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We propose optimal variational asymptoticmethod to solve time fractional nonlinear partial differential equations. In the proposed
method, an arbitrary number of auxiliary parameters 𝛾

0
, 𝛾
1
, 𝛾
2
, . . . and auxiliary functions 𝐻

0
(𝑥),𝐻

1
(𝑥),𝐻

2
(𝑥), . . . are introduced

in the correction functional of the standard variational iteration method. The optimal values of these parameters are obtained by
minimizing the square residual error. To test the method, we apply it to solve two important classes of nonlinear partial differential
equations: (1) the fractional advection-diffusion equation with nonlinear source term and (2) the fractional Swift-Hohenberg
equation. Only few iterations are required to achieve fairly accurate solutions of both the first and second problems.

1. Introduction

Nonlinear problems have posed a challenge to the scientific
world since long and many scientists and researchers have
been working hard to find methods to solve these problems.
Quite a remarkable progress has been made to achieve
qualitative as well as quantitative solutions of some tough
nonlinear problems of significance in the field of physical and
biological sciences, as well as in engineering and technology.
There are several analytical methods, such as homotopy
analysis method (HAM) [1], homotopy perturbation method
(HPM) [2], Adomian decomposition method (ADM) [3],
variational iteration method (VIM) [4], and a new iterative
method [5], are available to solve nonlinear fractional partial
differential equations.

The aimof the present paper is to propose an optimal vari-
ational asymptotic method (OVAM) to solve the following
initial value nonlinear time fractional PDE:

𝐿𝑦 + 𝑁𝑦 = 𝑔 (𝑥, 𝑡) , 𝑥 ∈ Ω = [𝑎, 𝑏] ⊂ R, 𝑡 > 0, (1)

with the initial conditions

𝑦 (𝑥, 0) = 𝑓0 (𝑥) ,

𝑦
󸀠
(𝑥, 0) = 𝑓

1
(𝑥) , . . . ,

𝑦
(𝑛−1)

(𝑥, 0) = 𝑓
𝑛−1
(𝑥) ,

(2)

where 𝐿 = 𝜕
𝛼
/𝜕𝑡
𝛼
, 𝑛 − 1 < 𝛼 ≤ 𝑛, and 𝑁 is the nonlinear

part of the fractional PDE, and 𝑔(𝑥, 𝑡) is the source term.
The fractional derivatives are taken in the Caputo sense. The
proposed method is the generalization of the method given
in [5].

To test the method, we apply it to solve two important
classes of nonlinear partial differential equations: (1) the frac-
tional advection-diffusion equation with nonlinear source
term and (2) the fractional Swift-Hohenberg equation.

2. Analysis of the Method

The variational iteration method (VIM) is a well-established
iteration method [6]. The main drawbacks of the solution
obtained by standard VIM are that it is convergent in a small
region and handling the nonlinear terms is a difficult task.
To enlarge the convergence region and remove the difficulty
of handling the nonlinear terms, we propose a new iterative
method based on a new modification of VIM, which is
different from the other previous modifications.
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First we generalize the correction functional of our earlier
work [5] by a new generalized correction functional (3).
This is achieved by introducing in it auxiliary parameters
𝛾
0
, 𝛾
1
, 𝛾
2
, . . . (as these parameters are used to control the

region of convergence of the solution series, they are also
called convergence control parameters) and auxiliary func-
tions𝐻

0
(𝑥),𝐻

1
(𝑥),𝐻

2
(𝑥), . . .. Taking 𝛾

0
= 𝛾, 𝐻

0
(𝑥) = 𝐻(𝑥),

and 𝛾
1
= 𝛾
2
= 𝛾
3
= ⋅ ⋅ ⋅ = 0, we get the correction functional

of [5]. Further, we express the nonlinear term 𝑁𝑦
𝑛
in terms

of the Adomian polynomials.
To illustrate the method, we consider the general form

of the initial value fractional partial differential equation
described by (1)-(2).

The new generalized correction functional for (1) is
constructed as follows:

𝑦
𝑛+1
(𝑥, 𝑡)

= 𝑦
𝑛 (𝑥, 𝑡) + 𝐽

𝛼

𝑡

× [

[

𝜆
{

{

{

𝐿𝑦
𝑛
− 𝐿𝑦
𝑛
+

𝑛

∑

𝑗=0

(𝛾
𝑗
𝐻
𝑗
(𝑥)

× (𝐿𝑦
𝑛−𝑗 (𝑥, 𝑡)

+ 𝑁𝑦
𝑛−𝑗 (𝑥, 𝑡)

− 𝐺
𝑛−𝑗
(𝑥, 𝑡)))

}

}

}

]

]

,

(3)
𝑦
𝑛+1 (𝑥, 𝑡)

= 𝑦
𝑛
(𝑥, 𝑡) +

1

Γ (𝛼)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1
𝜆[

[

𝐿𝑦
𝑛
− 𝐿𝑦
𝑛

+

𝑛

∑

𝑗=0

{𝛾
𝑗
𝐻
𝑗
(𝑥)

× (𝐿𝑦
𝑛−𝑗
(𝑥, 𝑠)

+ 𝑁𝑦
𝑛−𝑗 (𝑥, 𝑠)

−𝐺
𝑛−𝑗
(𝑥, 𝑠))}]

]

𝑑𝑠,

(4)

where 𝐽𝛼
𝑡
is the Riemann-Liouville fractional integral opera-

tor of order 𝛼 with respect to the variable 𝑡 and 𝜆 is general
Lagrange multiplier which is identified optimally via varia-
tional theory, the subscript 𝑛 denotes the 𝑛th approximation,
and 𝑦

𝑛
is considered as restricted variation; that is, 𝛿𝑦

𝑛
= 0.

The sequence 𝐺
𝑛
(𝑥, 𝑡) is defined as follows.

Writing 𝑔(𝑥, 𝑡) = ∑𝑚
𝑖=0
𝑔
𝑖
(𝑥, 𝑡), a sequence 𝐺

𝑛
(𝑥, 𝑡) [5] is

constructed with suitably chosen support, as

𝐺
𝑛
(𝑥, 𝑡) =

𝑚

∑

𝑖=0

𝜒
𝑛−𝑖+2

𝑔
𝑖
(𝑥, 𝑡) , where 𝜒

𝑛
= {

0, 𝑛 ≤ 1,

1, 𝑛 > 1.

(5)

To determine the optimal value of Lagrange multiplier 𝜆
via variational theory we use the following proposition.

Proposition 1. Consider 𝛿[(1/Γ(𝑛)) ∫𝑡
0
(𝑡 − 𝜏)

𝑛−1
(𝜕
𝑛
𝑢
𝑘
(𝑥, 𝜏)/

𝜕𝜏
𝑛
)𝑑𝜏] = 𝛿𝑢

𝑘
(𝑥, 𝑡) [5].

