protocol (Nimblegen52). Paired-end
sequencing was done with an Illumina High-output flow cell kit (300 cycles) on the
Illumina HiSeq XTEN platform to a goal of 115-X mean target coverage (detailed
coverage information is provided in Supplementary Data). After removing
sequencing reads containing adaptor sequences and low-quality reads, which have
too many Ns (>10%) and low-quality bases (>50% bases with quality <5), high-
quality paired-end reads were aligned to the human reference genome (build hg19,
including unknown contigs) using the BWA-MEM (bwa-0.7.15) aligner in default
mode. Alignments were then sorted and duplications marked using Samtools
(v1.3.1) (http://samtools.sourceforge.net) and Picard (v2.6) (https://broadinstitute.
github.io/picard/), respectively. BAM files were indel-realigned and base quality
scores were recalibrated according to GATK best practices (https://software.
broadinstitute.org/gatk/). Using WES data, tumor cell purities and ploidies were
calculated based on calls made by the Sequenza53 R package. A default parameter
(~w 50) was used to run the analysis. Six samples from three patients were re-
sequenced to assess WES reproducibility.

Identification of somatic mutations. MuTect2 (http://www.broadinstitute.org/
cancer/cga/mutect) was used to identify somatic single-nucleotide variants and
small insertions or deletions with default parameters based on paired alignment
files (tumor and matched germline). Mutations were excluded step by step to select
candidates of potential interest. First, non-silent variants, including missense,
nonsense, frameshift, and splice-site variants, were selected. Second, high-
confidence variants whose variant allele fraction was greater than 0.05, or coverage
at least 5×, were selected. Third, rare variants with frequencies less than 0.005 in all
databases (ExAC, ESP6500, dbSNP, 1000G) were selected.

High-throughput sequencing of TCR β-chain. To generate the template library
for the T-cell repertoire, a multiplex PCR system was designed to amplify the third
complementarity-determining region (CDR3) of TCRB54. Briefly, 600 ng gDNA for
each sample was amplified using two rounds of PCR. During the first round, 10
cycles were used to amplify the CDR3 fragments using 32 forward primers of V
genes, and 13 reverse primers of J genes with a Multiplex PCR Kit (QIAGEN,
Germany). Primers were designed to acquire maximum coverage of a hetero-
geneous set of target sequences of V and J families with a minimal PCR bias.
Primer sequences were filed as part of a Chinese patent (CN105087789A). In the
second round, PCR was performed using Illumina universal primers with a Phu-
sion® High-Fidelity PCR Kit (New England Biolabs, USA). Paired-end sequencing
of samples was carried out with a read length of 151 bp using the Illumina HiSeq

XTEN platform. Raw reads were processed and analyzed using the following
procedure: (1) removing sequencing reads which do not contain the primers for
multi-PCR using Cutadapt (https://github.com/marcelm/cutadapt); (2) merging
the remaining high-quality pair-end reads to obtain contigs by Pear;54 and (3)
spotting of the CDR3 region using MiXCR55 (https://github.com/milaboratory/
mixcr/) with default parameters.

Diversity and clonality were used to characterize features of the immune
repertoire. Diversity of the TCR repertoire was calculated based on the
Shannon–Wiener index (Shannon entropy), which is a function of both the relative
number of clonotypes present and the relative abundance or distribution of each
clonotype19. Clonality was defined as 1–(Shannon entropy index)/ln(number of
productive unique sequences)8.

Characterization of HLA molecules and neoantigens. For each subject, the 4-
digit HLA type was inferred using Optitype56, which uses a normal germline bam
file as input. HLA typing was further confirmed using the HLA-VBseq57 tool.
Chromosome 6 was extracted from the WES data and aligned to the HLA genome
reference from the IMGT/HLA database. Identified non-silent mutations from
WES were used to generate a comprehensive list of peptides 8–11 amino acids in
length with the mutated amino acid represented in each possible position. The
binding affinity of every mutant peptide and its corresponding wild-type peptide to
the patient’s germline HLA alleles were predicted using netMHCpan-3.058. Pre-
dicted neoantigens in correlation analysis were identified as those with a predicted
binding strength of <50 nM and mutant peptide binding affinity less than 70% of
wild-type binding affinity.

