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Abstract: Spherical MCM-48 mesoporous sieve co-doped with vanadium and iron was 

successfully synthesized via one-step hydrothermal method. The material was characterized 

by X-ray diffraction (XRD), nitrogen adsorption-desorption isotherms, inductively coupled 

plasma (ICP), scanning electron microscopy (SEM), transmission electron microscopy (TEM), 

diffuse reflectance UV-vis spectra, and X-ray photoelectron spectra (XPS) techniques. 

Results indicated that the V-Fe-MCM-48 showed an ordered 3D cubic mesostructure with 

spherical morphology, narrow pore size distribution and high specific surface area. Most of 

vanadium and iron atoms existing as tetrahedral V4+ and Fe3+ species were co-doped into the 

silicate framework. The particle sizes of V-Fe-MCM-48 were smaller and the specific area 

was much higher than those of of V-MCM-48. Additionally, the synthesized V-Fe-MCM-48 

exhibited improved hydrothermal stability compared with the pure MCM-48. 
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1. Introduction 

Due to high surface areas, narrow pore size distribution, and tunable pore diameters, the M41S 

family [1] has been intensely studied and applied to many areas such as catalysis [2], sorption [3] and  

so on since the first report in 1992. Owing to its three-dimensional (3D) cubic mesophase with gyroidal 
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structure, MCM-48 favors much more to the mass transfer than MCM-41 [4–7] as the latter only shows 

the two-dimensional (2D) hexagonal mesophase [8,9]. Particularly, MCM-48 is more resistant to the 

pore-blocking [10]. 

In heterogeneous catalysis, the diffusion of reactants and products highly depend on the pore 

structure and morphology of catalyst [10]. For example, MCM-41 with various morphologies have 

been widely reported, e.g., sphere, rod, tube, etc. [11–13]. By contrast, less attention has been paid to 

the synthesis of MCM-48 with high quality and special morphology. One of the reasons is that the 

experimental conditions, including pH, temperature, stirring rate, stirring time, aging time as well as 

concentration of the template, have to be controlled precisely in order to the obtain materials of 

desirable mesostructure and defined morphology. In most of cases, the minor changes in the 

synthesizing conditions may cause disastrous effect to the final product [10,14]. 

Due to the lack of acidity/basicity and redox properties, pure mesoporous silicate materials show 

limited applications in the field of catalysis. Therefore, to construct catalytic active sites, considerable 

effort has been spent in incorporating transition metals like Ti, V, Fe, Cu, Ce and so on [4,14–17] into 

the silicate framework by a variety of methods, which include one-step hydrothermal method [4,18], 

wet impregnation method [19], template ion-exchange method [6] and grafting method [20]. However, 

many methods are not desirable as they are relatively easier to induce the formation of crystalline metal 

oxides outside of the framework, which may result in the elution of catalytic active sites in the liquid-phase 

reactions. By contrast, the one-step hydrothermal method is more advantageous in this aspect because 

of its facile synthesis procedures and remarkable capability of incorporating heteroatoms into the 

framework [19,21,22]. 

Furthermore, the relatively poor hydrothermal stability also limits the application of mesoporous 

silicate materials in the liquid-phase reactions [23]. Some approaches to improve the hydrothermal 

stability have been reported, such as incorporating heteroatoms [24–26], pH adjusting [27], addition of 

crystal seed precursors, inorganic salts, or PVA powder [28–31]. 

In the cases of the incorporations of metals into the materials, the bimetallic catalyst shows more 

potential than monometallic catalyst due to the synergistic effect of bimetal, which may improve the 

final structure as well as the stability of materials to the great extent. Till now, concerning the synthesis 

using bimetallic dopants, there have been numerous reports on MCM-41 mesoporous sieves but only 

sparse reports on the MCM-48. Furthermore, when co-doped with bimetals, it remains even more 

difficult to obtain materials of special morphology. The precise experimental conditions are therefore 

demanding for the synthesis of bimetallic MCM-48 with regular morphology. In our previous studies, 

mesoporous sieves doped with vanadium exhibited high catalytic activity in the oxidation of aromatics, 

including benzene, styrene and phenol [4,32–37]. It was also reported that the incorporation of Fe(III) 

can enhance the hydrothermal stability of mesoporous sieves [38]. 