Taking 𝛼 = 𝑛 in (4) and using Proposition 1, we obtain

𝛿𝑦
𝑛+1 (𝑥, 𝑡)

= 𝛿𝑦
𝑛
(𝑥, 𝑡)

+ 𝛿 (
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1
𝜆

×
{

{

{

𝐿𝑦
𝑛
− 𝐿𝑦
𝑛

+

𝑛

∑

𝑗=0

{𝛾
𝑗
𝐻
𝑗
(𝑥)

× (𝐿𝑦
𝑛−𝑗
(𝑥, 𝑠)

+ 𝑁𝑦
𝑛−𝑗
(𝑥, 𝑠)

− 𝐺
𝑛−𝑗
(𝑥, 𝑠))}} 𝑑𝑠)

= 𝛿𝑦
𝑛
(𝑥, 𝑡)

+ 𝛿 (
1

Γ (𝑛)
∫

𝑡

0

𝜆(𝑡 − 𝑠)
𝑛−1 𝑑
𝑛
𝑦
𝑛

𝑑𝑠𝑛
𝑑𝑠)

= (1 + 𝜆(𝑠)|𝑠=𝑡) 𝛿𝑦𝑛 (𝑥, 𝑡)

− ∫

𝑡

0

𝜆
󸀠
(𝑠) 𝛿𝑦
𝑛
(𝑥, 𝑠) 𝑑𝑠,

(6)

giving 1 + 𝜆(𝑠)|
𝑠=𝑡
= 0 and 𝜆󸀠(𝑠)|

𝑠=𝑡
= 0.Thus, we have 𝜆(𝑡) =

−1.
Substituting 𝜆 = −1 and discarding the added and

subtracted terms 𝐿𝑦
𝑛
in (3) we get

𝑦
𝑛+1
(𝑥, 𝑡) = 𝑦

𝑛
(𝑥, 𝑡)

− 𝐽
𝛼

𝑡
[

[

𝑛

∑

𝑗=0

{𝛾
𝑗
𝐻
𝑗 (𝑥) (𝐿𝑦𝑛−𝑗 (𝑥, 𝑡)

+ 𝑁𝑦
𝑛−𝑗
(𝑥, 𝑡)

−𝐺
𝑛−𝑗
(𝑥, 𝑡))}]

]

,

𝑛 = 0, 1, 2, . . . .

(7)

In our proposed algorithm, computing (7) for a given prob-
lem will be referred to as the first step.
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Writing

𝑦
𝑛
(𝑥, 𝑡) =

𝑛

∑

𝑚=0

𝑢
𝑚
(𝑥, 𝑡) , (8)

where

𝑢
0
(𝑥, 𝑡) = 𝑦 (𝑥, 0) + 𝑡𝑦

󸀠
(𝑥, 0) + 𝑡

2
𝑦
󸀠󸀠
(𝑥, 0)

+ ⋅ ⋅ ⋅ + 𝑡
𝑛−1
𝑦
(𝑛−1)

(𝑥, 0) + 𝐽
𝛼

𝑡
(𝑔 (𝑥, 𝑡))

=

𝑛−1

∑

𝑗=0

𝑓
𝑗
(𝑥) + 𝐽

𝛼

𝑡
(𝑔 (𝑥, 𝑡)) ,

(9)

we get the series representation of the solution 𝑦(𝑥, 𝑡) as

𝑦 (𝑥, 𝑡) = lim
𝑛→∞

𝑦
𝑛 (𝑥, 𝑡) = lim

𝑛→∞

𝑛

∑

𝑚=0

𝑢
𝑚 (𝑥, 𝑡) . (10)

The nonlinear term 𝑁𝑦
𝑛
(𝑥, 𝑡) is expanded in terms of Ado-

mian’s polynomials as

𝑁𝑦
𝑛 (𝑥, 𝑡) = 𝑁(

𝑛

∑

𝑚=0

𝑢
𝑚 (𝑥, 𝑡)) =

𝑛

∑

𝑚=0

𝐴
𝑚
(𝑢
0
, 𝑢
1
, . . . , 𝑢

𝑚
) ,

(11)

where 𝐴
𝑚
’s are Adomian’s polynomials which are calculated

by the algorithm (12) constructed by Adomian [7]:

𝐴
𝑛
(𝑢
0
, 𝑢
1
, . . . , 𝑢

𝑛
) =

1

𝑛!
[
𝑑
𝑛

𝑑𝜆𝑛
𝑁(

𝑛

∑

𝑘=0

𝜆
𝑘
𝑢
𝑘
)]

𝜆=0

, 𝑛 ≥ 0.

(12)

Evaluation of the nonlinear term 𝑁𝑦
𝑛
(𝑥, 𝑡) by (12) will be

referred to as the second step.
Combining the first and second step, the new generalized

correction functional (7) becomes

𝑢
𝑛+1
(𝑥, 𝑡)

= −𝐽
𝛼

𝑡
[

[

𝑛

∑

𝑗=0

{𝛾
𝑗
𝐻
𝑗 (𝑥)(𝐿(

𝑛−𝑗

∑

𝑚=0

𝑢
𝑚 (𝑥, 𝑡))

+

𝑛−𝑗

∑

𝑚=0

𝐴
𝑚
(𝑢
0
, 𝑢
1
, . . . , 𝑢

𝑚
)

− 𝐺
𝑛−𝑗
(𝑥, 𝑡))}]

]

,

𝑛 = 0, 1, 2, . . . .

(13)

Equation (13) can also be written as

𝑢
1
(𝑥, 𝑡) = −𝛾

0
𝐻
0
(𝑥) 𝐽
𝛼

𝑡

× [𝐿𝑢
0
(𝑥, 𝑡) + 𝐴

0
(𝑢
0
) − 𝐺
0
(𝑥, 𝑡)] ,

𝑢
𝑛+1
(𝑥, 𝑡) = 𝑢

𝑛
(𝑥, 𝑡) − 𝐽

𝛼

𝑡

× [

[

𝑛

∑

𝑗=0

{𝛾
𝑗
𝐻
𝑗 (𝑥)

× (𝐿𝑢
𝑛−𝑗 (𝑥, 𝑡) + 𝐴𝑛−𝑗

× (𝑢
0
, 𝑢
1
, . . . , 𝑢

𝑛−𝑗
)

− (𝐺
𝑛−𝑗
(𝑥, 𝑡)

− 𝜒
𝑛−𝑗+1

𝐺
𝑛−𝑗−1

(𝑥, 𝑡)))}]

]

,

𝑛 = 1, 2, . . . .