Identification of clonal and subclonal somatic mutation. Two methods were
used to identify clonal and subclonal somatic mutations22,27,59. One, developed by
Blakely et al.27, defines the frequency of each somatic mutational allele (minor
allele frequency (MAF)) after normalization by ploidy (extracted from Sequenza
analysis). The value of each MAF is then divided by the maximal value of all MAFs
to reach the normalized MAF (nMAF). If nMAF ≥ 0.2, this mutation is defined as a
clonal somatic mutation, whereas the nMAF value for subclonal somatic mutations
is <0.2. Alternatively, McGranahan et al.22 define clonal mutations as mutations
that present in all collected loci after multi-sampling a patient; conversely, any
mutations that only present in a subset of loci are defined as subclonal mutations.

Phylogenetic tree construction. All non-synonymous somatic mutations were
utilized for phylogenetic tree construction. Germline mutations were obtained from
paired peripheral blood samples. Trees were constructed using binary presence/
absence matrices assembled from the locus distribution of variants within the
tumor. The R Bioconductor package was used to generate unrooted trees by the
parsimony ratchet method54. Branch lengths were determined using the acctran
function.

Immune cell infiltration. The ssGSEA29 was introduced to quantify the relative
infiltration of 28 immune cell types in the tumor microenvironment. Feature gene
panels for each immune cell type were obtained from a recent publication17. The
relative abundance of each immune cell type was represented by an enrichment
score in ssGSEA analysis. The ssGSEA score was normalized to unity distribution,
for which zero is the minimal and one is the maximal score for each immune cell
type. The bio-similarity of the immune cell filtration was estimated by multi-
dimensional scaling (MDS) and a Gaussian fitting model.

Machine learning and visualization of immune map. “Immune maps” were
generated from a random forest machine learning algorithm using 278 input
variables (Supplementary Data). Briefly, a random process was performed with 100
iterations. For each round, two-thirds of samples were randomly selected as the
discovery set, and one-third of samples were assigned as the validation set. Ran-
domness was determined using a standard random number generator program in
the R package. A prediction model (decision tree) was calculated based on each
discovery/validation set. After 100 iterations, the resulting 100 decision trees were
incorporated into one proximity matrix to minimize any artificial or random bias.
RandomForest R package was used to run this analysis. MDS was used to assign a
spatial location to each sample according to the proximity matrix from machine
learning and 278 dimensions of defined immune-related features.

Immunohistochemical staining of PD-L1. PD-L1 expression was analyzed using
formalin-fixed, paraffin-embedded biopsy samples by the ShuWenGuanZhi
Company (Huzhou, Zhejiang, China) in accordance with all American Society of
Pathology CAP and ISO15189 quality management standards.

Tissue dissection and flow cytometry. Tumor tissues were processed into a
single-cell suspension. All antibodies were purchased from BioLegend. The single-
cell suspension was stained with anti-human CD45-PacificBlue (clone HI30), anti-
human CD33-APC/Cy7 (clone P67.6), anti-human CD14-APC (clone 63D3), anti-
human CD3-FITC (clone HIT3a), anti-human CD8-PerCP (clone HIT8a), and
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anti-human HLA-DR-PE (clone L243) antibodies, and analyzed using a
fluorescence-activated cell sorter (FACS) (FACSAria II; BD Biosciences).

Data availability
The gene expression profiling data supporting the conclusions of this project have
been deposited publicly to the Genome Expression Omnibus (GEO) under
accession code GSE112996. Whole-exome sequencing and T-cell repertoire
sequencing data have been deposited in Sequence Read Archive (SRA) under
accession code PRJNA493023 and PRJNA506151. All other data are available
within the Article and its Supplementary Information or from the corresponding
authors upon reasonable request.
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