In this study, spherical MCM-48 co-doped with V and Fe was successfully synthesized based upon 

our work in which spherical V-MCM-48 with the particle size of ca. 500 nm was synthesized [4].  

The obtained material was further characterized by XRD, N2 physisorption, SEM, TEM, ICP, UV-vis, 

and XPS techniques. The hydrothermal stability of produced V-Fe-MCM-48 was also evaluated. 
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2. Results and Discussion 

2.1. Mesoporous Structure of V-Fe-MCM-48 Sample 

2.1.1. XRD 

The small-angle powder XRD patterns of Si- and V-Fe-MCM-48 samples are shown in Figure 1a. 

Similar to that of Si-MCM-48, the pattern of V-Fe-MCM-48 exhibits an intense peak of (221) 

reflection and weak peaks of (220), (332) and (420) reflections, which represent the characteristics of 

the three-dimensional (3D) cubic  mesophase. This result indicates that highly ordered 

mesostructure of MCM-48 is well retained which is not significantly affected by the presence of dual 

dopants of V and Fe in the silicate framework. Compared with Si-MCM-48, all of the peaks 

corresponding to V-Fe-MCM-48 shift evidently to the lower angle region suggesting an increase in unit 

cell parameter (a0) which may be attributed to the replacement of Si4+ (Pauling radius = 42 pm) by V4+ 

(Pauling radius = 58 pm) and Fe3+ (Pauling radius = 64 pm) [35,39]. 

The wide-angle XRD pattern of the V-Fe-MCM-48 sample as showed in Figure 1b exhibits a broad 

peak at 2θ ≈ 23.0°, which is normally ascribed to the characteristic peak of amorphous silica. Beyond 

that, no characteristic peaks of vanadium oxide and iron oxide are observed suggesting that the sample 

co-doped with V and Fe atoms still exists as amorphous state without pronounced aggregation and 

formation of bulk crystals of metal species. We reason that both the V and Fe atoms may be 

incorporated into the silicate framework or highly dispersed on the surface of mesoporous channels. 

Figure 1. (a) Small-angle X-ray diffraction (XRD) patterns and (b) wide-angle XRD 

patterns of the calcined Si- and V-Fe-MCM-48 samples. 

2.1.2. Nitrogen Adsorption-Desorption 

The nitrogen adsorption-desorption isotherms and pore size distribution (PSD) of the calcined Si- 

and V-Fe-MCM-48 are displayed in Figure 2. It is observed that the V-Fe-MCM-48 sample exhibits a 

similar type as the Si-MCM-48, which can be classified to the type IV isotherm according to the IUPAC 

classification [40]. A sharp step at the relative pressure of p/p0 in the range of 0.20–0.35 corresponding to 

the capillary condensation in channel-type mesopores suggests a high quality mesostructure and a 
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narrow pore size distribution (2–3 nm) of obtained sample. However, the step of V-Fe-MCM-48 is less 

steep than that of Si-MCM-48 and the inflection point of step shifts to a higher relative pressure. This 

observation indicates that the presence of co-dopants of V and Fe decreases the order of final mesostructure 

and increases the pore size of materials, which is well consistent to the small-angle XRD results. 

 

Figure 2. Nitrogen adsorption-desorption isotherms of the calcined Si- and V-Fe-MCM-48 

samples. The inset shows the pore size distribution (PSD). 

Table 1 shows the textural and structural parameters of the calcined Si- and V-Fe-MCM-48 

samples. Compared with that of Si-MCM-48, the specific surface area (as,BET) of V-Fe-MCM-48 

decreases, which is due to a partial disruption of framework caused by the co-dopants of V and Fe. 

Nevertheless, it still shows high specific surface area over 1000 m2/g. The unit cell parameter (a0) 

increases from 8.80 to 9.33 nm indicating the incorporation of V and Fe in the silicate framework, which 

is in good agreement with the small-angle XRD results. Notably, the wall thickness (tw) exhibits a 

remarkable increase from 1.65 nm to 1.79 nm. This finding demonstrates that some metal species may be 

highly dispersed on the surface of mesoporous channels although they escape from the wide-angle 

XRD detection. 