(14)

Combining the above two equations, we get

𝑢
𝑛+1
(𝑥, 𝑡) = 𝜒

𝑛+1
𝑢
𝑛
(𝑥, 𝑡) − 𝐽

𝛼

𝑡

× [

[

𝑛

∑

𝑗=0

{𝛾
𝑗
𝐻
𝑗 (𝑥)

× (𝐿𝑢
𝑛−𝑗
(𝑥, 𝑡)

+ 𝐴
𝑛−𝑗
(𝑢
0
, 𝑢
1
, . . . , 𝑢

𝑛−𝑗
)

− (𝐺
𝑛−𝑗
(𝑥, 𝑡)

−𝜒
𝑛−𝑗+1

𝐺
𝑛−𝑗−1

(𝑥, 𝑡)))}]

]

.

(15)

From (15), we calculate the various 𝑢
𝑛
(𝑥, 𝑡) for 𝑛 ≥ 1 and

substituting these values in (10), we obtain the analytical
solution of (1).

Truncating the solution series (10) at level 𝑚 = 𝑛, the
approximate solution at level 𝑛 is given by

𝑦
𝑛
(𝑥, 𝑡, 𝛾

0
, 𝛾
1
, . . . , 𝛾

𝑛−1
) = 𝑢
0
(𝑥, 𝑡)

+

𝑛

∑

𝑗=1

𝑢
𝑖
(𝑥, 𝑡, 𝛾

0
, 𝛾
1
, . . . , 𝛾

𝑗−1
) .

(16)

The values of 𝛾
𝑗
’s are still to be found.

Substituting (16) into (1), one gets the following residual:

𝑅
𝑛
(𝑥, 𝑡, 𝛾

0
, 𝛾
1
, . . . , 𝛾

𝑛−1
)

= 𝐿 (𝑦
𝑛
(𝑥, 𝑡, 𝛾

0
, 𝛾
1
, . . . , 𝛾

𝑛−1
))

+ 𝑁 (𝑦
𝑛
(𝑥, 𝑡, 𝛾

0
, 𝛾
1
, . . . , 𝛾

𝑛−1
)) − 𝑔 (𝑥, 𝑡) .

(17)

If 𝑅
𝑛
= 0, then 𝑦

𝑛
will be the exact solution. Generally

such a case will not arise for nonlinear and fractional
problems. There are several methods like Galerkin’s method,
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Ritz method, least squares method, and collocation method
to find the optimal values of 𝛾

0
, 𝛾
1
, 𝛾
2
, . . .. We apply the

method of least squares to compute the optimal values of
these auxiliary parameters.

At the nth-order of approximation, we define the exact
square residual error 𝐽

𝑛
(𝛾
0
, 𝛾
1
, . . . , 𝛾

𝑛−1
) as

𝐽
𝑛
(𝛾
0
, 𝛾
1
, . . . , 𝛾

𝑛−1
) = ∫

𝑡
1

𝑡
0

∫
Ω

𝑅
2

𝑛
(𝑥, 𝑡, 𝛾

0
, 𝛾
1
, . . . , 𝛾

𝑛−1
) 𝑑𝑥 𝑑𝑡.

(18)

Thus, at the given level of approximation 𝑛, the corre-
sponding optimal values of convergence control parameters
𝛾
0
, 𝛾
1
, . . . , 𝛾

𝑛−1
are obtained by minimizing the 𝐽

𝑛
which

corresponds to the following set of 𝑛 algebraic equations:

𝜕𝐽
𝑛

𝜕𝛾
0

= 0,
𝜕𝐽
𝑛

𝜕𝛾
1

= 0, . . . ,
𝜕𝐽
𝑛

𝜕𝛾
𝑛−1

= 0. (19)

The optimal values of 𝛾
0
, 𝛾
1
, . . . , 𝛾

𝑛−1
so obtained, when

substituted in equation (16) gives the approximate solution
at level 𝑛.

The novelty of our proposed algorithm is that (1) a
new generalized correction functional (15) is constructed
by introducing auxiliary parameters 𝛾

0
, 𝛾
1
, 𝛾
2
, . . ., auxiliary

functions 𝐻
0
(𝑥),𝐻

1
(𝑥),𝐻

2
(𝑥), . . ., and expanding the non-

linear term as series of Adomian polynomial in the correction
functional of the standard VIM and (2) the values of auxiliary
parameters 𝛾

0
, 𝛾
1
, 𝛾
2
, . . . , 𝛾

𝑛−1
are obtained optimally by using

(16)–(19).

3. Applications

Now we apply our proposed method to solve the following
two problems in Sections 3.1 and 3.2.

3.1. Fractional Advection-Diffusion Equation (FADE) with
Nonlinear Source Term. Advection-diffusion equation
(ADE) describes the solute transport due to combined
effect of diffusion and convection in a medium. It is a par-
tial differential equation of parabolic type, derived on the
principle of conservation of mass using Fick’s law. Due to the
growing surface and subsurface hydro environment degra-
dation and the air pollution, the advection-diffusion equa-
tion has drawn significant attention of hydrologists, civil
engineers, and mathematical modellers. Its analytical-
/numerical solutions along with an initial condition and two
boundary conditions help to understand the contaminant
or pollutant concentration distribution behaviour through
an open medium like air, rivers, lakes, and porous medium
like aquifer, on the basis of which remedial processes
to reduce or eliminate the damages may be enforced. It
has wide applications in other disciplines too, like soil
physics, petroleum engineering, chemical engineering,
and biosciences. In 2002, Inc and Cherruault [9] applied
Adomian decomposition method to solve nonlinear
convection- (advection-) diffusion equation.

The fractional order forms of the ADE are similarly
useful. The most important advantage of using fractional

order differential equation inmathematicalmodelling is their
nonlocal property. It is a well-known fact that the integer
order differential operator is a local operator whereas the
fractional order differential operator is nonlocal in the sense
that the next state of the system depends not only upon its
current state but also upon all of its proceeding states. In the
last decade, many authors have made notable contribution to
both theory and application of fractional differential equa-
tions in areas as diverse as finance [10], physics [11, 12], control
theory [13], and hydrology [14, 15]. Several papers have been
written [16, 17] to show the equivalence between the transport
equations using fractional order derivatives and some heavy-
tailed motions, thus extending the predictive capability of
models built on the stochastic process of Brownian motion,
which is basis for the classical ADE. The motion can be
heavy-tailed, implying extremely long-term correlation and
fractional derivatives in time and/or space.

