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AUTOIMMUNITY

Redoxing PTPN22 activity
The oxidative state of a critical cysteine residue determines the enzy-
matic activity of a phosphatase involved in T-cell immune responses.

MAGDALENA SHUMANSKA AND IVAN BOGESKI

A precisely tuned immune system is tremen-
dously important for rapidly sensing and 
eliminating disease-causing pathogens 

and generating immunological memory. At the 
same time, immune cells need to be able to 
recognize the body’s own cells and distinguish 
them from foreign invaders. Even small dysregu-
lations can result in the immune system attacking 
organs and tissues in the body by mistake, leading 
to conditions known as autoimmune diseases.

The incidence of autoimmune diseases world-
wide has increased in recent years, leading scien-
tists to investigate how genetic and environmental 
factors contribute to these pathologies (Ye et al., 
2018). Amongst other findings, research has 
shown that an enzyme called PTPN22 (short for 
protein tyrosine phosphatase non-receptor type 
22) is a risk factor in multiple autoimmune disor-
ders, including rheumatoid arthritis, diabetes and 
systemic lupus erythematosus. PTPN22 prevents 
the overactivation of T-cells (cells of the adaptive 
immune system) by removing phosphate groups 
from phosphorylated proteins that are part 
of the T-cell receptor (TCR) signaling pathway 
(Figure 1; Bottini et al., 2006; Fousteri et al., 
2013; Tizaoui et al., 2021).

Activation of the T-cell receptor is followed by 
the production of reactive oxygen species (ROS), 
highly reactive by-products of molecular oxygen, 
which can oxidize other molecules, including 
proteins. It is now clear that ROS have important 
roles in T-cell activation and that defects in 
ROS production may alter the immune system's 
responses (Simeoni and Bogeski, 2015; Kong 
and Chandel, 2018). However, high levels of 
ROS can also cause oxidative stress, leading to 
impaired cell activity and even death. Therefore, 
T-cells must optimally balance ROS production 
through antioxidative mechanisms and enzymes 
such as thioredoxin (Patwardhan et al., 2020).

Redox reactions (oxidation and its reverse 
reaction known as reduction) regulate many 
proteins, including phosphatases (Tonks, 2005), 
although how oxidation and reduction modu-
late PTPN22 activity remained unclear. Now, in 
eLife, Rikard Holmdahl and colleagues based in 
Sweden, China, Australia, Austria, France, Russia, 
Hungary and the United States – including Jaime 
James (Karolinska Institute) as first author – 
report that a non-catalytic cysteine may play an 
important role in the redox regulation of PTPN22 
(James et  al., 2022). Notably, this regulation 
was found to modulate inflammation in mouse 
models with severe autoimmunity.

The team genetically engineered mice that 
carried a mutated version of PTPN22, in which 
a non-catalytic cysteine at position 129 was 
replaced with a serine, preventing that residue 
from forming a disulfide bond with the catalytic 
cysteine at position 227 responsible for the enzy-
matic activity of PTPN22. Notably, this approach 
was based on a study in which the crystal struc-
ture of PTPN22 was examined and an atypical 
bond was observed between the non-catalytic 
cysteine at position 129 and the catalytic cysteine 
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residue (C227; Orrú et al., 2009). In vitro exper-
iments performed by James et al. revealed that 
the mutant enzyme was more sensitive to inhibi-
tion by oxidation than its wildtype counterpart. 
Interestingly, the results also showed that the 
mutant PTPN22 was less efficient at performing 
its catalytic role, and that it was less responsive 
to re-activation by antioxidant enzymes, such as 
thioredoxin.

To further test the role of cysteine 129 in 
PTPN22 redox regulation, James et al. used a 
mouse model that expressed the mutant protein 
and was susceptible to rheumatoid arthritis. 
These mice exhibited higher levels of inflamma-
tion in response to T-cell activation, which would 
be expected in animals that cannot downregu-
late TCR signaling. The mice also displayed more 
severe symptoms of arthritis, consistent with high 
immune activity. These effects were not observed 
when the experiment was repeated in mice that 
fail to produce high levels of ROS in response to 
TCR activation, confirming that the initial obser-
vations depend on the redox state of PTPN22.

Finally, James et al. performed in vitro exper-
iments on T-cells isolated from mice carrying the 

mutant PTPN22. They found that when these 
cells became activated, the downstream targets 
of PTPN22 showed an increased phosphor-
ylation status, consistent with lower PTPN22 
activity.

Taken together, the elegant study of James 
et al. shows that cysteine 129 is critical for the 
redox regulation of PTPN22, and that its muta-
tion impacts T-cell activity and exacerbates auto-
immunity in mice (Figure  1). What still remains 
to be determined is why the mutant enzyme has 
lower catalytic activity, which may be due to the 
mutation affecting the structural conformation 
of PTPN22. Additionally, it will be important to 
assess other cysteines in PTPN22 to determine 
whether they are also partly involved in its redox 
regulation.

Understanding how the redox state of 
PTPN22 regulates the activity of T-cells may help 
researchers to develop new therapies for treating 
autoimmune diseases.
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Figure 1. A model of PTPN22 redox regulation and its effect on T-cell activity. In normal immunity, wildtype 
PTPN22 (left, blue protein with green lettering) is able to efficiently remove phosphate groups (yellow circles) from 
proteins downstream of the T-cell receptor (TCR), including LCK, Fyn and Zap70. Dephosphorylation inactivates 
these proteins, reducing T-cell activity. In this state, two PTPN22 cysteine residues (at positions 129 and 227) form 
a disulfide bond, which influences the redox state and the activity of the enzyme. If PTPN22 is mutated so that 
cysteine 129 becomes a serine (right, blue protein with red lettering, with the mutant serine residue shown in 
red), the disulfide bond cannot form, and the phosphatase becomes more sensitive to deactivation by oxidation. 
The mutant version of the phosphatase is also less efficient at dephosphorylating proteins, which increases TCR 
signaling and inflammation, leading to autoimmunity.
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