Table 1. Textural and structural parameters of the calcined Si- and V-Fe-MCM-48 samples. 

Sample 
V/Si a V/Si b Fe/Si a Fe/Si b d211 a0 c dp d as, BET tw e Vp 

(Molar Ratio) (Molar Ratio) (Molar Ratio) (Molar Ratio) (nm) (nm) (nm) (m2/g) (nm) (cm3/g) 

Si-MCM-48 — — — — 3.59 8.80 2.39 1369.4 1.65 0.832 

V-Fe-MCM-48 0.0296 0.0066 0.0062 0.0021 3.81 9.33 2.46 1213.2 1.79 0.777 

Notes: a ICP results; b XPS results; c Unit cell parameter: a0 = 61/2d211; d Pore diameter determined by BJH method using 

the desorption branch; e Wall thickness: tw = a0/3.0919 − dp/2. 

2.1.3. SEM and TEM 

The SEM and TEM images of the calcined V-Fe-MCM-48 sample are displayed in Figure 3. From 

the SEM image, it is clearly observed that the particles of V-Fe-MCM-48 synthesized in this study 
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show a spherical morphology with most of particles size distribution in the range of 150–250 nm, 

which is confirmed from the TEM image. It is notably that the introduction of iron species reduced the 

particle sizes. Meanwhile, the specific area increases significantly from 788 of V-MCM-48 [4] to  

1213 m2/g of V-Fe-MCM-48 with almost the same amount of vanadium species. Nevertheless,  

catalyst with higher surface area can be expected more superior activity. 

Figure 3. (a) Scanning electron microscopy (SEM) image and (b) transmission electron 

microscopy (TEM) image of the calcined V-Fe-MCM-48 sample. 

It has been reported that vanadium species mainly exist as HVO4
2− and V2O7

4− when the pH value  

is in the range of 10–13 [41]. In our previous report [4], we have ascribed the formation of spherical  

V-MCM-48 particles to low concentration of V2O7
4− which minimizes the surface free energy, and the 

particles favors to become irregular in the presence of high concentration of V2O7
4−. In the synthesis 

condition of present work, most of the vanadium species exist as HVO4
2−, which shows lower ionic 

diameter than that of V2O7
4−. Meanwhile, the co-dopant of Fe accelerates the generation of more nuclei, 

which results in more small crystal growth [42–45]. In this way, smaller spherical V-Fe-MCM-48 

particles are generated. 

2.2. Statues of Heteroatoms 

2.2.1. UV-Vis 

UV-vis spectra are widely used to investigate the coordination circumstance and oxidation states of 

metal ions. As shown in Figure 4, all the samples show an absorption band centered at 216 nm, which 

is attributed to the characteristic absorption of the silica materials [46]. For the calcined V-MCM-48 

sample, another two absorption bands are additionally observed in the wavelength range of 220–320 nm 

and 350–400 nm centered at 264 nm and 374 nm, respectively. The absorption at 264 nm represents 

the charge-transfer transitions between oxygen ligands and V4+ in isolated tetrahedral coordination 

VO4 species, which supports that V atoms have been successfully incorporated into the silicate 

framework. The band centered at 374 nm is assigned to extra-framework V5+ species in distorted 

octahedral coordination [47]. This observation is possibly due to the interaction between V and water 

molecules in the atmosphere forming polymeric V-O-V bonds. The band of bulk V2O5 crystallites  

(ca. 450–480 nm) is absent agreeing well with the wide-angle XRD results. Unlike the calcined  
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V-MCM-48 sample, the calcined 1Fe-MCM-48 sample shows only one absorption peak at 254 nm, 

which is attributed to the charge-transfer transitions between oxygen ligands and Fe3+ in isolated 

tetrahedral coordination FeO4 species [48]. In addition, there is no obvious absorption band at 500–600 nm, 

which represents octahedral coordination Fe3+ species in extra-framework [49]. We conclude that most 

of Fe3+ species are incorporated into the silicate framework. For sample co-doped with V and Fe, three 

absorption bands centered at 216 nm, 264 nm, and 374 nm are visible, which resembles that of  

V-MCM-48. This indicates the introduction of Fe does not affect the coordination circumstance of V. 