In recent past several papers [8, 14, 15, 18, 19] have been
written to solve FADE. In 2007, Momani [8] proposed an
algorithm to solve the following FADE with nonlinear source
term:

𝜕
𝛼
𝑦

𝜕𝑡𝛼
=
𝜕
2
𝑦

𝜕𝑥2
− 𝑐
𝜕𝑦

𝜕𝑥
+ Ψ (𝑦) + 𝑓 (𝑥, 𝑡) ,

0 < 𝑥 < 1, 𝑡 ≥ 0, 0 < 𝛼 ≤ 1,

(20)

𝑦 (0, 𝑡) = ℎ
1
(𝑡) , 𝑡 ≥ 0, (21)

𝜕𝑦 (1, 𝑡)

𝜕𝑥
= ℎ
2
(𝑡) , 𝑡 ≥ 0, (22)

𝑦 (𝑥, 0) = 𝑔 (𝑥) , 0 ≤ 𝑥 ≤ 1, (23)

where Ψ(𝑦) is some reasonable nonlinear function of 𝑦
which is chosen as a potential energy, 𝑐 is a constant, and
𝛼 is a parameter describing the order of the time-fractional
derivative. The fractional derivative is considered in the
Caputo sense. In [8], the author solved the above problem
by taking Ψ (𝑦) = 𝑦(𝜕

2
𝑦/𝜕𝑥
2
) − 𝑦
2
+ 𝑦, 𝑐 = 1, 𝑓(𝑥, 𝑡) =

0, ℎ
1
(𝑡) = 𝑒

𝑡
, ℎ
2
(𝑡) = 𝑒

𝑡+1, and 𝑔(𝑥) = 𝑒𝑥. With these values
(20)–(23) are reduced to

𝜕
𝛼
𝑦

𝜕𝑡𝛼
=
𝜕
2
𝑦

𝜕𝑥2
−
𝜕𝑦

𝜕𝑥
+ 𝑦

𝜕
2
𝑦

𝜕𝑥2
− 𝑦
2
+ 𝑦,

0 < 𝑥 < 1, 𝑡 ≥ 0, 0 < 𝛼 ≤ 1,

(24)

𝑦 (0, 𝑡) = 𝑒
𝑡
, 𝑡 ≥ 0, (25)

𝜕𝑦 (1, 𝑡)

𝜕𝑥
= 𝑒
𝑡+1
, 𝑡 ≥ 0, (26)

𝑦 (𝑥, 0) = 𝑒
𝑥
, 0 ≤ 𝑥 ≤ 1, (27)

with exact solution𝑦(𝑥, 𝑡) = 𝑒𝑥+𝑡 for 𝛼 = 1.
As the first illustration of our proposed method, we apply

it to solve the FADE described by (24)–(27).
Taking 𝐻

𝑖
(𝑥) = −1, 𝑖 = 0, 1, 2, . . . , 𝑛, 𝑡

0
= 0, 𝑡

1
=

1, 𝑔
𝑗
(𝑥, 𝑡) = 0, 𝑗 = 0, 1, 2, . . . , 𝑚, and 𝑢

0
(𝑥, 𝑡) = 𝑒

𝑥
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Table 1: Optimal value of 𝛾
0
, 𝛾
1
, . . . , 𝛾

4
and the exact square residual error 𝐽

5
for different values of 𝛼.

Auxiliary
parameters

𝛾
0

𝛾
1

𝛾
2

𝛾
3

𝛾
4

𝐽
5

𝛼 = 1 −1.10768 0.00350116 −0.000267365 0.0000205203 −1.25821 × 10
−6

3.54123 × 10
−9

𝛼 = 0.9 −1.14325 0.00505624 −0.000397341 0.0000255168 −1.96442 × 10
−7

2.43911 × 10
−8

𝛼 = 0.75 −1.22051 0.00813733 −0.000516221 −0.000020236 0.0000138436 4.16599 × 10
−7

𝛼 = 0.5 −1.47194 0.0113722 0.00230399 −0.00101126 0.000107501 0.0000410035

and applying the proposed algorithm, we obtain the correc-
tion functional (15) for (24) as

𝑢
𝑛+1 (𝑥, 𝑡) = 𝜒𝑛+1𝑢𝑛 (𝑥, 𝑡) + 𝐽

𝛼

𝑡

× [

𝑛

∑

𝑖=0

{𝛾
𝑖
(
𝜕
𝛼

𝜕𝑡𝛼
𝑢
𝑛−𝑖 (𝑥, 𝑡)

−
𝜕
2

𝜕𝑥2
𝑢
𝑛−𝑖 (𝑥, 𝑡) +

𝜕

𝜕𝑥
𝑢
𝑛−𝑖 (𝑥, 𝑡)

− 𝐴
𝑛−𝑖
(𝑢
0
, 𝑢
1
, . . . , 𝑢

𝑛−𝑖
)

+ 𝐵
𝑛−𝑖
(𝑢
0
, 𝑢
1
, . . . , 𝑢

𝑛−𝑖
)

− 𝑢
𝑛−𝑖 (𝑥, 𝑡) )}] ,

(28)

where

𝐴
𝑛
(𝑢
0
, 𝑢
1
, . . . , 𝑢

𝑛
)

=
1

𝑛!
[
𝑑
𝑛

𝑑𝜆𝑛
{(

𝑛

∑

𝑘=0

𝜆
𝑘
𝑢
𝑘
) ⋅

𝜕
2

𝜕𝑥2
(

𝑛

∑

𝑘=0

𝜆
𝑘
𝑢
𝑘
)}]

𝜆=0

,

𝑛 ≥ 0,

𝐵
𝑛
(𝑢
0
, 𝑢
1
, . . . , 𝑢

𝑛
) =

1

𝑛!

[

[

𝑑
𝑛

𝑑𝜆𝑛
(

𝑛

∑

𝑘=0

𝜆
𝑘
𝑢
𝑘
)

2

]

]𝜆=0

,

𝑛 ≥ 0.

(29)

Solving (28) and using (29), we get the various 𝑢
𝑛
(𝑥, 𝑡) as

𝑢
1 (𝑥, 𝑡) = −𝛾0𝑒

𝑥 𝑡
𝛼

Γ (1 + 𝛼)
, (30)

𝑢
2
(𝑥, 𝑡) = −𝛾

0
(1 + 𝛾

0
) 𝑒
𝑥 𝑡
𝛼

Γ (1 + 𝛼)

− 𝛾
1
𝑒
𝑥 𝑡
𝛼

Γ (1 + 𝛼)
+ 𝛾
2

0
𝑒
𝑥 𝑡

2𝛼

Γ (1 + 2 𝛼)
, . . . .

(31)

Substituting the above iterations in (16) and taking 𝑛 = 5, the
5th order approximate solution for (24)–(27) is obtained as

𝑦
5
(𝑥, 𝑡, 𝛾

0
, 𝛾
1
, . . . , 𝛾

4
) = 𝑢
0 (𝑥, 𝑡) +

5

∑

𝑖=1

𝑢
𝑖
(𝑥, 𝑡, 𝛾

0
, 𝛾
1
, . . . , 𝛾

𝑖
) .

(32)

From (17) the 5th order residual is

𝑅
5
(𝑥, 𝑡, 𝛾

0
, 𝛾
1
, . . . , 𝛾

4
) =

𝜕
𝛼

𝜕𝑡𝛼
𝑦
5
−
𝜕
2

𝜕𝑥2
𝑦
5

+
𝜕

𝜕𝑥
𝑦
5
− 𝑦
5

𝜕
2

𝜕𝑥2
𝑦
5
+ 𝑦
2

5
− 𝑦
5
.