Additionally, there may be an overlap in the 254 and 264 nm bands, implying that Fe may be also well 

incorporated into the silicate framework as the isolated tetrahedral coordination Fe3+ species. 

 

Figure 4. UV-vis spectra of calcined samples. 

2.2.2. XPS 

Because in the wide-angle XRD patterns peaks corresponding to the bulk V2O5 and Fe2O3 are 

absent, we further use XPS to evaluate the surface composition and the chemical states of vanadium 

and iron species. As shown in Figure 5a, the XPS spectrum of the V 2p region of the V-Fe-MCM-48 

sample can be deconvoluted into two components centered at 517.6 eV (A) and 516.6 eV (B), 

respectively. The component A is in good agreement with the V 2p3/2 observed for V2O5 indicating that 

vanadium exists on the exposed surface as V5+. While the component B cannot be clearly assigned to V4+ 

or V3+ based solely on the absolute value of binding energy [50]. Alternatively, the component B is 

assigned based on the differences in the binding energies (ΔBE). It was reported that ΔBE between V5+ 

and V4+ is 0.7–1.0 eV, and 1.2–1.5 eV between V5+ and V3+. The ΔBE between the component A and B 

obtained from the present study is 1.0 eV suggesting that the component B corresponds to V4+, which is 

agree well with the UV-vis results. Furthermore, it is observed that the peak area of V4+ is 

approximately twice that of V5+, and as shown in Table 1, the content of bulk vanadium in  

V-Fe-MCM-48 sample determined by ICP is much higher than that of vanadium exposed on the 

surface obtained from XPS. These results indicate that most of vanadium atoms are doped into the 

silicate framework. Figure 5b is the XPS spectrum of the Fe 2p region of the V-Fe-MCM-48.  
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The peaks at 711.7 eV and 725.0 eV correspond to Fe 2p3/2 and Fe 2p1/2, respectively. The existence of 

satellite peak centered at 720.5 eV suggests that iron exists as Fe3+ in the sample. The binding energy 

value of Fe 2p3/2 obtained here is much larger than that of pure Fe2O3, which has been reported 

between 710.6 and 711.2 eV [51,52]. This result indicates that the iron atoms are surrounded by silicon. 

Figure 5. X-ray photoelectron spectra (XPS) of (a) V 2p3/2 and (b) Fe 2p from the calcined 

V-Fe-MCM-48 sample. 

2.3. Hydrothermal Stability Test 

The hydrothermal stability of calcined Si- and V-Fe-MCM-48 samples treated at 110 °C for 

different time are evaluated by XRD. As shown in Figure 6a, the Si-MCM-48 still exhibits the (211) 

peak after treated for 24 h, whereas the (220) peak was not pronounced and the (420) and (332) peaks 

fully disappeared indicating that mesostructured turns to be less ordered. After 48 h treatment, the (220) 

peak fully disappears and the (211) peak is getting weak and broad implying that the 3D cubic 

mesostructure collapses to some extent. Therefore, the Si-MCM-48 exhibits a poor hydrothermal 

stability. This finding is probably due to the formation of hydrogen bonds between water molecules and 

the O atoms in Si-O-Si, which weakens the interaction between Si and O atoms and causes a breakage of 

Si-O-Si bonds. Consequently, some Si atoms may be detached from the framework, which brings some 

defect or collapse in the framework. For V-Fe-MCM-48 recorded in Figure 6b, the (220), (420) and 

(332) peaks are still visible after the treatment of 24 h indicating that the 3D cubic mesostructure of 

MCM-48 maintains highly ordered. The (420) and (332) peaks do not disappear until treated after 48 h. 

After further treatment of 72 h, the (220) peak is getting much more weak and almost invisible after 96 h 

treatment when the (211) peak is weak and broad. This implies that the 3D cubic mesostructure collapses. 