(33)

To determine the optimal values of 𝛾
0
, 𝛾
1
, . . . , 𝛾

4
, we mini-

mize the square residual error given in (18). As discussed
in [20], computing 𝐽

5
(𝛾
0
, 𝛾
1
, . . . , 𝛾

4
) directly with symbolic

computational software is impractical. Thus, we approximate
(18) using Gaussian Legendre quadrature with twenty nodes.
The optimal values of 𝛾

0
, 𝛾
1
, . . . , 𝛾

4
for all the values of 𝛼

considered are obtained by minimizing (18) using the Math-
ematica function Minimize and are given in Table 1. Before
approximating (18) usingGaussian Legendre quadrature with
twenty nodes, we replace 𝑥 and 𝑡 by (1 + 𝑥)/2 and (1 + 𝑡)/2,
respectively.

We define the absolute errors 𝐸
𝑛
(𝛾
0
, 𝛾
1
, 𝛾
2
, . . . , 𝛾

𝑛−1
) =

|𝑦exact(𝑥, 𝑡) − 𝑦
𝑛
(𝑥, 𝑡, 𝛾

0
, 𝛾
1
, 𝛾
2
, . . . , 𝛾

𝑛−1
)| and 𝐸

𝑜

𝑛
=

𝐸
𝑛
(𝛾
0
, 𝛾
1
, 𝛾
2
, . . . , 𝛾

𝑛−1
), evaluated at the optimal values

of the convergence control parameters 𝛾
𝑗
’s.

Table 1 lists that the optimal values of 𝛾
0
, 𝛾
1
, . . . , 𝛾

4
and

𝐽
5
. Table 2 shows the comparison between the fifth order

solution obtained by our method for the optimal values of
𝛾
0
, 𝛾
1
, . . . , 𝛾

4
given in Table 1 and the fifteenth order solution

given in [8] for different values of 𝛼. From Table 2 we see that
as the value of 𝛼moves from 1 to 0 the solution of ourmethod
differs more from that of [8], whereas for 𝛼 = 1 these are in
complete agreement.

Figure 1 shows the error 𝐸𝑜
5
for 𝛼 = 1, whereas Figure 2

shows the error obtained in [8] using fifth term approximate
solution given by HPM for 𝛼 = 1. Figure 3 shows the error
obtained by fifth order approximate solution using the new
iterative method [5] by taking 𝑢

0
(𝑥, 𝑡) = 𝑒

𝑥 and 𝐻(𝑥) =
−1 for 𝛼 = 1. From Figures 1–3 we conclude that the fifth
order approximate solution obtained by our method is more
accurate as compared to the same order solutions obtained
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Table 2: Comparison between our solution and that of Momani [8] for different values of 𝛼.

𝑥 𝛼 = 0.5 𝛼 = 0.5 [8] 𝛼 = 0.75 𝛼 = 0.75 [8] 𝛼 = 0.9 𝛼 = 0.9 [8] 𝛼 = 1 𝛼 = 1 [8]
0.0 5.0083 5.00328 3.48585 3.48585 2.97494 2.97494 2.71828 2.71828

0.1 5.53503 5.52948 3.85246 3.85246 3.28782 3.28782 3.00417 3.00417

0.2 6.11715 6.11102 4.25763 4.25762 3.6336 3.6336 3.32012 3.32012

0.3 6.7605 6.75372 4.70541 4.70540 4.01575 4.01575 3.6693 3.6693

0.4 7.47151 7.46401 5.20028 5.20027 4.43809 4.43809 4.0552 4.0552

0.5 8.25729 8.24901 5.7472 5.74710 4.90484 4.90484 4.48169 4.48169

0.6 9.12572 9.11656 6.35164 6.35163 5.42069 5.42069 4.95303 4.95303

0.7 10.0855 10.07540 7.01964 7.01964 5.99079 5.99079 5.47395 5.47395

0.8 11.1462 11.13500 7.75791 7.75790 6.62085 6.62085 6.04965 6.04965

0.9 12.3184 12.30812 8.57381 8.57380 7.31717 7.31717 6.68589 6.68589

1.0 13.614 13.600031 9.47553 9.47552 8.08672 8.08672 7.38906 7.38906

4

3

2

1

0
0.0

0.0

0.5

0.5

1.0

1.0

x

t

×10−6

Figure 1: The error 𝐸𝑜
5
for 𝛼 = 1.
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Figure 2: The fifth order error, Momani [8] for 𝛼 = 1.

by the new iterative method [5] andHPM [8]. Figure 4 shows
the cross section of approximate solution 𝑦

5
(𝑥, 𝑡) at 𝑥 = 1 for

different values of 𝛼 and the corresponding optimal values of
𝛾
0
, 𝛾
1
, . . . , 𝛾

4
given in Table 1.

0.0

0.00008
0.00006

0.00004

0.00002
0

0.0

0.5
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1.0
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x

t

Figure 3: The error 𝐸
5
[5] for 𝛼 = 1.
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t

Exact 
solution

𝛼 = 1

𝛼 = 0.9

𝛼 = 0.75

𝛼 = 0.5

ỹ
5
(x
,t
)

Figure 4: Cross section of 𝑦
5
(𝑥, 𝑡) at 𝑥 = 1 for different 𝛼.

3.2. Fractional Swift-Hohenberg Equation. Density gradient-
driven fluid convection arises in geophysical fluid flows in the
atmosphere, oceans, and in the earth’s mantle. The Rayleigh-
Benard convection is a prototype model for fluid convection,
aiming at predicting spatiotemporal convection patterns.
The mathematical model for the Rayleigh-Benard convec-
tion involves the Navier-Stokes equations coupled with the
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Figure 5: (a) Profiles of 𝑦
3
(𝑥, 𝑡) versus 𝑥 at 𝛼 = 1, 𝜇 = 0.3 for 𝑙 = 3 on the corresponding values of 𝛾

0
, 𝛾
1
, 𝛾
2
as given in Table 3. (b) Profiles

of 𝑦
3
(𝑥, 𝑡) versus 𝑥 at 𝛼 = 1, 𝜇 = 0.3 for 𝑙 = 6 on the corresponding values of 𝛾

0
, 𝛾
1
, 𝛾
2
as given in Table 3. (c) Profiles of 𝑦

3
(𝑥, 𝑡) versus 𝑥 at

𝛼 = 1, 𝜇 = 0.3 for 𝑙 = 8 on the corresponding values of 𝛾
0
, 𝛾
1
, 𝛾
2
as given in Table 3. (d) Profiles of 𝑦

3
(𝑥, 𝑡) versus 𝑥 at 𝛼 = 1, 𝜇 = 0.3 for

𝑙 = 10 on the corresponding values of 𝛾
0
, 𝛾
1
, 𝛾
2
as given in Table 3.

transport equation for temperature. When the Rayleigh
number is near the onset of convection, the Rayleigh-Benard
convection model may be approximately reduced to an
amplitude or order parameter equation, as derived by Swift
and Hohenberg [21].