To investigate the extent of loss of the ordered mesoporous structure with hydrothermal treating 

time, TEM of V-Fe-MCM-48 treated for 72 h has been done. As displayed in Figure 7, the sample 

treated for 72 h shows much more disordered mesoporous structure when compared with that of the  

V-Fe-MCM-48 with no treatment exhibited in Figure 3b, which is consistent well with the small-angle 

XRD patterns. Furthermore, the particles severely aggregated which may be due to the polymerization 

of surface Si-OH groups. 



Materials 2015, 8 1759 

 

 

Figure 6. XRD patterns of the calcined (a) Si-MCM-48 and (b) V-Fe-MCM-48 samples 

after hydrothermal treatment at 110 °C for different time. 

 

Figure 7. TEM image of the V-Fe-MCM-48 sample after 72 h hydrothermal treatment. 

Also, in the hydrothermal stability test section the d-values are shifting with treatment time. For a 

deeper insight into the structural behavior, some structural parameters of the hydrothermally treated 

MCM-48 and V-Fe-MCM-48 samples at different time are given in Table 2, and a fitting of the data are 

shown in Figure 8. As displayed in Figure 8a, both the unit cell parameter a0 of MCM-48 and  

V-Fe-MCM-48 decrease with treatment time, suggesting a shrinkage of pore wall caused by the 

breakage of Si-O-Si bonds. Moreover, the a0 of V-Fe-MCM-48 decreases more significantly than that of 

MCM-48, together with a decreasing of metal content to some extent with the treating time found in 

Figure 8b, implying that most V and Fe species have been leached out from the silicate framework, 

which could be one of the reasons why the mesoporous structure becomes more disordered with time. 

Nevertheless, the V and Fe are still detected by ICP after 96 h treatment when the mesoporous 

structure has collapsed. Thus we proposed that doping heteroatoms played an important role in 

stabilizing the silicate framework at the prior hydrothermal treatment, and the mesoporous structure 

collapsed after 96 h may be due to the breakage of Si-O-Si bonds caused by the hydrogen bonds 

between water molecules and the O atoms in Si-O-Si bonds, which is the same as that of MCM-48. 
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Figure 8. Development of (a) the unit cell parameter a0 of MCM-48 and V-Fe-MCM-48 

and (b) content of V and Fe in V-Fe-MCM-48 with the time of hydrothermal treatment. 

Table 2. Structural parameters of the Si- and V-Fe-MCM-48 samples with different treatment time. 

Time (h) 
MCM-48 V-Fe-MCM-48 

d211 (nm) a0 a (nm) V/Si a (Molar Ratio) Fe/Si b (Molar Ratio) d211 (nm) a0 a (nm) 

0 3.59 8.80 0.0296 0.0066 3.81 9.33 
24 3.56 8.72 0.0107 0.0041 3.70 9.06 
48 – – 0.0079 0.0028 3.68 9.01 
72 – – 0.0062 0.0021 3.56 8.72 
96 – – 0.0048 0.0014 – – 

Notes: a Unit cell parameter: a0 = 61/2d211; b ICP results. 

3. Experimental Section 

3.1. Materials 

Tetraethylorthosilicate (TEOS) was purchased from Sinopharm Chemical Reagent Co., Ltd.; 

cetyltrimethylammonium bromide (CTAB), ammonia solution (25–28 wt %), ethanol, hydrogen 

peroxide (H2O2, 30 wt %), vanadium metavanadate (NH4VO3) and iron nitrate nonahydrate 

(Fe(NO3)3•9H2O) were purchased from Nanjing Chemical Reagent Co., Ltd. (Nanjing, China). 