The Swift-Hohenberg (SH) equation is defined as

𝜕𝑦

𝜕𝑡
= 𝜇𝑦 − (1 +

𝜕
2

𝜕𝑥2
)

2

𝑦 − 𝑦
3
, (34)

where 𝜇 ∈ R is a parameter. It is a simple model for the
Rayleigh-Benard convective instability of roll waves [22].The
Swift-Hohenberg (SH) equation has numerous important
applications in the different branches of Physics such as
Taylor-Couette flow [21, 23] and in the study of lasers [24].
It also plays a vital role in the study of pattern formation
[25] and as a model equation for a large class of higher-order
parabolic equations arises in a wide range of applications,
for example, as the extended Fisher-Kolmogorov equation in
statistical mechanics [26], as well as a sixth order equation
introduced by Caginalp and Fife [27] in phase field models
[28]. In 1995, Caceres [29] considered the Swift-Hohenberg
equation for piece-wise constant potentials and found the
eigenvalues for it. Later in 2002, Christrov and Pontes [30]

gave the numerical scheme for Swift-Hohenberg equation
with strict implementation of Lyapunov functional. Peletier
and Rottschäfer [31] in 2003 studied the large time behaviour
of solution of Swift-Hohenberg equation. Two years later Day
et al. [32] in 2005 also provided the numerical solution to
the Swift-Hohenberg equation. Some other research papers
related to SH equation were published by different authors
[33, 34]. Akyildiz et al. [35] in 2010 have solved the Swift-
Hohenberg equation by homotopy analysis method for the
standard motion. Recently, in 2011, Khan et al. [36] gave the
approximate solution of SH equation with Cauchy-Dirichlet
condition. In the same year Khan et al. [37] have solved
the Swift-Hohenberg equation with fractional time deriva-
tive using homotopy perturbation method and differential
transform method, whereas Vishal et al. [38] have solved
the fractional Swift-Hohenberg equation using homotopy
analysis method.

We consider the following time fractional Swift-
Hohenberg equation [37, 38]:

𝜕
𝛼
𝑦

𝜕𝑡𝛼
+ 2

𝜕
2
𝑦

𝜕𝑥2
+
𝜕
4
𝑦

𝜕𝑥4
+ (1 − 𝜇) 𝑦 + 𝑦

3
= 0,

0 < 𝑥 < 𝑙, 𝑡 > 0, 0 < 𝛼 ≤ 1,

(35)
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ỹ
3
(x
,t
)

(b)

2 4 6 8

0.02

0.04

0.06

0.08

0.10

x

t = 0

t = 1 t = 1.4

t = 0.4

ỹ
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Figure 6: (a) Profiles of 𝑦
3
(𝑥, 𝑡) versus 𝑥 at 𝛼 = 0.5, 𝜇 = 0.3 for 𝑙 = 3 on the corresponding values of 𝛾

0
, 𝛾
1
, 𝛾
2
as given in Table 3. (b) Profiles

of 𝑦
3
(𝑥, 𝑡) versus 𝑥 at 𝛼 = 0.5, 𝜇 = 0.3 for 𝑙 = 6 on the corresponding values of 𝛾

0
, 𝛾
1
, 𝛾
2
as given in Table 3. (c) Profiles of 𝑦

3
(𝑥, 𝑡) versus 𝑥

at 𝛼 = 0.5, 𝜇 = 0.3 for 𝑙 = 8 on the corresponding values of 𝛾
0
, 𝛾
1
, 𝛾
2
as given in Table 3. (d) Profiles of 𝑦

3
(𝑥, 𝑡) versus 𝑥 at 𝛼 = 0.5, 𝜇 = 0.3

for 𝑙 = 10 on the corresponding values of 𝛾
0
, 𝛾
1
, 𝛾
2
as given in Table 3.

with the initial condition

𝑦 (𝑥, 0) =
1

10
sin(𝜋𝑥

𝑙
) , (36)

and boundary conditions

𝑦 (𝑥, 𝑡) = 0,
𝜕
2
𝑦 (𝑥, 𝑡)

𝜕𝑥2
= 0 at 𝑥 = 0, 𝑙, 𝑡 > 0. (37)

Taking 𝐻
𝑖
(𝑥) = −1, 𝑖 = 0, 1, 2, . . . , 𝑛, 𝑡

0
= 0, 𝑡

1
= 1,

𝑔
𝑗
(𝑥, 𝑡) = 0, 𝑗 = 0, 1, 2, . . . , 𝑚, and 𝑢

0
(𝑥, 𝑡) = (1/10)

sin(𝜋𝑥/𝑙) and applying the proposed algorithm,we obtain the
correction functional (15) for (21) as

𝑢
𝑛+1
(𝑥, 𝑡) = 𝜒

𝑛+1
𝑢
𝑛
(𝑥, 𝑡) + 𝐽

𝛼

𝑡

× [

𝑛

∑

𝑖=0

{𝛾
𝑖
(
𝜕
𝛼

𝜕𝑡𝛼
𝑢
𝑛−𝑖
(𝑥, 𝑡)

+ 2
𝜕
2

𝜕𝑥2
𝑢
𝑛−𝑖
(𝑥, 𝑡)

+
𝜕
4

𝜕𝑥4
𝑢
𝑛−𝑖
(𝑥, 𝑡)

+ (1 − 𝜇) 𝑢
𝑛−𝑖
(𝑥, 𝑡)

+𝐴
𝑛−𝑖
(𝑢
0
, 𝑢
1
, . . . , 𝑢

𝑛−𝑖
) )}] ,

(38)

where

𝐴
𝑛
(𝑢
0
, 𝑢
1
, . . . , 𝑢

𝑛
) =

1

𝑛!

[

[

𝑑
𝑛

𝑑𝜆𝑛

{

{

{

(

𝑛

∑

𝑘=0

𝜆
𝑘
𝑢
𝑘
)

3

}

}

}

]

]𝜆=0

,

𝑛 ≥ 0.

(39)

Solving (38) and using (39), we get the various 𝑢
𝑛
(𝑥, 𝑡) as

𝑢
1
(𝑥, 𝑡) = 𝛾

0
(−

1

5𝑙2
𝜋
2 sin(𝜋𝑥

𝑙
) +

1

10𝑙4
𝜋
4 sin(𝜋𝑥

𝑙
)

+
1

10
(1 − 𝜇) sin(𝜋𝑥

𝑙
) +

1

1000
sin(𝜋𝑥

𝑙
)

3

)

×
𝑡
𝛼

Γ (1 + 𝛼)
, . . . .

(40)
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Figure 7: (a) Profiles of 𝑦
3
(𝑥, 𝑡) versus 𝑥 at 𝛼 = 1, 𝜇 = 0.9 for 𝑙 = 3 on the corresponding values of 𝛾

0
, 𝛾
1
, 𝛾
2
as given in Table 3. (b) Profiles

of 𝑦
3
(𝑥, 𝑡) versus 𝑥 at 𝛼 = 1, 𝜇 = 0.9 for 𝑙 = 6 on the corresponding values of 𝛾

0
, 𝛾
1
, 𝛾
2
as given in Table 3. (c) Profiles of 𝑦

3
(𝑥, 𝑡) versus 𝑥 at

𝛼 = 1, 𝜇 = 0.9 for 𝑙 = 8 on the corresponding values of 𝛾
0
, 𝛾
1
, 𝛾
2
as given in Table 3. (d) Profiles of 𝑦

3
(𝑥, 𝑡) versus 𝑥 at 𝛼 = 1, 𝜇 = 0.9 for

𝑙 = 10 on the corresponding values of 𝛾
0
, 𝛾
1
, 𝛾
2
as given in Table 3.

Substituting the above iterations in (16) and taking 𝑛 = 3, the
3rd order approximate solution for (35)–(37) is obtained as

𝑦
3
(𝑥, 𝑡, 𝛾

0
, 𝛾
1
, 𝛾
2
) = 𝑢
0
(𝑥, 𝑡) +

3

∑

𝑖=1

𝑢
𝑖
(𝑥, 𝑡, 𝛾

0
, 𝛾
1
, . . . , 𝛾

𝑖
) .

(41)

From (17), the 3rd order residual is

𝑅
3
(𝑥, 𝑡, 𝛾

0
, 𝛾
1
, 𝛾
2
) =

𝜕
𝛼

𝜕𝑡𝛼
𝑦
3
+ 2

𝜕
2

𝜕𝑥2
𝑦
3

+
𝜕
4

𝜕𝑥4
𝑦
3
+ (1 − 𝜇) 𝑦

3
+ 𝑦
3

3
.

(42)

As discussed in Section 3.1, we first replace 𝑥 and 𝑡 by 𝑙(1 +
𝑥)/2 and (1 + 𝑡)/2, respectively, and then approximate (18)
using Gaussian Legendre quadrature with twenty nodes. The
optimal values of 𝛾

0
, 𝛾
1
, 𝛾
2
for all the values of 𝛼, 𝑙, and

𝜇 considered are obtained by minimizing (18) using the
Mathematica function Minimize and are given in Table 3.
From Table 3 we see that the square residual error 𝐽

3
for

𝑙 = 10, 𝜇 = 0.6, and 𝛼 = 1, 0.75, 0.5 , respectively, obtained
by our algorithm is smaller than that obtained by Vishal et

al. [38] using eighth order approximate solution of HAM as
given in Tables 1–3 [38].

Figures 5(a)–5(d) show the solution profile 𝑦
3
(𝑥, 𝑡) versus

𝑥 for 𝑙 = 3, 𝑙 = 6, 𝑙 = 8, and 𝑙 = 10, respectively, at 𝛼 = 1,
𝜇 = 0.3 on the corresponding optimal values of 𝛾

0
, 𝛾
1
, 𝛾
2
given

in Table 3. From Figure 5 we see that, for 𝑙 = 3, the value of
𝑦
3
(𝑥, 𝑡) increases as we increase the value of 𝑡, whereas for

𝑙 = 6, 𝑙 = 8, and 𝑙 = 10, the value of 𝑦
3
(𝑥, 𝑡) decreases as we

increase the value of 𝑡. Figures 6(a)–6(d) show the solution
profile 𝑦

3
(𝑥, 𝑡) versus 𝑥 for 𝑙 = 3, 𝑙 = 6, 𝑙 = 8, and 𝑙 = 10,

respectively, at 𝛼 = 0.5, 𝜇 = 0.3 on the corresponding optimal
values of 𝛾

0
, 𝛾
1
, 𝛾
2
given in Table 3. From Figure 6 we also find

the same behaviour of 𝑦
3
(𝑥, 𝑡) as in Figure 5.

Figures 7(a)–7(d) show the solution profile 𝑦
3
(𝑥, 𝑡) versus

𝑥 for 𝑙 = 3, 𝑙 = 6, 𝑙 = 8, and 𝑙 = 10, respectively, at 𝛼 = 1,
𝜇 = 0.9 on the corresponding optimal values of 𝛾

0
, 𝛾
1
, 𝛾
2
given

in Table 3. From Figure 7 we see that the value of 𝑦
3
(𝑥, 𝑡)

increases as we increase the value of 𝑡, for all considered
values of 𝑙. Figures 8(a)–8(d) show the solution profile𝑦

3
(𝑥, 𝑡)

versus 𝑥 for 𝑙 = 3, 𝑙 = 6, 𝑙 = 8, and 𝑙 = 10, respectively,
at 𝛼 = 0.5, 𝜇 = 0.9 on the corresponding optimal values of
𝛾
0
, 𝛾
1
, 𝛾
2
given in Table 3. FromFigure 8 we also find the same

behaviour of 𝑦
3
(𝑥, 𝑡) as in Figure 7.
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ỹ
3
(x
,t
)

(c)

2 4 6 8 10

0.02

0.04

0.06

0.08

0.10

x

t = 0

t = 1
t = 1.6

t = 0.4
ỹ
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Figure 8: (a) Profiles of 𝑦
3
(𝑥, 𝑡) versus 𝑥 at 𝛼 = 0.5, 𝜇 = 0.9 for 𝑙 = 3 on the corresponding values of 𝛾

0
, 𝛾
1
, 𝛾
2
as given in Table 3. (b) Profiles

of 𝑦
3
(𝑥, 𝑡) versus 𝑥 at 𝛼 = 0.5, 𝜇 = 0.9 for 𝑙 = 6 on the corresponding values of 𝛾

0
, 𝛾
1
, 𝛾
2
as given in Table 3. (c) Profiles of 𝑦

3
(𝑥, 𝑡) versus 𝑥

at 𝛼 = 0.5, 𝜇 = 0.9 for 𝑙 = 8 on the corresponding values of 𝛾
0
, 𝛾
1
, 𝛾
2
as given in Table 3. (d) Profiles of 𝑦

3
(𝑥, 𝑡) versus 𝑥 at 𝛼 = 0.5, 𝜇 = 0.9

for 𝑙 = 10 on the corresponding values of 𝛾
0
, 𝛾
1
, 𝛾
2
as given in Table 3.