3.2. Synthesis of the Samples 

The V-Fe-MCM-48 was synthesized via one-step hydrothermal method under precisely control, 

using CTAB as structure-directing agent, and EtOH as cosolvent. The reaction was carried out at room 

temperature. The molar ratio composition of the reaction mixture was 1.0TEOS:0.3CTAB:60EtOH: 

10NH3:0.04V:0.01Fe:410H2O, and the obtained sample was noted as V-Fe-MCM-48. A typical 

preparation of V-Fe-MCM-48 is as follow: 0.0432 g NH4VO3 and 0.0381 g Fe(NO3)3•9H2O were 

dissolved in 10 mL deionized water, respectively. Meanwhile, 1.0125 g CTAB was dissolved in 50 mL 

deionized water under mechanical stirring at 170 rpm, followed by adding 32.4 mL EtOH and 6.3 mL 

25–28 wt % ammonium solution orderly. When complete dissolution, the NH4VO3 solution and 

Fe(NO3)3 solution were added dropwise successively to the template solution under mechanical stirring 
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at 450 rpm. After 15 min stirring, 2.1 mL TEOS was added dropwise to the above mixture solution, and 

kept on being further stirred for 2 h. Then the synthesized gel was placed in the teflon-lined autoclave 

and aged at 100 °C for 24 h. The sample was washed with deionized water and EtOH till neutral, and 

dried at 70 °C in air for 10 h. The as-synthesized product was calcined at 550 °C in a flow of air for 6 h 

at a heating rate of 1 °C/min to remove the template. For comparison, Si-MCM-48 samples were also 

synthesized using the same method. 

3.3. Characterization 

The XRD patterns of the samples were collected with Smartlab TM 9 KW (Rigaku Corporation, 

Tokyo, Japan) equipped with a rotating anode and Cu Kα radiation (λ = 0.154178 nm). 

Nitrogen adsorption-desorption isotherms were measured on a BELSORP-MINI analyzer (BEL Japan, 

Osaka, Janpan) at 77 K. Before the measurements, calcined samples were degassed in vacuum at  

200 °C for 2 h. Surface areas were calculated using the BET equation and pore size distributions were 

obtained by the Barrett-Joyner-Halenda (BJH) method using desorption branch data. 

The vanadium content and iron content in the samples were determined using a PE Optima 2000DV 

(PerkinElmer, Waltham, MA, USA) Inductively Coupling Plasma emission spectrometer (ICP).  

The samples were completely dissolved in hydrofluoric acid before analysis. 

Field emission scanning electron microscopy (FE-SEM) was performed on a Hitachi S4800 Field 

Emission Scanning Electron Microscopy (Hitachi, Tokyo, Janpan). 

Transmission electron microscopy (TEM) images were recorded on a JEM-2010 EX microscope 

(JEOL, Tokyo, Japan) operated at an accelerating voltage of 200 kV. The samples were crushed in 

A.R. grade ethanol, and the resulting suspension was allowed to dry on carbon film supported on 

copper grids. 

Diffuse reflectance UV-vis spectra was recorded by a Lambda 950 spectrophotometer 

(PerkinElmer, Waltham, MA, USA) in the range of 200–800 nm with Ba2SO4 as reference. 

The X-ray photoelectron spectra (XPS) were conducted on a PHI 5000 Versa Probe X-ray 

photoelectron spectrometer (ULVAC-PHI, Kanagawa, Japan) equipped with Al Karadiation (1486.6 eV). 

The C1s peak at 284.6 eV was used as the reference for binding energies. 

3.4. Hydrothermal Stability Test 

The hydrothermal stability test was carried out as followed. Two grams of calcined sample was 

added to a teflon-lined autoclave with 100 mL distilled water. Then the autoclave was placed to a 

drying oven and treated at 110 °C for different time (24, 48, 72, and 96 h). The sample was recovered 

by filtration and dried at 70 °C in air for 10 h. To evaluate the hydrothermal stability, XRD was used to 

characterize the structure. 

4. Conclusions 

In this paper, we have successfully synthesized vanadium and iron co-doped MCM-48 with 

spherical morphology, narrow pore size distribution and high specific surface area by one-step 

hydrothermal method. Most of the vanadium and iron species were incorporated into the silicate 
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framework as tetrahedral V4+ and Fe3+ species, respectively. The introduction of iron species reduced the 

particle sizes and increased the specific surface area significantly of V-MCM-48 with almost the same 

amount of vanadium species. Moreover, the hydrothermal stability of Si-MCM-48 improved by co-doping 

the silicate framework with V and Fe. We offer a direct and simple method to produce MCM-48 with 

remarkable hydrothermal stability, which promotes its usage in hot water and aqueous solution. 
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