4. Conclusion

We have proposed, for the first time, a new concept which
is the generalization of our previous new iterative method
[5] by introducing arbitrary number of auxiliary parameters
and functions in the correction functional of the previously
proposed new iterative method [5]. The method is called
the optimal variational asymptotic method. A semianalytic
algorithm based on OVAM is developed to solve fractional
nonlinear partial differential equations. To test the algorithm,
we apply it to solve two important classes of nonlinear partial
differential equations: (1) the fractional advection-diffusion
equation with nonlinear source term and (2) the fractional
Swift-Hohenberg equation. Only five and three iterations
are required to achieve fairly accurate solutions of the first
and second problems, respectively. From Figures 1, 2, and
3, we see that OVAM is better than the methods in [5, 8].
Also, we get parabolic solution profiles for small and large
values of 𝑙 in 0 ≤ 𝑡 ≤ 1.6 similar to the ones obtained
in [35] whereas Vishal et al. [38] obtained hat like and
nosey profiles for smaller values of 𝑙 and the corresponding
values of 𝜇.

Appendix

We give some basic definitions and properties of fractional
calculus [39] which have been used in the development of the
proposed algorithm.

Definition 2. A real function 𝑓(𝑥), 𝑥 > 0, is said to be in a
space 𝐶

𝜇
, 𝜇 ∈ 𝑅, if there exists a real number 𝑝(< 𝜇) such

that 𝑓(𝑥) = 𝑥𝑝𝑓
1
(𝑥) where 𝑓

1
(𝑥) ∈ 𝐶[0,∞), and it is said to

be in the space 𝐶𝜇
𝑚
if 𝑓(𝑚) ∈ 𝐶

𝜇
, 𝑚 ∈ 𝑁.

Definition 3. TheRiemann-Liouville fractional integral oper-
ator of order 𝛼 ≥ 0, of a function 𝑓 ∈ 𝐶

𝜇
, 𝜇 ≥ −1, is defined

as

𝐽
𝛼

𝑎
𝑓 (𝑥) =

1

Γ (𝛼)
∫

𝑥

𝑎

(𝑥 − 𝑡)
𝛼−1
𝑓 (𝑡) 𝑑𝑡, 𝛼 > 0, 𝑥 > 0.

(A.1)
For

𝛼, 𝛽 > 0, 𝑎 ≥ 0, 𝛾 ≥ −1,

𝐽
𝛼

𝑎
(𝑥 − 𝑎)

𝛾
=

Γ (1 + 𝛾)

Γ (1 + 𝛾 + 𝛼)
(𝑥 − 𝑎)

𝛾+𝛼
.

(A.2)
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Table 3: The optimal values of 𝛾
0
, 𝛾
1
, 𝛾
2
and the exact square residual error 𝐽

3
for different values of 𝛼, 𝑙, and 𝜇.

Auxiliary
parameters 𝛾

0
𝛾
1

𝛾
2

𝐽
3

𝛼 = 1, 𝑙 = 3, 𝜇 = 0.3 −0.130825 −0.143308 −0.537752 0.0000130186

𝛼 = 1, 𝑙 = 6, 𝜇 = 0.3 −0.792741 −0.0301069 0.00643432 1.23122 × 10
−8

𝛼 = 1, 𝑙 = 8, 𝜇 = 0.3 −0.910664 −0.0000303478 0.000114225 4.64524 × 10
−10

𝛼 = 1, 𝑙 = 10, 𝜇 = 0.3 −0.897888 0.000353402 0.000163799 1.33347 × 10
−9

𝛼 = 0.5, 𝑙 = 3, 𝜇 = 0.3 −0.0816776 −0.180248 −0.667218 0.0000136652

𝛼 = 0.5, 𝑙 = 6, 𝜇 = 0.3 −0.604212 −0.106513 0.0416011 1.07018 × 10
−7

𝛼 = 0.5, 𝑙 = 8, 𝜇 = 0.3 −0.819631 −0.00175609 0.000158241 2.87325 × 10
−9

𝛼 = 0.5, 𝑙 = 10, 𝜇 = 0.3 −0.795225 −0.00178556 0.000166566 4.72045 × 10
−9

𝛼 = 1, 𝑙 = 3, 𝜇 = 0.9 −0.22379 −0.366713 −0.294593 0.00169117

𝛼 = 1, 𝑙 = 6, 𝜇 = 0.9 −0.87569 −0.0546794 0.0148106 2.05972 × 10
−8

𝛼 = 1, 𝑙 = 8, 𝜇 = 0.9 −1.08831 −0.00283652 −0.000322536 1.62026 × 10
−10

𝛼 = 1, 𝑙 = 10, 𝜇 = 0.9 −1.10053 −0.0114101 −0.00143646 1.70642 × 10
−11

𝛼 = 0.5, 𝑙 = 3, 𝜇 = 0.9 −0.121227 −0.338514 −1.16789 0.00317015

𝛼 = 0.5, 𝑙 = 6, 𝜇 = 0.9 −0.623909 −0.50858 0.361561 2.46223 × 10
−7

𝛼 = 0.5, 𝑙 = 8, 𝜇 = 0.9 −1.18799 −0.0149661 −0.0022465 9.16058 × 10
−9

𝛼 = 0.5, 𝑙 = 10, 𝜇 = 0.9 −1.32112 −0.113086 −0.0418857 1.24439 × 10
−9

𝛼 = 1, 𝑙 = 10, 𝜇 = 0.6 −0.947507 −0.000676392 0.0000147138 1.42072 × 10
−11

𝛼 = 0.75, 𝑙 = 10, 𝜇= 0.6 −0.927378 −0.00133351 0.0000116762 7.37925 × 10
−11

𝛼 = 0.5, 𝑙 = 10, 𝜇 = 0.6 −0.904097 −0.0028307 −0.0000115243 2.73053 × 10
−10

Definition 4. The fractional derivative of order𝛼 of a function
𝑓(𝑥) in Caputo sense is defined as

𝐷
𝛼

𝑎
𝑓 (𝑥) = 𝐽

𝑚−𝛼

𝑎
𝐷
𝛼

𝑎
𝑓 (𝑥)

=
1

Γ (𝑚 − 𝛼)
∫

𝑥

𝑎

(𝑥 − 𝑡)
𝑚−𝛼−1

𝑓
𝑚
(𝑡) 𝑑𝑡

(A.3)

for𝑚 − 1 < 𝛼 ≤ 𝑚,𝑚 ∈ 𝑁, 𝑥 > 𝑎, 𝑓 ∈ 𝐶
𝑚

−1
.

The following properties of the operator 𝐷𝛼
𝑎
are well

known:

𝐷
𝛼

𝑎
𝐽
𝛼

𝑎
𝑓 (𝑥) = 𝑓 (𝑥) ,

𝐽
𝛼

𝑎
𝐷
𝛼

𝑎
𝑓 (𝑥) = 𝑓 (𝑥) −

𝑚−1

∑

𝑘=0

𝑓
(𝑘)
(𝑎)

(𝑥 − 𝑎)
𝑘

𝑘!
, 𝑥 > 0.

(A.4)
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